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Chap.12 : Variables aléatoires réelles
discrètes
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1 Biographies

1.1 Jacques Bernoulli

Jacques ou Jakob Bernoulli (27 décembre 1654 - 16 août 1705) est un ma-
thématicien et physicien suisse (né et mort à Bâle).
Jacques Bernoulli naît au sein d’une famille de commerçants, Nicolas Ber-
noulli et son épouse Margaretha Schönauer.
Son père est un riche importateur d’épices d’Extrême-Orient, la famille Ber-
noulli exerçant ce métier avec une indéniable réussite depuis de nombreuses
générations. Jacques ayant fait preuve dès sa tendre enfance d’une vive intel-
ligence, son père lui permet d’entamer des études universitaires et c’est ainsi
que Jacques intègre l’université de Bâle pour y étudier la philosophie. Pour-
tant, pendant ces années-là, le jeune homme se laisse peu à peu séduire par
les mathématiques, la physique et l’astronomie et, avant même de quitter
l’université, il sait déjà que la science est sa vocation. Son père ne l’accepte
pas de bon gré et Jacques part vivre à Genève où, une année durant, il est
employé comme répétiteur de mathématiques. Peu de temps après, son père
revient à de meilleurs sentiments et accepte même de financer son voyage
à travers l’Europe pour y rencontrer les scientifiques les plus renommés de
l’époque.

C’est ainsi qu’en 1678 Jacques Bernoulli se rend en France et étudie un
temps avec d’anciens disciples de René Descartes.
Les premières contributions importantes de Jacques Bernoulli sont une étude
publiée en 1685 dans laquelle il établit des parallèles entre la logique et
l’algèbre, un travail sur les probabilités en 1685 et un sur la géométrie en
1687 dans lequel il donne une construction pour diviser un triangle en quatre
parties égales par deux droites perpendiculaires.

En 1689, il publie sous le titre Positiones arithmeticae de seriebus infinitis
un important travail sur les séries infinies 2 et sa loi des grands nombres
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dans la théorie des probabilités. Jacques Bernoulli a publié cinq traités sur
les séries infinies entre 1682 et 1704 .
Les deux premiers de ces traités contiennent de nombreux résultats, tel que
le résultat fondamental selon lequel la série ∑ 1/n diverge.
Bernoulli croyait que ce résultat était nouveau, mais il avait été résolu par
le mathématicien français Nicole Oresme et effectivement prouvé par Pietro
Mengoli 40 ans plus tôt.
Le Bâlois Bernoulli n’a pu trouver la valeur exacte de

+∞∑
n=1

1/n2, mais il a

montré qu’il y avait convergence vers une limite finie inférieure à 2 .
Le Bâlois Euler a été le premier à trouver la somme de cette série en 1737
et à la démontrer en 1741, résolvant ainsi ce qu’il est convenu d’appeler le
problème de Bâle.

1.2 Tchebychev

Pafnouti Tchebychev, né le 16 mai 1821 à Okatovo, dans l’ouest de la Russie,
est un mathématicien russe du XIXè siècle. Issu d’une famille de militaires,
riche et cultivée, il est d’abord éduqué chez ses parents. Il reçoit alors de
très bons enseignements en mathématiques, mais aussi en français, ce qui
lui permettra plus tard d’échanger facilement avec les mathématiciens occi-
dentaux.
Son enfance est marquée par un handicap (il a une jambe plus longue que
l’autre) qui l’empêche de pratiquer certaines activités, et aussi d’envisager
une carrière militaire.
En 1837, il entre à l’université de Moscou, où il étudie les mathématiques
sous la direction de Brashman.
Alors qu’il commence à obtenir ses premiers résultats, sa situation finan-
cière change dramatiquement en 1841 quand une famine frappe durement
la Russie. Ses parents doivent quitter Moscou et ne peuvent plus subvenir à
ses besoins.
Même s’il vit désormais misérablement, Tchebychev persiste à continuer ses
études. Il soutient sa thèse en 1846, où il poursuit le programme de Bernoulli
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et de Poisson consistant à donner un cadre théorique aux théorèmes limites
des probabilités. En 1847, il devient professeur à Saint-Petersbourg.

