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Chap.6 : Réduction
Méthodes

1 Méthode de diagonalisation
On souhaite savoir si une matrice M de taille n à coefficients dans K (où

K désigne R ou C ) est diagonalisable et si oui la diagonaliser.

1. On calcule le polynôme caractéristique de M .
• Si χM n’est pas scindé sur K, alors la matrice M n’est pas dia-

gonalisable sur K.
• Si χM est scindé sur K, on note λ1, . . . , λp ∈ K les valeurs propres

de M et mλ1 , . . . , mλp leurs multiplicités respectives.
2. S’il y a n valeurs propres distinctes alors on peut tout de suite conclure

que M est diagonalisable sur K.
3. On détermine, pour chaque valeur propre λk, une base Bk du sous-

espace propre Eλk
.

• Si pour au moins une valeur propre λk de M on a dim (Eλk
) <

mλk
, alors la matrice M n’est pas diagonalisable sur K.

• Si pour toutes les valeurs propres de M on a

dim (Eλk
) = mλk

alors la matrice M est diagonalisable sur K.
4. Dans le cas où M est diagonalisable, on note B = (B1, . . . , Bp) la

concaténation des bases Bi ; c’est une base de Kn.
On note P la matrice de passage de la base canonique vers B, i.e. la
matrice dont les colonnes sont constituées des coordonnées des vecteurs
de B dans la base canonique.
On a alors :

M = PDP −1

où D ∈ Mn(K) est la matrice diagonale

D = diag(λ1, . . . , λ1︸ ︷︷ ︸
mλ1 fois

, λ2, . . . , λ2︸ ︷︷ ︸
mλ2 fois

, . . . , λp, . . . , λp︸ ︷︷ ︸
mλp fois

).

Exemple 1.1. Diagonaliser A =
(

0 −1
1 0

)
sur R.
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1. Son polynôme caractéristique est :

χA(λ) = det (λI2 − A) =
∣∣∣∣∣ λ 1

−1 λ

∣∣∣∣∣ = λ2 + 1

2. Le polynôme χA n’est pas scindé sur R car ses racines ne sont pas
dans R.

3. On en déduit que A n’est pas diagonalisable sur R.

Exemple 1.2. Diagonaliser A =
(

0 −1
1 0

)
sur C.

1. Son polynôme caractéristique est χA(λ) = λ2 + 1 = (λ − i)(λ + i). Il
est scindé sur C et on a Sp(A) = {−i, i} avec m−i = mi = 1.

2. On a deux valeurs propres distinctes et A est de taille 2 donc A est
diagonalisable sur C.

3. On détermine une base de chaque sous-espace propre :

(
x

y

)
∈ Ei ⇐⇒ A

(
x

y

)
= i
(

x

y

)
⇐⇒

{
−y = ix
x = iy ⇐⇒

{
y = −ix
x = x

Ainsi Ei = Vect
{( 1

−i
)}

. De même, on trouve E−i = Vect
{(1

i
)}

.

4. On a ainsi A = PDP −1 avec P =
(

1 1
−i i

)
et D =

(
i 0
0 −i

)
.

Remarque : On constate que les vecteurs propres associés à i et -i sont
conjugués.
C’est un fait général pour une matrice à coefficients réels.
En effet, si AX = λX avec A ∈ Mn(R) alors :

AX̄ = AX = λX = λ̄X̄.

Exemple 1.3. Diagonaliser B =
(

2 1
0 2

)
∈ M2(R).

1. Son polynôme caractéristique est :

χB(λ) = det (λI2 − B) =
∣∣∣∣∣ λ − 2 1

0 λ − 2

∣∣∣∣∣ = (λ − 2)2

Il est scindé sur R et on a Sp(B) = {2} avec m2 = 2.

