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E désigne un espace vectoriel réel (K = R), pas nécessairement de di-
mension finie.
On rappelle que E × E désigne l’ensemble des couples (x, y), où x et y sont
deux vecteurs de E.

L’objectif de ce chapitre est de généraliser la notion de produit scalaire,
connue dans R2 ou R3, à d’autres espaces vectoriels.

1 Généralités sur les espaces préhilbertiens

1.1 Produit scalaire

Définition 1.1. On dit qu’une application ⟨. | .⟩ : E×E 7→ R est un produit
scalaire sur E si, et seulement si, elle vérifie les propriétés suivantes :

• L’application ⟨. | .⟩ est symétrique :

∀(x⃗, y⃗) ∈ E × E, ⟨x⃗ | y⃗⟩ = ⟨y⃗ | x⃗⟩

• L’application ⟨.|.⟩ est bilinéaire : ∀(x⃗, y⃗, z⃗) ∈ E × E × E, ∀a ∈ R :

⟨ax⃗ + y⃗ | z⃗⟩ = a⟨x⃗ | z⃗⟩ + ⟨y⃗ | z⃗⟩
⟨x⃗ | ay⃗ + z⃗⟩ = a⟨x⃗ | y⃗⟩ + ⟨x⃗ | z⃗⟩;

• L’application ⟨. | .⟩ est positive :

∀x⃗ ∈ E, ⟨x⃗ | x⃗⟩ ⩾ 0;

• L’application ⟨. | .⟩ est définie : ⟨x⃗ | x⃗⟩ = 0 ⇐⇒ x⃗ = −→0
On dit qu’un produit scalaire est une "forme bilinéaire symétrique définie
positive".

Remarque 1.2.
Si une application φ : E × E → R est symétrique et linéaire à gauche, alors
la linéarité à droite est automatique.
ATTENTION ! ! ! La propriété " φ est positive" ne signifie pas que

φ(x, y) ≥ 0 pour tout (x, y) ∈ E × E .

Ce n’est pas possible de toute façon puisque φ(x, −y) = −φ(x, y) par linéarité
à droite.
Le produit scalaire peut aussi se noter (x⃗ | y⃗) ou x⃗ · y⃗.
La notation du produit scalaire u⃗ · v⃗ ne sera pas toujours adaptée car le point
désigne dans les espaces vectoriels la multiplication d’un scalaire par un vec-
teur et pour les réels le point désigne parfois la multiplication.
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Définition 1.3. • Un espace préhilbertien réel est un couple

(E, ⟨. | .⟩)

où E est un R-espace vectoriel et ⟨. | .⟩ est un produit scalaire sur E.
• Un espace préhilbertien (E, ⟨. | .⟩), où E est de dimension finie, s’ap-

pelle un espace euclidien.

Remarque 1.4. • Sur un même espace vectoriel on peut définir plu-
sieurs produits scalaires.

• Tous les espaces vectoriels ne sont pas des espaces préhilbertiens (il
n’est pas toujours possible de construire un produit scalaire).

• Dans le chapitre suivant, nous étudierons plus précisément certaines
applications définies sur des espaces euclidiens.

Application 1.5. L’application ⟨. | .⟩ définie sur E × E où E = R2 par :

⟨x⃗ | y⃗⟩ = 10x1y1 − 3x1y2 − 3x2y1 + x2y2,

où x⃗ = (x1, x2) et y⃗ = (y1, y2), est-elle un produit scalaire sur R2?

Application 1.6. L’application ⟨. | .⟩ définie sur E × E où E = R3 par :

⟨x⃗ | y⃗⟩ = x1y1

où x⃗ = (x1, x2, x3) et y⃗ = (y1, y2, y3) est-elle un produit scalaire sur R3 ?
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Application 1.7. L’application ⟨. | .⟩ définie sur E × E où E = Rn[X]
par :

⟨P | Q⟩ =
n∑

k=0
pkqk

où P = p0 + p1X + . . . + pnXn et Q = q0 + q1X + . . . + qnXn, est-elle un
produit scalaire sur Rn[X] ?

Application 1.8. Montrer que l’application ⟨. | .⟩ définie sur E × E où
E = C ([a; b],R) par :

⟨f | g⟩ =
∫ b

a f(t)g(t)dt

est un produit scalaire sur C ([a; b],R).