0utre ses travaux en théorie des probabilités, Tchebychev est aussi cé-
lèbre pour les avancées qu’il a réalisées en arithmétique.
Ainsi, en 1850, il démontre le postulat de Bertrand, à savoir que, pour tout
entier naturel n ≥ 2, il existe toujours au moins un nombre premier com-
pris entre n et 2n. Il étudie également le nombre P (n) de nombre pre-
miers inférieurs à n . Confortant une conjecture de Gauss, il obtient que
si (P (n) log(n))/n admet une limite quand n tend vers l’infini, alors cette
limite est nécessairement 1 .

Aimant combiner les aspects théoriques et appliqués des mathématiques,
très habile de ses mains, il a conçu plusieurs machines arithmétiques ou
autres structures mécaniques. C’est dans un article consacré à la mécanique
qu’il a introduit les polynômes dits de Tchebychev. A la suite de cela, il est
le premier à ébaucher une théorie des polynômes orthogonaux.

2 Généralités sur les variables aléatoires discrètes

2.1 Définition, propriétés

Définition 2.1. Soit Ω un ensemble. On appelle variable aléatoire réelle
(VAR) toute application X définie sur Ω et à valeurs dans R.

Soit X une variable aléatoire définie sur Ω :
• Si X(Ω) est un ensemble dénombrable, on dit que X est une variable

aléatoire réelle discrète.
• Si X(Ω) est un ensemble fini, on dit que X est une variable aléatoire

réelle finie.
X(Ω) est l’ensemble des valeurs prises par X.

Remarque 2.2. Dans la définition rien n’impose que Ω soit un ensemble
dénombrable mais en pratique il le sera toujours...

Exemple 2.3. Un joueur lance deux fois de suite un dé cubique équilibré et
note les deux nombres obtenus sous la forme d’un couple : par exemple si le
joueur obtient 2 puis 5 , on note son résultat sous la forme (2, 5).
L’univers de notre expérience est Ω = J1; 6K × J1; 6K.
On définit la variable aléatoire réelle discrète X qui, à chaque couple, associe
la somme des deux nombres obtenus.
Ici, on a X(Ω) = {2, 3, . . . , 12}.
Donc X est une variable aléatoire réelle finie.
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Exemple 2.4. On effectue une succession de lancers indépendants d’un dé
cubique équilibré jusqu’à obtenir 6 pour la première fois. Soit X le nombre
de lancers effectués.

Tel que l’énoncé est posé, on ne sait pas trop comment décrire l’univers
de notre expérience mais on peut tout de même donner très clairement X(Ω).

On a ici X(Ω) = N∗ (on ne prend pas en compte le fait de ne jamais
obtenir 6 ) et donc X est une variable aléatoire réelle discrète infinie.

Définition 2.5. Soit X une variable aléatoire réelle discrète définie sur Ω.
Pour toute partie J de R, l’ensemble {ω ∈ Ω/X(ω) ∈ J} est un événement
que l’on notera [X ∈ J ] ou (X ∈ J).
Cas particuliers :

• Lorsque J = {a}, afin d’alléger les notations, l’événement

[X ∈ {a}] = {ω ∈ Ω/X(ω) = a} sera noté [X = a].

• Lorsque J =] − ∞; a], on note [X ⩽ a].
• Lorsque J = [a; b[ on note [a ⩽ X < b].

Exemple 2.6. Revenons au premier exemple où un joueur lance deux fois
de suite un dé et X est la somme des deux chiffres obtenus. On a :

[X = 2] = {(1, 1)}
[X = 4] = {(1, 3), (2, 2), (3, 1)}
[X ⩽ 5] = {(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3), (3, 2), (4, 1)}.

Dans le deuxième exemple, on a [X = 4] = S1 ∩ S2 ∩ S3 ∩ S4, où Sk

désigne l’événement " obtenir 6 au kième lancer ".

Dans toute la suite de ce chapitre, (Ω, P ) est un espace probabilisé et X
une variable aléatoire réelle discrète définie sur cet espace.

On notera dorénavant X(Ω) = {xi/i ∈ I} les valeurs prises par X, où I
est une partie (finie ou non) de N ou Z.