2. Comme il n’y a qu’une valeur propre (de multiplicité 2 ), on ne peut
pas tout de suite conclure quant à la diagonalisabilité ou non de B.
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3. On détermine une base de l’espace propre :

(
x

y

)
∈ E2 ⇐⇒ B

(
x

y

)
= 2

(
x

y

)
⇐⇒

{
2x + y = 2x
2y = 2y

⇐⇒ y = 0

Ainsi E2 = Vect
{(1

0
)}

et en particulier dim (E2) = 1 ̸= 2 = m2 donc
B n’est pas diagonalisable sur R (ni sur C, les calculs sont identiques).

Exemple 1.4. Diagonaliser la matrice C =

 2 −3 3
0 −4 6
0 −3 5

 ∈ M3(R).

1. Grâce à un développement selon la première colonne, on a :

χC(λ) =

∣∣∣∣∣∣∣
λ − 2 3 −3

0 λ + 4 −6
0 3 λ − 5

∣∣∣∣∣∣∣ = (λ − 2)[(λ + 4)(λ − 5) + 18]

= (λ − 2)
(
λ2 − λ − 2

)
= (λ − 2)2(λ + 1)

Le polynôme caractéristique est scindé sur R et on a Sp(C) = {−1; 2}
avec m−1 = 1 et m2 = 2.

2. Comme il n’y a que deux valeurs propres distinctes et que C est de
taille 3, on ne peut pas conclure tout de suite quant à la diagonalisibi-
lité de C.

3. On détermine une base du sous-espace propre associé à la valeur propre
double 2 : x

y
z

 ∈ E2 ⇐⇒ C

 x
y
z

 = 2

 x
y
z

 ⇐⇒ · · · ⇐⇒ z = y.

Ainsi E2 = Vect


 0

1
1

 ,

 1
0
0


 et en particulier dim (E2) = 2 =

m2.
Par conséquent, la matrice C est diagonalisable sur R. Remarque :
comme m−1 = 1, même sans calcul de l’espace propre associé, on est
certain que dim (E−1) = 1 = m−1. On doit cependant le calculer pour
déterminer la matrice P .
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 x
y
z

 ∈ E−1 ⇐⇒ C

 x
y
z

 = −

 x
y
z

 ⇐⇒ · · · ⇐⇒
{

x = z
y = 2z

Ainsi E−1 = Vect


 1

2
1


.

4. On a ainsi C = PDP −1 avec :

D =

 −1 0 0
0 2 0
0 0 2

 et P =

 1 0 1
2 1 0
1 1 0


2 Calcul des puissances d’une matrice diagonali-

sable
Si une matrice M est diagonalisable, on peut calculer Mk pour tout

k ∈ N.

1. Comme précédemment, on détermine une matrice diagonale D et une
matrice inversible P telles que M = PDP −1.

2. On calcule P −1.
3. On remarque que :

• il est facile de calculer Dk : il s’agit simplement de mettre les
termes diagonaux à la puissance k ;

• d’après le cours Mk =
(
PDP −1)k = PDkP −1.

4. On effectue les produits matriciels ci-dessus et on obtient Mk.

Exemple 2.1. Déterminer l’expression de Ck pour tout k ∈ N où C est la
matrice de l’exemple précédent.

1. On a C = PDP −1 avec D =

 −1 0 0
0 2 0
0 0 2

 et P =

 1 0 1
2 1 0
1 1 0

.

2. Grâce à l’algorithme du pivot de Gauss, on trouve P −1 =

 0 1 −1
0 −1 2
1 −1 1

.

3. Pour tout k ∈ N, on a Ck = PDkP −1 avec Dk =

 (−1)k 0 0
0 2k 0
0 0 2k

.
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4. On effectue les produits matriciels :

Ck =

 1 0 1
2 1 0
1 1 0

×

 (−1)k 0 0
0 2k 0
0 0 2k

×

 0 1 −1
0 −1 2
1 −1 1


=

 2k (−1)k − 2k (−1)k+1 + 2k

0 2(−1)k − 2k 2(−1)k+1 + 2k+1

0 (−1)k − 2k (−1)k+1 + 2k+1


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