Remarque 1.9. • ATTENTION ! ! ! La condition de continuité est
ici indispensable pour assurer le caractère "défini positif".
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• L’application (f, g) 7→
∫ b

a f(t)g(t)dt n’est pas un produit scalaire sur
CM ([a, b],R) (espace des fonctions réelles continues par morceaux).

• L’application définie par ⟨f, g⟩ = 1
b−a

∫ b
a f(t)g(t)dt, est aussi un pro-

duit scalaire sur C 0([a; b],R) (utilisé pour le calcul des coefficients de
Fourier d’une fonction).

1.2 Produit scalaire canonique sur Rn

Théorème 1.10. L’application ⟨. | .⟩ définie sur E × E où E = Rn par :

⟨x⃗ | y⃗⟩ =
n∑

i=1
xiyi, avec x⃗ = (x1, . . . , xn) et y⃗ = (y1, . . . , yn)

est un produit scalaire sur Rn que l’on appelle le produit scalaire cano-
nique sur Rn.

Preuve :

Application 1.11. L’application ⟨. | .⟩ définie sur E × E où E = Mn,1(R)
par ⟨X | Y ⟩ = XT × Y est un produit scalaire sur Mn,1(R).
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1.3 Norme euclidienne

1.3.1 Définitions

Définition 1.12. Soit (E, ⟨. | ·⟩) un espace préhilbertien. On appelle norme
euclidienne ou norme associée au produit scalaire ⟨. | .⟩, l’application,
notée ∥.∥, de E dans R définie par :

∀x⃗ ∈ E, ∥x⃗∥ =
√

⟨x⃗ | x⃗⟩

Exemple 1.13. • On reprend le produit scalaire sur Rn [X] défini par :

⟨P | Q⟩ =
n∑

k=0
pkqk.

La norme associé à ce produit scalaire est :

∥P∥ =
√√√√ n∑

k=0
p2

k.

Et donc ∥Xn∥ = 1
• On prend le produit scalaire défini sur C ([0; 1],R) par :

⟨P | Q⟩ =
∫ 1

0 P (t)Q(t)dt

. La norme associée à ce produit scalaire est :

∥P∥ =
√∫ 1

0 (P (t))2 dt.

On a donc ici :

∥Xn∥ =
√∫ 1

0 (tn)2 dt =
√[

1
2n+1 t2n+1

]1

0
=

√
1

2n+1 .

Définition 1.14. Soit (E, ⟨. | ·⟩) un espace préhilbertien et x⃗ ∈ E.
On dit que le vecteur x⃗ est unitaire ou normé s’il vérifie ∥x⃗∥ = 1.

1.3.2 Propriétés importantes

Dans toute cette partie (E, ⟨. | ·⟩) désigne un espace préhilbertien et ∥.∥
la norme euclidienne associée.

Proposition 1.15. Pour tout (x⃗, y⃗) ∈ E2 on a :
• Identités remarquables :

∥x⃗ + y⃗∥2 = ∥x⃗∥2 + 2⟨x⃗ | y⃗⟩ + ∥y⃗∥2 et ∥x⃗ − y⃗∥2 = ∥x⃗∥2 − 2⟨x⃗ | y⃗⟩ + ∥y⃗∥2
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• Identités de polarisation :

⟨x⃗ | y⃗⟩ = ∥x⃗ + y⃗∥2 − ∥x⃗∥2 − ∥y⃗∥2

2 et ⟨x⃗ | y⃗⟩ = ∥x⃗ + y⃗∥2 − ∥x⃗ − y⃗∥2

4
• Identité du parallélogramme :

∥x⃗ + y⃗∥2 + ∥x⃗ − y⃗∥2 = 2
(
∥x⃗∥2 + ∥y⃗∥2

)
.

Preuve :

Théorème 1.16. Inégalité de Cauchy-Schwarz
Pour tout (x⃗, y⃗) ∈ E2 on a :

|⟨x⃗ | y⃗⟩| ⩽ ∥x⃗∥∥y⃗∥.

De plus |⟨x⃗ | y⃗⟩| = ∥x⃗∥∥y⃗∥ (cas d’égalité) si, et seulement si, la famille (x⃗, y⃗)
est liée.