2.2 Loi d’une VAR discrète

Définition 2.7. On appelle loi de probabilité de la variable aléatoire réelle
discrète X (ou distribution de X ) l’ensemble des couples (xi, pi) où :

xi ∈ X(Ω) et pi = P ([X = xi])

On note parfois PX l’application définie sur X(Ω) par PX (xi) = P ([X = xi]).
Pour simplifier les notations, on notera : P ([X = xi]) = P (X = xi).
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Méthode 2.8. • Lorsque vous devez répondre à la question "déterminer
la loi de X", il faut commencer par donner clairement X(Ω).
Puis pour chaque élément xi de cet ensemble X(Ω) il faut donner
P (X = xi).

• Lorsque X(Ω) est fini et ne contient "pas trop" d’éléments, on peut
présenter les résultats sous forme de tableau avec dans la première
ligne les valeurs de xi et dans la deuxième ligne P (X = xi).

Application 2.9. On reprend le deuxième exemple de ce chapitre : on lance
un dé cubique équilibré jusqu’à obtenir 6 pour la première fois et X désigne
le nombre de lancers effectués.
Donner la loi de X.

Proposition 2.10. La famille d’événements ([X = xi])i∈I est un système
complet d’événements.
En particulier on a ∑

i∈I
P (X = xi) = 1.

Remarque 2.11. Cette propriété permet de vérifier la cohérence de vos ré-
sultats lorsque vous donnez la loi de X.
Comme ([X = xi])i∈I est un système complet d’événements, on peut appli-
quer la formule des probabilités totales pour n’importe quel événement A :

P (A) =
∑
i∈I

P (X = xi) P[X=xi](A) =
∑
i∈I

P ([X = xi] ∩ A) .

Application 2.12. Vérifier la cohérence de la loi obtenue dans l’application
précédente.

TSI2-Lycée Antonin Artaud 6 Page 6/20



V.A.R. discrètes www.jmcabrera.net

Théorème 2.13. Caractérisation de la loi d’une variable aléatoire
réelle discrète.
Soit {(xi, pi) /i ∈ I} une partie de R2, où I = N,Z ou une de leurs parties.
Si pour tout i ∈ I, pi ⩾ 0 et si ∑

i∈I
pi = 1, alors il existe un espace probabilisé

(Ω, P ) et une VAR discrète X définie sur Ω tels que {(xi, pi) /i ∈ I} est la
loi de X.

Application 2.14. Pour une variable aléatoire réelle X telle que X(Ω) =
Z\{0; −1}, on pose :

∀n ∈ Z\{0; −1}, P (X = n) = 1
2n(n + 1)

Vérifier que ceci définit bien une loi de probabilité pour X.

2.3 Fonction de répartition

Définition 2.15. On appelle fonction de répartition de X l’application

FX : R 7→ R

définie par :
FX(x) = P (X ⩽ x)

Proposition 2.16. La fonction de répartition d’une VAR discrète est une
fonction en escalier.

Application 2.17. On considère toujours notre exemple de lancers succes-
sifs d’un dé cubique équilibré jusqu’à obtenir 6 et X la variable aléatoire
réelle égale au nombre de lancers nécessaires.

1. Calculer plusieurs valeurs de FX : FX(−2), FX(2, 1), FX(2, 99).
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2. Déterminer la fonction de répartition.

Proposition 2.18. Soit FX la fonction de répartition de la variable aléatoire
réelle discrète X. Alors FX vérifie les propriétés suivantes :

1. ∀x ∈ R, FX(x) ∈ [0; 1]
2. FX est croissante.

Preuve :

Remarque 2.19. Une autre propriété intéressante, mais hors-programme,
de la fonction de répartition est que :

lim
x→−∞

FX(x) = 0 et lim
x→+∞

FX(x) = 1

Théorème 2.20. Loi d’une VAR discrète à partir de sa fonction de répar-
tition
On rappelle que X(Ω) = {xi/i ∈ I}.
Si les xi sont rangés par ordre croissant, alors pour tout i ∈ I tel que i−1 ∈ I
(on a donc xi−1 < xi) on a :

P (X = xi) = FX (xi) − FX (xi−1)
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Preuve :

Application 2.21. Un sac contient 4 boules numérotés de 1 à 4 .
On tire successivement deux boules avec remise. On note X1 le numéro de
la première boule, X2 le numéro de la seconde boule, et Y le plus grand des
deux numéros obtenus.
Déterminer la loi de Y .

