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Méthodes
Chap.10 : résoudre une équation

différentielle d’ordre 1

Méthode générale :
On souhaite résoudre l’équation différentielle :

(E) : y′ + a(t)y = b(t)

où a et b sont deux fonctions continues sur un intervalle I.
On procède en deux étapes :

1. on résout l’équation homogène associée (H) : y′ + a(t)y = 0 ;
2. on cherche une solution particulière yP de (E).
Remarque : s’il y a un coefficient devant y′, on pourra diviser par celui-

ci après avoir vérifié qu’il ne s’annule pas sur l’intervalle I de résolution.

1 Solutions de l’équation homogène
Théorème 1.1. Solutions de l’équation homogène.
Notons A une primitive de a sur I. Les solutions de (H) sont les fonctions
de la forme :

yH(t) = λe−A(t) avec λ ∈ R.

Exemple 1.2. Résoudre (H1) : xy′ − y = 0 sur I =] 0; +∞[.

Sur I, x ̸= 0 donc (H1) équivaut à y′ − 1
xy = 0.

Une primitive de x 7→ − 1
x est x 7→ − ln |x|. Les solutions de ( H1 ) sont

donc les fonctions de la forme

x 7→ λe−(− ln |x|) = λeln |x| = λ|x| = λx

car x > 0 sur I avec λ ∈ R.

Remarque : Dans le cas où a est une constante, une primitive de t 7→ a
est t 7→ at et on retrouve ainsi le résultat vu en première année.
En effet les solutions de (H) sont dans ce cas les fonctions de la forme :

yH(t) = λe−at

avec λ ∈ R.

TSI2-Lycée Antonin Artaud 1



E.D. Ordre 1 www.jmcabrera.net

Exemple 1.3. Résoudre (H2) : y′ + 2y = 0 sur R.

Une primitive de t 7→ 2 est t 7→ 2t donc les solutions de (H3) sur R sont
les fonctions de la forme :

t 7→ λe−2t

avec λ ∈ R.

2 Recherche d’une solution particulière
Il existe une méthode universelle pour déterminer une solution particu-

lière : la «variation de la constante» .
Pour cela :

1. On cherche yP sous la forme yP (t) = z(t)e−A(t) où z est une fonction
dérivable sur I (on a remplacé la constante de la solution homogène
par une fonction inconnue z, d’où le nom de la méthode).

2. On injecte yP dans (E), il y a toujours simplification des termes en z
et on arrive à une égalité de la forme z′(t) = . . .

3. Il suffit d’intégrer pour obtenir z puis yP .

Exemple 2.1. Déterminer une solution particulière de

(E1) : xy′ − y = x

sur l’intervalle I =]0; +∞[.

D’après l’exemple 1.2 , on va chercher une solution particulière yP sous
la forme yP (x) = z(x)x où z est une fonction dérivable sur I.
La fonction yP est dérivable sur I en tant que produit de fonctions dérivables
sur I.
On calcule y′

P (dérivée d’un produit), on injecte dans (E1) et on simplifie
(faire les calculs !) pour obtenir

x2z′(x) = x ⇔ z′(x) = 1
x .

En intégrant, on a z(x) = ln |x| = ln x et on obtient donc une solution
particulière yP donnée par :

yP (x) = x ln(x)

pour tout x ∈ I.

Bien que cette méthode fonctionne théoriquement toujours, il est parfois
plus rapide de faire autrement :

• l’énoncé peut avoir proposé une solution particulière ;
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• il peut y avoir une solution particulière " évidente » ;
• si le coefficient a est une constante, on peut chercher une solution

particulière de la forme du second membre.
Par exemple, si le second membre contient des fonctions sin et/ou
cos, on cherche une solution particulière comme combinaison linéaire
de sin et cos.

Exemple 2.2. Déterminer une solution particulière de

(E2) : y′ + 2y = 6 sur R.

On remarque que la fonction constante égale à 3 est solution évidente de
(E2).

Exemple 2.3. Vérifier que la fonction arcsin est solution particulière de
(E3) :

√
1 − x2y′ + y = 1 + arcsin x sur J =] − 1; 1[.

La fonction arcsin est dérivable sur J et on a :

∀x ∈ J, (arcsin x)′ = 1√
1−x2 .

Ainsi :

∀x ∈ J,
√

1 − x2y′ + y =
√

1 − x2 × 1√
1−x2 + arcsin x = 1 + arcsin x

C’est-à-dire que arcsin est solution particulière de (E3) sur J .

Exemple 2.4. Déterminer une solution particulière de :

(E4) : y′ + 2y = 5 cos(3t) sur R.

Comme les coefficients du membre de gauche sont constants, on va cher-
cher une solution particulière sous la forme yP (t) = α cos(3t) + β sin(3t)
avec α et β des réels à déterminer.
Cette fonction est dérivable sur R et on a :

y′
P (t) = −3α sin(3t) + 3β cos(3t) pour tout t ∈ R.

En injectant dans (E4) et après regroupement des termes, on obtient l’éga-
lité :

(2α + 3β) cos(3t) + (2β − 3α) sin(3t) = 5 cos(3t).

Il faut donc résoudre le système
{

2α + 3β = 5
2β − 3α = 0 .

On obtient α = 10
13 et β = 15

13 .
Ainsi, une solution particulière est donnée par :

t 7→ 10
13 cos(3t) + 15

13 sin(3t).
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3 Solutions générales
Théorème 3.1. Structure des solutions
Les solutions générales de l’équation différentielle (E) sont les fonctions de
la forme «solution homogène + solution particulière ».
Plus précisément, ce sont les fonctions de la forme :

t 7−→ λe−A(t) + yP (t) avec λ ∈ R.

Exemple 3.2. Résoudre l’équation

(E1) : xy′ − y = x sur ]0; +∞[.

D’après l’exemple 1.2, on dispose des solutions de l’équation homogène as-
sociée et on a déterminé une solution particulière dans l’exemple 2.1, d’où :

S = {x 7−→ λx + x ln x avec λ ∈ R}.

Exemple 3.3. Résoudre l’équation

(E2) : y′ + 2y = 6 sur R.

D’après l’exemple 1.3, on dispose des solutions de l’équation homogène as-
sociée et on a déterminé une solution particulière dans l’exemple 2.2 , d’où :

S =
{

t 7−→ λe−2t + 2 avec λ ∈ R
}

.

4 Problème de Cauchy
Si en plus de l’équation différentielle on dispose d’une condition initiale

de la forme y (t0) = y0, on peut déterminer la valeur de λ et donc obtenir
l’unique solution au problème de Cauchy.

Exemple 4.1. Résoudre le problème de Cauchy
{

xy′ − y = x
y(1) = 2 .

D’après l’exemple 3.2 , les solutions sur ]0; +∞[ sont les fonctions de la
forme :

y(x) = λx + x ln x avec λ ∈ R.

La condition initiale y(1) = 2 donne λ × 1 + 1 × ln 1 = 2, i.e. λ = 2.
Ainsi l’unique solution de ce problème de Cauchy est la fonction définie sur
]0; +∞[ par :

x 7−→ 2x + x ln x.
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