Preuve :
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Proposition 1.17. La norme euclidienne vérifie :
• ∥.∥ est une application de E dans R+ ;
• ∀x⃗ ∈ E, ∀λ ∈ R, ∥λx⃗∥ = |λ|∥x⃗∥
• ∀x⃗ ∈ E ∥x⃗∥ = 0 ⇐⇒ x⃗ = −→0
• ∀(x⃗, y⃗) ∈ E × E on a : ∥x⃗ + y⃗∥ ⩽ ∥x⃗∥ + ∥y⃗∥. (Inégalité triangulaire)

Remarque 1.18. En mathématiques, toute application qui vérifie les quatre
points de la propriété précédente, s’appelle une norme.
Dans notre cas, la norme a été définie à partir d’un produit scalaire, c’est
pourquoi on l’appelle une norme euclidienne.
Mais il existe des normes qui ne proviennent pas d’un produit scalaire (des
normes non euclidiennes).

Preuve : Démonstration de l’inégalité triangulaire

1.4 Distance euclidienne

Définition 1.19. Soit (E, ⟨. | .⟩) un espace préhilbertien.
On appelle distance euclidienne associée au produit scalaire ⟨. | .⟩, l’ap-
plication, notée d(., .), de E × E dans R définie par

d(x⃗, y⃗) = ∥x⃗ − y⃗∥

Proposition 1.20. L’application d vérifie les 4 points suivants :
• d est une application de E × E dans R+

• ∀(x⃗, y⃗) ∈ E × E, d(x⃗, y⃗) = 0 ⇐⇒ x⃗ = y⃗

• ∀(x⃗, y⃗) ∈ E × E, d(x⃗, y⃗) = d(y⃗, x⃗)
• ∀(x⃗, y⃗, z⃗) ∈ E × E × E, d(x⃗, y⃗) ⩽ d(x⃗, z⃗) + d(z⃗, y⃗)

Remarque 1.21. En mathématiques, toute application qui vérifie les 4
points de la propriété précédente s’appelle une distance. Dans notre cas la
distance a été définie à partir d’une norme euclidienne (c’est-à-dire une
norme qui provient elle-même d’un produit scalaire), c’est pourquoi on dit
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qu’il s’agit d’une distance euclidienne.

Il est possible de construire des distances qui ne proviennent ni d’une
norme ni d’un produit scalaire.

Dans la suite de ce chapitre (E, ⟨. | .⟩) désigne un espace préhil-
bertien réel, ∥.∥ la norme euclidienne associée et d(., .) la distance
euclidienne associée.

2 Orthogonalité

2.1 Vecteurs orthogonaux

Définition 2.1. Soient x⃗ et y⃗ deux vecteurs de E.
On dit que x⃗ et y⃗ sont orthogonaux lorsque :

⟨x⃗ | y⃗⟩ = 0

On note alors x⃗ ⊥ y⃗

Application 2.2. On considère l’espace vectoriel C ([0; 2π],R) muni du pro-
duit scalaire suivant :

⟨f | g⟩ =
∫ 2π

0
f(x)g(x)dx

Montrer que les fonctions f : x 7→ cos(x) et g : x 7→ sin(x) sont orthogonales
pour ce produit scalaire.

Application 2.3. Sur Rn[X](n ⩾ 2), on reprend les deux produits scalaires
suivants :

⟨P | Q⟩1 =
n∑

k=0
pkqk ⟨P | Q⟩2 =

∫ 1

0
P (t)Q(t)dt

Les deux polynôme X2−1 et 2X sont-il orthogonaux respectivement à chacun
de ces deux produits scalaires ?
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Définition 2.4. Soit (u⃗i)i∈I une famille de vecteurs de E.
On dit que la famille (u⃗i)i∈I est une famille orthogonale lorsque :

∀(i, j) ∈ I2 tels que i ̸= j, u⃗i ⊥ u⃗j.

Définition 2.5. Soit (u⃗i)i∈I une famille de vecteurs de E.
On dit que la famille (u⃗i)i∈I est une famille orthonormale ou orthonor-
mée lorsque :

1. c’est une famille orthogonale
2. ∀i ∈ I, ∥u⃗i∥ = 1.

2.2 Vecteur orthogonal à un sous-espace vectoriel

Définition 2.6. Soit u⃗ ∈ E et F un sous-espace vectoriel de E.
On dit que u⃗ est orthogonal à F lorsque :

∀f⃗ ∈ F, u⃗ ⊥ f⃗

Proposition 2.7. Soit F un sous-espace vectoriel de E et F une famille
génératrice de F .
Alors un vecteur u⃗ de E est orthogonal à F si, et seulement s’il est orthogonal
à tous les vecteurs de la famille F .