2.4 Fonction d’une variable aléatoire

Définition 2.22. Soient X une VAR discrète sur un espace probabilisé
(Ω, P ) et g une fonction définie sur X(Ω) à valeurs dans R.
On note g(X) l’application de Ω dans R définie pour tout ω ∈ Ω par :

g(X)(ω) = g(X(ω))

Proposition 2.23. Soient X une VAR discrète sur un espace probabilisé
(Ω, P ) et g une fonction définie sur X(Ω) à valeurs dans R.
Alors Y = g(X) est une VAR discrète définie sur Ω et telle que :

• Y (Ω) = {g (xi) , i ∈ I}
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• ∀y ∈ Y (Ω), P (Y = y) = ∑
i/g(xi)=y

P (X = xi)

Application 2.24. Soit X une VAR dont la loi est définie par :

valeur de X −1 1 2
probabilité 1

4
1
2

1
4

Déterminer les lois de Y = 2X + 1 et de Z = X2.

3 Moments d’une VAR discrète

3.1 Espérance

Définition 3.1. On dit que la VAR X admet une espérance, ou que l’espé-
rance de X existe, lorsque X(Ω) est fini ou lorsque la série ∑xiP (X = xi)
est absolument convergente.
On appelle alors espérance de X, le réel :

E(X) = ∑
i∈I

xiP (X = xi).

Remarque 3.2. • On note parfois : E(X) =
+∞∑

x∈X(Ω)
xP (X = x).

• Lorsque X est une VAR discrète finie, X admet forcément une espé-
rance.

• Si pour tout i ∈ I, a ⩽ xi ⩽ b alors a ⩽ E(X) ⩽ b (ceci permet de
vérifier la cohérence de votre résultat).

• En particulier si pour tout i, xi ⩾ 0 alors E(X) ⩾ 0.

Application 3.3. Reprenons une nouvelle fois la VAR X désignant le
nombre de lancers d’un dé cubique afin d’obtenir pour la première fois 6
.
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1. Démontrer que X admet une espérance.
2. Déterminer la valeur de E(X).

Théorème 3.4. Théorème de transfert
Soit g une fonction définie sur X(Ω) et à valeurs dans R.
Alors la variable aléatoire réelle g(X) admet une espérance si, et seulement
si, la série ∑x∈X(Ω) g(x)P (X = x) est absolument convergente et dans ce
cas, on a :

E(g(X)) =
∑

x∈X(Ω)
g(x)P (X = x).

Application 3.5. Reprendre l’exemple précédent et déterminer E
(
X2) si

elle existe.

Corollaire 3.6. Linéarité de l’espérance.
Si X admet une espérance alors pour tout (a, b) ∈ R2, aX + b admet une
espérance et

E(aX + b) = aE(X) + b.
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3.2 Variance et écart type

Proposition 3.7. Si E
(
X2) existe alors E(X) existe.

ATTENTION ! ! ! La réciproque de cette propriété est fausse.

Exemple 3.8. On considère la VAR X dont la loi est donnée par X(Ω) =
N∗ et pour tout n ∈ N∗ :

P (X = n) = 1
λn3 avec λ =

+∞∑
k=1

1
k3 .

On a nP (X = n) = 1
λn2 donc ∑ |nP (X = n)| converge et E(X) existe.

De plus n2P (X = n) = 1
λn donc ∑∣∣n2P (X = n)

∣∣ diverge et E
(
X2) n’existe

pas.

Définition 3.9. Soit X une VAR discrète telle que X2 admet une espérance.
On appelle variance de X le réel :

V (X) = E
(
X2)− (E(X))2 Formule de Kœnig-Huygens.

De plus, lorsque V (X) existe, on appelle écart-type de X le réel :

σ(X) =
√

V (X).

Remarque 3.10. • Si X n’admet pas d’espérance, X ne peut pas ad-
mettre de variance.

• Il existe une autre définition de la variance (au programme de TSI1) :

V (X) = E
(
(X − E(X))2).

Les deux définitions sont évidemment équivalentes.
La variance est donc la moyenne du carré de la distance entre les
valeurs de X et la moyenne de X. Ainsi, la variance est une mesure
de dispersion de X par rapport à E(X).

Application 3.11. Soit encore X le nombre de lancers de dé jusqu’à obtenir
6 pour la première fois.
X admet-elle une variance ? Si c’est le cas, la calculer.
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Proposition 3.12. Si X est une VAR discrète admettant une variance alors
pour tout (a, b) ∈ R2, aX + b admet une variance et :

V (aX + b) = a2V (X)

De plus : σ(aX + b) =| a | σ(X).

