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Méthodes
Chap.10 : résoudre une équation

différentielle d’ordre 2

1 Coefficients constants
On cherche à résoudre l’équation différentielle :

(E) : ay′′ + by′ + cy = d(t),

où a, b et c sont trois réels (i.e. des constantes qui ne dépendent pas de
la variable t ) et d une fonction continue sur un intervalle I.

Dans ce cas, on procède 1 comme pour les équations différentielles d’ordre
1 en deux étapes :

1. on résout l’équation homogène associée (H) : ay′′ + by′ + c = 0 ;
2. on détermine une solution particulière yP de (E).

1.1 Équation homogène associée

Pour résoudre l’équation homogène

(H) : ay′′ + by′ + c = 0

on considère l’équation caractéristique

(EC) : ar2 + br + c

et on distingue plusieurs cas suivant la valeur du discriminant :
• Si ∆ > 0, en notant r1 et r2 les deux racines réelles de (EC), les

solutions de (H) sont de la forme :

yH(t) = λer1t + µer2t avec λ, µ ∈ R.

• Si ∆ = 0, en notant r0 la racine double de (EC), les solutions de (H)
sont de la forme :

yH(t) = (λ + µt)er0t avec λ, µ ∈ R.

• Si ∆ < 0, en notant r1 et r2 les deux solutions complexes conjuguées
de ( EC ), les solutions complexes de ( H ) sont de la forme

yH(t) = Aer1t + Ber2t avec A, B ∈ C.
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Exemple 1.1. Résoudre (H1) : y′′ − 4y′ + 3y = 0.

L’équation caractéristique est r2 − 4r + 3 = 0, le discriminant vaut ∆ =
4 > 0 . Les racines sont 1 et 3 donc les solutions de ( H1 ) sont les fonctions
de la forme t 7−→ λet + µe3t avec λ, µ ∈ R.

Exemple 1.2. Résoudre (H2) : y′′ + y′ + y = 0.

L’équation caractéristique est r2+r+1 = 0 de discriminant ∆ = −3 < 0.
Les racines sont r1 = −1−i

√
3

2 et r2 = −1+i
√

3
2 .

Pour déterminer les solutions réelles, écrivons r2 = −1
2 + i

√
3

2 . Les solutions
de ( H2 ) sont les fonctions de la forme :

t 7−→ e−t/2
(
λ cos

(√
3

2 t
)

+ µ sin
(√

3
2 t

))
avec λ, µ ∈ R.

1.2 Recherche d’une solution particulière

Pour déterminer une solution particulière de (E), on regarde le second
membre :

• s’il est constant, on cherche une solution particulière constante ;
• si c’est un polynôme, on cherche une solution particulière sous forme

d’un polynôme de même degré ;
• s’il est sous forme d’un sin ou d’un cos, on cherche une solution parti-

culière sous la forme d’une combinaison linéaire de sin et cos (méthode
identique à celle pour l’ordre 1 , voir fiche correspondante) ;

• s’il est de la forme d(t) = γeδt, suivant si δ n’est pas racine, est racine
simple ou est racine double de l’équation caractéristique, on cherche
une solution particulière sous la forme keδt, kteδt ou kt2eδt.

Exemple 1.3. Solution particulière de (E2) : y′′ + 3y′ + 5y = 2

Comme le second membre est constant, on cherche une solution particu-
lière sous la forme yP (t) = k avec k ∈ R.
Cette fonction est deux fois dérivable et ses dérivées sont nulles d’où, en
injectant dans (E2) , 5k = 2.
Ainsi la fonction constante égale à 2

5 est solution particulière de (E2).

Exemple 1.4. Solution particulière de (E1) : y′′ + y′ + y = 8e3t

D’après l’exemple 1.1, 3 est racine simple de l’équation caractéristique
associée donc on cherche une solution particulière sous la forme :

yP (t) = kte3t.
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Cette fonction est deux fois dérivable sur R en tant que produit de fonctions
qui le sont.
On dérive deux fois en tant que produit et on injecte dans (E1).
Après calculs et simplifications, il vient 2ke3t = 8e3t d’où k = 4.
Ainsi la fonction

t 7−→ 4te3t

est solution particulière de (E1).