Application 2.8. Dans R4 muni de son produit scalaire canonique, on
considère le sous-espace vectoriel

F =
{

(x, y, z, t) ∈ R4/2x − t = 0 et x + 2y − z = 0
}

.

Montrer que le vecteur u⃗ = (1, −2, 1, −1) est orthogonal à F .
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2.3 Sous-espaces vectoriels orthogonaux

Définition 2.9. Soient F et G deux sous-espaces vectoriels de E.
On dit que F et G sont orthogonaux lorsque pour tout f⃗ ∈ F et pour tout
g⃗ ∈ G, f⃗ ⊥ g⃗.
On note alors F ⊥ G

2.4 Orthogonal d’un sous-espace vectoriel

Définition 2.10. Soit F un sous-espace vectoriel de E.
On appelle orthogonal de F , et on note F ⊥, l’ensemble :

F ⊥ = {u⃗ ∈ E tel que ∀f⃗ ∈ F, ⟨u⃗ | f⃗⟩ = 0}.

Autrement dit, F ⊥ est l’ensemble des vecteurs qui sont orthogonaux à tous
les vecteurs de F .

Remarque 2.11. • E⊥ =
{−→0 E

}
car le seul vecteur qui est orthogonal

à tous les vecteurs de E est le vecteur nul.
•

{−→0 E

}⊥
= E car tous les vecteurs de E sont orthogonaux au vecteur

nul.

Application 2.12. On se place dans M2(R) muni du produit scalaire :

⟨A | B⟩ = tr
(
AT × B

)
.

On note D l’ensemble des matrices diagonales de M2(R).
Déterminer D⊥.

TSI2-Lycée Antonin Artaud 11 Page 11/22



Espaces préhilbertiens réels www.jmcabrera.net

Application 2.13. Reprenons le sous-espace vectoriel F :

F =
{

(x, y, z, t) ∈ R4/2x − t = 0 et x + 2y − z = 0
}

.

Déterminer F ⊥.

2.5 Propriétés importantes

Proposition 2.14. Soit (u⃗i)i∈I une famille orthogonale de vecteurs de E
telle que ∀i ∈ I, u⃗i ̸= 0.
Alors la famille (u⃗i)i∈I est une famille libre.

Preuve :
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Théorème 2.15. Théorème de Pythagore
Soit (u⃗1, . . . , u⃗n) une famille orthogonale de vecteurs de E. Alors :

∥u⃗1 + u⃗2 + . . . + u⃗n∥2 = ∥u⃗1∥2 + ∥u⃗2∥2 + . . . + ∥u⃗n∥2

Proposition 2.16. Soit F un sous-espace vectoriel de E.
Alors F ⊥ est un sous-espace vectoriel de E.

Preuve :

Proposition 2.17. Soient F et G deux sous-espaces vectoriels de E.
Si F ⊥ G alors :

• F ∩ G = {−→0 }
• F ∩ F ⊥ = {−→0 }

• F ⊂
(
F ⊥

)⊥

Preuve :

• Soit u⃗ ∈ F ∩G. On a alors ⟨u⃗ | u⃗⟩ = 0 car u⃗ ∈ F et u⃗ ∈ G et on suppose
que les parties sont orthogonales. Donc ∥u⃗∥ = 0 et donc u⃗ = −→0 . Ainsi
F ∩ G = {−→0 }.

• Découle directement du point précédent car F et F ⊥ sont orthogonales.

• Par définition
(
F ⊥

)⊥
=

{
u⃗ ∈ E/∀f⃗ ∈ F ⊥⟨u⃗ | f⃗⟩ = 0

}
.

Soit w⃗ ∈ F .
On veut montrer que w⃗ ∈

(
F ⊥

)⊥
, c’est-à-dire que pour tout f⃗ ∈ F ⊥,

⟨w⃗ | f⃗⟩ = 0.
Or, comme w⃗ ∈ F et f⃗ ∈ F ⊥ on a bien ⟨w⃗ | f⃗⟩ = 0.
Donc w⃗ ∈

(
F ⊥

)⊥
et ainsi F ⊂

(
F ⊥

)⊥
.

Remarque 2.18. En dimension infinie on peut construire des sous-espaces
vectoriels F tels que F ̸= E et F ⊥ = {0}.
On a donc, dans ce cas,

(
F ⊥

)⊥
= E, et cela montre que l’inclusion F ⊂(

F ⊥
)⊥

est parfois stricte.
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3 Bases orthonormales
Le but de cette partie est de construire une base orthonormée d’un es-

pace euclidien ou d’un sous-espace vectoriel de dimension finie d’un espace
préhilbertien.