Théorème 3.13. Inégalité de Bienaymé-Tchebychev
Soit X une variable aléatoire réelle discrète telle que X2 admet une espé-
rance. Alors :

∀ε > 0, P (|X − E(X)| ⩾ ε) ⩽ V (X)
ε2

Preuve :
Comme X2 admet une espérance, X admet une variance et une espérance.
On pose X(Ω) = {xi, i ∈ I} et pi = P (X = xi). Il est plus facile, pour cette
démonstration, d’utiliser la définition de la variance vue en TSI 1 .
On sait que V (X) = E

(
(X − E(X))2). Donc d’après le théorème de trans-

fert :
V (X) = E

(
(X − E(X))2

)
=
∑
i∈I

(xi − E(X))2 pi

Et de plus :

P (|X − E(X)| ⩾ ε) =
∑
j∈J

pj où J = {j ∈ I/ |xj − E(X)| ⩾ ε}

On peut donc écrire :

V (X) =
∑
j∈J

(xj − E(X))2 pj +
∑
i/∈J

(xi − E(X))2 pi

⩾
∑
j∈J

(xj − E(X))2 pj

⩾ ε2 ∑
j∈J

pj

⩾ ε2P (|X − E(X)| ⩾ ε)

⇔ P (|X − E(X)| ⩾ ε) ⩽ V (X)
ε2

Remarque 3.14. • On utilise souvent cette inégalité avec l’événement
contraire. On obtient alors :

P (|X − E(X)| < ε) ⩾ 1 − V (X)
ε2

• Cette propriété exprime le fait que la probabilité que X prenne des va-
leurs situées à une distance supérieure à ε de sa moyenne, est majorée
par V (X)

ε2 .
On retrouve ici le fait que la variance est une mesure de dispersion.
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Application 3.15. Le taux moyen de glycémie dans une population est de
1 g · L−1 avec une variance de 0,1 .
Une personne présente un taux X critique si son taux ne se situe pas dans
l’intervalle ]0, 5; 1, 5[.
Estimer la probabilité qu’une personne présente un taux critique.

4 Lois discrètes usuelles

4.1 Lois discrètes finies

4.1.1 Loi de Bernoulli (ou indicatrice d’événement)

On considère une expérience aléatoireE et A un événement lié à cette
expérience tel que P (A) = p.
On définit alors la variable aléatoire X en posant X = 1 si A est réalisé et
X = 0 sinon.
X est une VAR qui prend les valeurs 0 et 1 avec les probabilités :

P (X = 0) = 1 − p et P (X = 1) = p.

Définition 4.1. Soit p ∈ [0; 1]. On dit qu’une VAR X suit la loi de Ber-
noulli de paramètre p si :

X(Ω) = {0; 1}
P (X = 0) = 1 − p et P (X = 1) = p

On note X ↪→ B(p).

Proposition 4.2. Si X suit une loi de Bernoulli de paramètre p alors :

E(X) = p et V (X) = p(1 − p).

Preuve :
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4.1.2 Loi binomiale (ou des tirages avec remise)

On considère une expérience E et on considère un événement A lié à E
tel que P (A) = p.
On suppose que l’on effectue n fois l’expérience E dans les mêmes conditions
(les expériences sont indépendantes) et on considère X le nombre de fois où
A est réalisé au cours de ces n expériences identiques. X prend donc les
valeurs 0, 1, . . . , n. Soit k ∈ J0; nK.
On cherche à calculer P (X = k) c’est-à-dire la probabilité que A soit réalisé
k fois exactement.
Parmi les n expériences, il y a

(
n
k

)
façons de placer les k fois où A est

réalisé.
Chacun de ces

(
n
k

)
événements est réalisé avec la probabilité pk(1−p)n−k.

On a donc : P (X = k) =
(

n
k

)
pk(1 − p)n−k.

Définition 4.3. Soit p ∈ [0; 1] et n ∈ N. On dit que la VAR X suit la loi
binomiale de paramètres n et p si :

X(Ω) = {0, 1, . . . , n} = J0; nK

∀k ∈ J0; nK P (X = k) =
(

n
k

)
pk(1 − p)n−k

On note X ↪→ B(n, p).

