TD 9 - Montages à ALI

19/11/2025

1 Comparateur non inverseur à hystérésis - III

Le schéma du comparateur non inverseur est présenté figure 1.

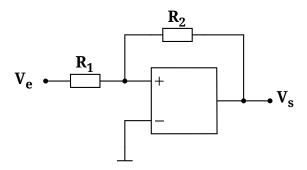


Figure 1 – Schéma du comparateur non inverseur

- 1. À partir du schéma du montage, l'ALI fonctionne-t-il en mode linéaire ou saturé?
- 2. Dans le cadre du modèle de l'ALI idéal, donner l'expression de V^+ en fonction de v_e , v_s , R_1 et R_2 .
- 3. On suppose que $v_s = +V_{\text{sat}}$. Montrer que cela reste vrai tant que $v_e > -V_b$, on donnera l'expression de la tension V_b .
- 4. De même, si on suppose $v_s = -V_{\text{sat}}$, montrer que cela reste vrai tant que $v_e < V_b$.
- 5. Montrer que ces deux conditions ne s'excluent pas. Tracer ainsi la caractéristique v_s en fonction de v_e et tracer le cycle d'hystérésis.

2 Filtre actif - II

On étudie le filtre actif présenté sur la figure 2.

- 1. À partir du schéma du montage, l'ALI fonctionne-t-il en mode linéaire ou saturé?
- 2. On se place dans le cadre du modèle de l'ALI idéal de gain infini. Montrer que l'on peut définir deux impédances équivalentes Z_1 et Z_2 telles que la fonction de transfert $H(\omega)$ puisse s'écrire

$$H(\omega) = -\frac{Z_2}{Z_1} \tag{1}$$

3. Montrer alors que l'on peut mettre H sous la forme

$$H(\omega) = H_0 \frac{1 + j\omega/\omega_1}{1 + j\omega/\omega_2} \tag{2}$$

où on donnera les expressions de H_0 , ω_1 et ω_2 .

- 4. Calculer les limites de ${\cal H}$ en haute et basse fréquence.
- 5. En prenant $\omega_2 = \omega_1/10$, tracer l'allure du diagramme de Bode, $G = 20 \log |H|$ en fonction de ω .

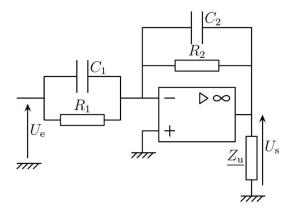


FIGURE 2 – Schéma du filtre actif

3 Résistance négative - IV

On considère le montage électronique présenté sur la figure 3.

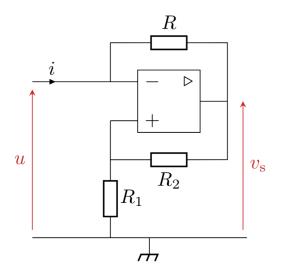


Figure 3 – Montage à "résistance négative"

- 1. Peut-on anticiper, en regardant le montage, si l'ALI va fonctionner en régime linéaire ou saturé?
- 2. On se place dans l'approximation de l'ALI idéal. Déterminer v^+ en fonction de v_s , R_1 et R_2 puis v^- en fonction de i, R et v_s .
- 3. On suppose que l'ALI fonctionne en régime linéaire, et on se place dans l'hypothèse d'un ALI de gain infini. Déterminer alors la relation entre u et i et justifier que l'on appelle ce montage "résistance négative".
- 4. Déterminer le courant $I_b > 0$ tel que pour $i < -I_b$, l'ALI quitte le régime linéaire et bascule en saturation haute $v_s = +V_{\text{sat}}$.
- 5. De même, montrer que si $i > I_b$, l'ALI bascule en saturation basse $v_s = -V_{\text{sat}}$.
- 6. Déterminer la relation entre u et i dans les régimes de saturation haute et basse. Tracer ensuite la caractéristique u(i) de ce montage.