3.1 La théorie

Le théorème et le corollaire suivant justifient l’existence d’une base or-
thonormée.

Théorème 3.1. Théorème d’orthonormalisation de Schmidt
Soit (u⃗1, . . . , u⃗N ) une famille libre de E.
Alors il existe une unique famille orthonormale {ε⃗1, . . . , ε⃗N } vérifiant :

• ∀n ∈ J1; NK, Vect (u⃗1, . . . , u⃗n) = Vect (ε⃗1, . . . , ε⃗n)
• ∀n ∈ J1; NK, ⟨u⃗n | ε⃗n⟩ > 0

Ce théorème sera le plus souvent appliqué à une base de E ou de F ,
sous-espace vectoriel de E, pour trouver une base orthonormale.

Corollaire 3.2. Soit E un espace euclidien (préhilbertien de dimension fi-
nie). Alors il existe une base orthonormée de E (abréviation : BON).

Preuve :

3.2 La pratique

Méthode 3.3. Algorithme d’orthonormalisation de Gram-Schmidt
On dispose d’un espace préhilbertien (E, ⟨. | ·⟩) et d’une famille libre (u⃗1, . . . , u⃗N ).
On souhaite construire une famille orthonormale (ε⃗1, . . . , ε⃗N ) (donc cette
nouvelle famille est encore libre) et telle que :

Vect (u⃗1, . . . , u⃗N ) = Vect (ε⃗1, . . . , ε⃗N )

(si on est parti d’une base de E ou d’un sev de E on a encore une base de
E ou d’un sev de E).
Voici la marche à suivre :

1. on pose w⃗1 = u⃗1 ;
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2. on cherche w⃗2 sous la forme w⃗2 = λ1w⃗1 + u⃗2.

3. on trouve λ grâce à la condition ⟨w⃗1 | w⃗2⟩ = 0
4. on cherche w⃗3 sous la forme w⃗3 = λ1w⃗1 + λ2w⃗2 + u⃗3.
5. on trouve α et β grâce aux conditions ⟨w⃗1 | w⃗3⟩ = 0 et ⟨w⃗2 | w⃗3⟩ = 0

On répète l’opération jusqu’à obtenir w⃗n.

La famille ainsi construite, (w⃗1, . . . , w⃗n) est alors une famille orthogo-
nale.
On finit en posant ε⃗i = w⃗i

∥w⃗i∥ .
La famille (ε⃗1, . . . , ε⃗N ) est alors orthonormale et vérifie :

Vect (u⃗1, . . . , u⃗N ) = Vect (ε⃗1, . . . , ε⃗N )

Application 3.4. Soit F =
{
(x, y, z, t) ∈ R4/x − y − z − t = 0

}
.

Chercher une base orthonormée de F .

3.3 Coordonnées d’un vecteur dans une base orthonormée

Proposition 3.5. Soit E un espace euclidien et B = (ε⃗1, . . . , ε⃗n) une base
orthonormée de E.
Soit u⃗ ∈ E. On note (λ1, . . . , λn) ses coordonnées dans la base B.
Alors on a :

∀i ∈ {1, . . . , n}, λi = ⟨u⃗ | ε⃗i⟩

C’est-à-dire : u⃗ =
n∑

i=1
⟨u⃗ | ε⃗i⟩ ε⃗i.

Preuve :
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Cette propriété nous donne un moyen simple de déterminer les coordon-
nées d’un vecteur dans une BON : il suffit de calculer ⟨u⃗ | ε⃗i⟩

3.4 Expression du produit scalaire et de la norme dans une
base orthonormée

Proposition 3.6. Soit E un espace euclidien et B = (ε⃗1, . . . , ε⃗n) une base
orthonormée de E.

• Pour tout u⃗ ∈ E, ∥u⃗∥2 =
n∑

i=1
⟨u⃗ | ε⃗i⟩2

• Pour tout u⃗ ∈ E et v⃗ ∈ E, ⟨u⃗ | v⃗⟩ =
n∑

i=1
⟨u⃗ | ε⃗i⟩ × ⟨v⃗ | ε⃗i⟩.