Une VAR qui suit une loi binomiale est une VAR qui "compte" le nombre
de réalisations d’un événement A de probabilité p au cours de n expériences
identiques et indépendantes.

Application 4.4. On procède à n lancers d’un dé équilibré dont les 6 faces
sont numérotées de 1 à 6 .
On note X la variable aléatoire égale au nombre de fois où l’on obtient un
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numéro inférieur ou égal à 2.
Quelle est la loi de X ?

Méthode 4.5. Pour justifier qu’une variable aléatoire donnée suit une loi
binomiale, plusieurs "mots-clés" sont nécessaires :

• une succession de n expériences ;
• les expériences doivent être identiques et indépendantes ;
• X doit désigner le nombre de fois où un événement A de probabilité p

est réalisé.

Si ces trois points sont vérifiés, vous pouvez affirmer sans calculs que X suit
la loi binomiale de paramètres n et p.

Proposition 4.6. Soit X une VAR qui suit la loi B(n, p). Alors on a :

E(X) = np et V (X) = np(1 − p).

4.1.3 Loi uniforme

Définition 4.7. Soit n ∈ N∗. On dit que X suit la loi uniforme sur J1; nK
si :

X(Ω) = J1; nK

∀k ∈ J1; nK, P (X = k) = 1
n

.

On note X ↪→ U (J1; nK).

Remarque 4.8. Lorsque X suit une loi uniforme, tous les événements
[X = k] sont équiprobables.
On peut ainsi étendre cette notion de loi uniforme sur n’importe quel en-
semble fini.

Proposition 4.9. Soit X une VAR qui suit la loi uniforme sur J1; nK.
Alors :

E(X) = n + 1
2 et V (X) = n2 − 1

12
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Preuve :

4.2 Lois discrètes infinies

4.2.1 Loi géométrique (ou loi d’attente d’un premier succès dans
un processus sans mémoire)

On considère une expérience aléatoire E et un événement A lié à E tel
que P (A) = p.
On répète l’expérience E dans des conditions identiques (les expériences sont
indépendantes) et on appelle X le nombre d’épreuves effectuées jusqu’à ce
que A soit réalisé pour la première fois.
On note Ai l’événement "A est réalisé lors de la ieme expérience".
Soit R l’événement "A ne se réalise jamais" .
On peut montrer que P (R) = 0.
On peut donc considérer que X prend ses valeurs dans N∗.
De plus pour tout k ∈ N∗ :

P (X = k) = P
(
A1 ∩ A2 ∩ . . . ∩ Ak−1 ∩ Ak

)
= (1 − p)k−1p

Définition 4.10. Soit p ∈]0; 1[. On dit qu’une VAR X suit la loi géomé-
trique de paramètre p si :

X(Ω) = N∗

∀k ∈ N∗, P (X = k) = (1 − p)k−1p.

On note X ↪→ G (p).

Exemple 4.11. L’exemple que nous suivons depuis le début de ce chapitre
est un exemple de loi géométrique.
En effet, X désignait le rang d’apparition pour la première fois de l’événe-
ment " obtenir un 6" qui est de probabilité 1

6 ) au cours d’une succession
illimitée d’expériences identiques et indépendantes.
Sans aucun calcul, nous pouvons maintenant affirmer que X suit la loi géo-
métrique de paramètre 1

6 .
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Méthode 4.12. Pour justifier qu’une variable aléatoire donnée suit une loi
géométrique, plusieurs " mots-clés" sont nécessaires :

• une succession illimitée d’expériences ;
• les expériences doivent être identiques et indépendantes ;
• X doit désigner le rang d’apparition pour la première fois d’un événe-

ment A de probabilité p.

Si ces trois points sont vérifiés, nous pouvons affirmer sans calculs que X
suit la loi géométrique de paramètre p.

Application 4.13. Une urne contient 3 jetons blancs et 2 noirs.
On effectue dans cette urne des tirages successifs avec remise de chaque jeton
après tirage et on note X le nombre de tirages nécessaires pour obtenir pour
la première fois un jeton blanc.
Quelle est la loi de X ?