1.3 Solutions générales et problème de Cauchy

Comme pour les équations différentielles d’ordre 1, les solutions générales
sont de la forme "solutions homogènes + solution particulière ».

Exemple 1.5. Résoudre l’équation (E1) : y′′ + y′ + y = 8e3t.

On a déterminé les solutions homogènes dans l’exemple 1.1 et une solu-
tion particulière dans l’exemple 1.4, d’où :

S =
{

t 7−→ λet + µe3t + 4te3t | λ, µ ∈ R
}

.

Enfin, si on dispose de deux conditions initiales y (t0) = y0 et y′ (t0) = y1,
on détermine les valeurs des constantes λ et µ et on obtient ainsi une unique
solution au problème de Cauchy.

2 Coefficients variables
On cherche à résoudre l’équation différentielle :

(E) : a(t)y′′ + b(t)y′ + c(t)y = d(t),

où a, b, c et d sont des fonctions continues sur l’intervalle I, avec a qui
ne s’y annule pas.
La principale chose à retenir est qu’il n’existe aucune méthode générale pour
résoudre ce genre d’équation différentielle !

Il est donc important de suivre l’énoncé et s’y adapter : recherche de
solutions sous une forme donnée, vérification que telle fonction est solution,
etc...

Exemple 2.1. Montrer que la fonction h définie par h(t) = t2 est solution
de (H3) : t2y′′ − 3ty′ + 4y = 0 sur I =] 0; +∞[.

La fonction h est polynomiale donc deux fois dérivable sur I avec

h′(t) = 2t et h′′(t) = 2.
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Ainsi :

t2h′′(t) − 3th′(t) + 4h(t) = 2t2 − 6t2 + 4t2 = 0 pour tout t ∈ I.

Donc h est solution de l’équation homogène (H3) sur I.

2.1 Abaissement de l’ordre

La seule méthode un tant soit peu générale est celle de l’abaissement de
l’ordre qui nécessite de connaître préalablement une solution h de l’équation
homogène associée, avec h qui ne s’annule pas sur I.
Elle consiste à chercher les solutions sous la forme y(t) = z(t)h(t) où z est
une fonction inconnue deux fois dérivable sur I.
Pour cela :

1. on dérive deux fois y comme produit (après avoir justifié la dérivabi-
lité) ;

2. on injecte dans (E) et on simplifie au maximum : les termes en z
se simplifient et on aboutit à z′ solution d’une équation différentielle
d’ordre 1 ;

3. on résout cette équation différentielle d’ordre 1 ;
4. on a donc z′, on primitive (sans oublier la constante) pour obtenir z

et on a enfin y en multipliant par h.

Exemple 2.2. Résoudre (E3) : t2y′′ − 3ty′ + 4y = t3 sur I =] 0; +∞[

1. On a montré dans l’exemple 2.1 que la fonction h donnée par h(t) = t2

est solution de l’équation homogène associée.
On cherche donc les solutions de (E3) sous la forme :

y(t) = z(t)h(t) = t2z(t)

avec z deux fois dérivable sur I.
En tant que produit de fonctions dérivables sur I, y l’est également.
On calcule y′ et y′′ (dérivées de produits), on injecte dans (E3) et on
simplifie.
On obtient t4z′′ + t3z′ = t3.
Comme t3 ̸= 0 sur I, ceci équivaut à z′′ + 1

t z′ = 1
t .

2. Ainsi z est solution de l’équation différentielle u′ + 1
t u = 1

t .
Par les méthodes de résolutions usuelles (voir fiche correspondante),
on trouve z′(t) = λ

t + 1 avec λ ∈ R.
On primitive : z(t) = λ ln(t) + t + µ avec λ, µ ∈ R.

3. Finalement, comme on a posé y(t) = t2z(t), les solutions de (E3) sont
les fonctions de la forme :

y(t) = λt2 ln(t) + t3 + µt2 avec λ, µ ∈ R.
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