-

Preuve :

4 Projection orthogonale

4.1 Supplémentaire orthogonal

On rappelle que si F et G sont deux sous-espaces vectoriels de E, on
dit que F et G sont supplémentaires si, et seulement si, F ∩ G = {−→0E} et
E = F + G.
On note alors E = F ⊕ G.
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Définition 4.1. Soit F et G deux sous-espaces vectoriels de E.
On dit que G est un supplémentaire orthogonal de F lorsque :

• F et G sont supplémentaires
• F ⊥ G

On note alors E = F
⊥
⊕ G.

On dit aussi que F est un supplémentaire orthogonal de G.

Application 4.2. On considère l’espace Mn(R) muni du produit scalaire :

⟨A | B⟩ = tr
(
AT B

)
.

On note Sn(R) l’ensemble des matrices symétriques et An(R) l’ensemble
des matrices antisymétriques.
Montrer que Sn(R) et An(R) sont des supplémentaires orthogonaux.

Remarque 4.3. Au lieu de montrer que Mn(R) = Sn(R)+An(R) on aurait
aussi pu travailler sur les dimensions des espaces et montrer que :

dim (Mn(R)) = dim (Sn(R)) + dim (An(R)).

Il est toutefois très important de retenir la méthode utilisée dans l’applica-
tion.

Théorème 4.4. Soit F un sous-espace vectoriel de E de dimension finie.
Alors on a :

E = F
⊥
⊕ F ⊥

Remarque 4.5. Ce théorème est faux en dimension infinie. On peut (exer-
cice délicat) exhiber des sous-espaces vectoriels de dimension infini, tels que
F ⊥ = {0} et F ̸= E.

TSI2-Lycée Antonin Artaud 17 Page 17/22



Espaces préhilbertiens réels www.jmcabrera.net

Corollaire 4.6. Si E est un espace euclidien (préhilbertien de dimension
finie) et si F est un sous-espace vectoriel de E alors on a

dim
(
F ⊥

)
= dim(E) − dim(F )

Corollaire 4.7. Soit F un sous-espace vectoriel de E de dimension finie.
Alors on a :

F =
(
F ⊥

)⊥
.

Preuve :

4.2 Projection orthogonale

Définition 4.8. Soit (E, ⟨. | ·⟩) un espace préhilbertien réel et F un sous-
espace vectoriel de E de dimension finie.
Comme E = F

⊥
⊕ F ⊥, pour tout x⃗ ∈ E, il existe un unique vecteur y⃗ ∈ F et

un unique vecteur z⃗ ∈ F ⊥ tels que x⃗ = y⃗ + z⃗.
Le vecteur y⃗ s’appelle le projeté orthogonal de x⃗ sur F .
L’application pF qui à tout vecteur x⃗ de E associe son projeté orthogonal
sur F s’appelle la projection orthogonale sur F .

Application 4.9. On se place dans Mn(R). Déterminer la projection or-
thogonale sur Sn(R).
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Proposition 4.10. Soit (E, ⟨. | .⟩) un espace préhilbertien réel, F un sous-
espace vectoriel de E et (ε⃗1, . . . , ε⃗n) une base orthonormée de F . Alors pour
tout x⃗ ∈ E on a :

pF (x⃗) =
n∑

i=1
⟨x⃗ | ε⃗i⟩ ε⃗i

Application 4.11. On reprend F =
{
(x, y, z, t) ∈ R4/x − y − z − t = 0

}
un sous-espace vectoriel de R4 étudié dans une application précédente.
Déterminer la matrice associée à la projection orthogonale sur F dans la
base canonique de R4.

Proposition 4.12. Soit (E, ⟨. | .⟩) un espace préhilbertien réel, F un sous-
espace vectoriel de E de dimension finie et pF la projection orthogonale sur
F . On a :

• ∀x⃗ ∈ E, x⃗ ∈ F ⇐⇒ pF (x⃗) = x⃗

• ∀x⃗ ∈ E, pF (x⃗) ∈ F et x⃗ − pF (x⃗) ∈ F ⊥

• ∀x⃗ ∈ E, x⃗ = pF (x⃗) + pF ⊥(x⃗)
• pF est un projecteur de E.

Remarque 4.13. Le troisième point de cette propriété peut vous permettre
d’être astucieux si vous remarquez qu’il est plus facile de trouver pF ⊥.
Vous pourrez ensuite en déduire pF .