Proposition 4.14. Soit X une VAR qui suit la loi géométrique G (p). Alors
X admet une espérance et une variance, et :

E(X) = 1
p

et V (X) = 1 − p

p2

Preuve :
• Sous réserve de convergence absolue de la série utilisée, on sait que

E(X) =
+∞∑
n=1

nP (X = n) =
+∞∑
n=1

n(1 − p)n−1p = p
+∞∑
n=1

n(1 − p)n−1

A l’aide du critère de D’Alembert on montre facilement que cette sé-
rie est absolument convergente car (1 − p) ∈]0; 1[.X admet bien une
espérance.
On sait que pour tout x ∈ ]−1; 1[ , 1

1−x =
+∞∑
n=0

xn.

D’après le théorème de dérivation terme à terme des séries entières,
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on a donc 1
(1−x)2 =

+∞∑
n=1

nxn−1.

On en déduit donc que E(X) = p × 1
(1−(1−p))2 = 1

p .

• Calculons tout d’abord E
(
X2) (en montrant en même temps son exis-

tence).
Sous réserve de convergence absolue de la série utilisée, on sait que :

E
(
X2
)

=
+∞∑
n=1

n2P (X = n) =
+∞∑
n=1

n2(1 − p)n−1p = p
+∞∑
n=1

n2(1 − p)n−1

A l’aide du critère de D’Alembert on montre facilement que cette série
est absolument convergente car (1 − p) ∈]0; 1

[
.X2 admet bien une

espérance, ce qui signifie que X admet une variance.
En dérivant de nouveau terme à terme la dernière série entière évoquée,
on obtient :
+∞∑
n=1

n(n − 1)xn−2 = 2
(1 − x)3 ⇔

+∞∑
n=1

n2xn−2 = 2
(1 − x)3 +

+∞∑
n=1

nxn−2

⇔
+∞∑
n=1

n2xn−1 = 2x

(1 − x)3 + 1
(1 − x)2 = x + 1

(1 − x)3

On a donc E
(
X2) = p2−p

p3 .
On en déduit ainsi que :

V (X) = E
(
X2)− E(X)2 = p2−p

p3 − 1
p2 = p−p2

p3 = 1−p
p2 .

4.2.2 Loi de Poisson

Définition 4.15. Soit λ > 0. On dit qu’une VAR X suit une loi de Pois-
son de paramètre λ si :

X(Ω) = N et ∀n ∈ N, P (X = n) = e−λλn

n!

On note X ↪→ P(λ).

On ne dispose pas ici d’une situation concrète simple pour illustrer la loi
de Poisson.
Une variable aléatoire qui suit une loi de Poisson sera toujours introduite
sous la forme "soit X une VAR qui suit une loi de Poisson".

Proposition 4.16. Soit X une VAR qui suit la loi P(λ).
Alors X admet une espérance et une variance, et on a :

E(X) = λ et V (X) = λ
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Preuve :

4.3 Approximation de la loi binomiale par la loi de Poisson

Théorème 4.17. Soit λ un réel strictement positif et (Xn)n∈N une suite de
VAR discrètes telles que Xn suit la loi binomiale de paramètre (n, pn).
Si lim npn = λ alors pour tout k ∈ N, on a :

lim
n→+∞

P (Xn = k) = e−λ λk

k!

On dit que la suite (Xn)n∈N converge en loi vers une VAR qui suit la loi
de Poisson. (vocabulaire hors-programme)

En pratique :
On considère que lorsque n ⩾ 50, p ⩽ 0, 1 et np ⩽ 15, on peut approcher la
loi B(n, p) par la loi P(np).
On dit que la loi de Poisson est la loi des événements rares (elle approche le
tirage de n boules avec remise dans une urne contenant des boules blanche
en proportion égale à p qui est faible).

Exemple 4.18. Soit X une variable aléatoire suivant la loi binomiale B(100; 0, 05).
Nous allons calculer P (X = 2).

• Calcul exact : P (X = 2) =
(

100
2

)
(0, 05)2(0, 95)98 ≈ 0, 0812

• Calcul approché : on approche la loi B(100; 0, 05) par la loi P(5)

P (X = 2) ≈ 52

2! e−5 ≈ 0, 0843

Remarque 4.19. Dans l’exemple ci-dessus, aucun problème pour faire le
calcul exact.
Mais si on augmente encore la valeur de n et de k (pour le calcul de P (X =
k)), le calcul des coefficients binomiaux devient très lourd et c’est pourquoi
la loi de Poisson est parfois plus facile à manipuler.
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