Preuve :
• Si x⃗ ∈ F alors l’unique décomposition de x⃗ sur F et F ⊥ est :

x⃗ = x⃗︸︷︷︸
∈F

+ −→0︸︷︷︸
∈F ⊥

donc d’après la définition de pF on a bien pF (x⃗) = x⃗.
La réciproque est vraie pas définition de la projection sur F .
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• En reprenant les notations de la définition :

pF (x⃗) = y⃗ ∈ F et x⃗ − pF (x⃗) = z⃗ ∈ F ⊥.

• Application directe de la définition de nouveau.
• 1. Montrons que pF est un endomorphisme de E. pF est bien une

application de E dans E.
De plus, soit (x⃗1, x⃗2) ∈ E2 et (a, b) ∈ R2. On note x⃗1 = y⃗1 + z⃗1 la
décomposition de x⃗1 sur F et F ⊥ et x⃗2 = y⃗2+ z⃗2 la décomposition
de x⃗2 sur F et F ⊥.
On a alors ax⃗1 + bx⃗2 = ay⃗1 + by⃗2 + az⃗1 + bz⃗2.
Donc pF (ax⃗1 + bx⃗2) = ay⃗1 + by⃗2 = apF (x⃗1) + bpF (x⃗2) · pF est
donc bien linéaire.

2. Il faut maintenant vérifier que pF ◦ pF = pF .
Pour tout x⃗ ∈ E, on a vu que pF (x⃗) ∈ F donc pF (pF (x⃗)) = pF (x⃗)
et ainsi pF est bien un projecteur.

Application 4.14. On reprend F =
{
(x, y, z, t) ∈ R4/x − y − z − t = 0

}
un sous-espace vectoriel de R4.
Retrouver l’expression de pF (x, y, z, t) sans utiliser une base orthonor-
mée de F .

Méthode 4.15. Pour déterminer la projection orthogonale sur un sous-
espace F nous disposons de trois méthodes :

1. avec la définition : on écrit x⃗ = y⃗ + z⃗ avec y⃗ ∈ F et z⃗ ∈ F ⊥ et on a
alors pF (x⃗) = y⃗ ;

2. avec une base orthonormée de F : (ε⃗1, . . . , ε⃗n) base orthonormée de F ,
on écrit alors pF (x⃗) =

n∑
i=1

⟨x⃗ | ε⃗i⟩ ε⃗i
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3. avec une base de F : on exploite trois informations : pF (x⃗) ∈ E, pF (x⃗) ∈
F et x⃗ − pF (x⃗) ∈ F ⊥ (on traduit le plus souvent ce dernier point en
disant que x⃗ − pF (x⃗) est orthogonal aux vecteurs de la base de F ) .

Il ne faut pas oublier qu’il est parfois plus simple de déterminer pF ⊥(x⃗) (avec
l’une des trois méthodes ci-dessus), puis on obtient pF (x⃗) par la relation :

pF (x⃗) = x⃗ − pF ⊥(x⃗)

4.3 Distance d’un point à un sev de dimension finie

Proposition 4.16. Soit F un sev de dimension finie de E, et pF la projec-
tion orthogonale sur F . Alors :

• Pour tout vecteur x ∈ E, on a ∀y ∈ F, ∥x − y∥ ≥ ∥x − pF (x)∥.
Donc ∥x − pF (x)∥ = inf

y∈F
∥x − y∥ = min

y∈F
∥x − y∥.

• Étant donné x ∈ E, si un vecteur z ∈ F vérifie :

∀y ∈ F, ∥x − y∥ ≥ ∥x − z∥

alors z = pF (x)

Remarque 4.17. Le projeté orthogonal pF (x) est donc le seul "point" qui
minimise la distance de x aux "points" du sev F .

Preuve :

Définition 4.18. Distance d’un vecteur à un sous-espace de dimen-
sion finie.
Étant donné un vecteur x ∈ E et un sous-espace F de dimension finie, on
appelle distance de x à F le réel positif :

d(x, F ) = inf
y∈F

∥x − y∥ = ∥x − pF (x)∥

Remarque 4.19. On a d(x; F ) = 0 ⇐⇒ x = pF (x) ⇐⇒ x ∈ F
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Application 4.20. On munit E = R3 de sa structure euclidienne cano-
nique.

1. Exprimer la projection orthogonale sur le plan F = Vect


 1

1
0

 ,

 0
1
1


.

2. Pour tout −→w =

 x
y
z

 ∈ R3, exprimer d(−→w , F ).

3. Le vecteur −→w =

 3
−2
−5

 appartient-il à F ?
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