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Chap.12 : Variables aléatoires réelles
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1 Biographies

1.1 Jacques Bernoulli

JACQ. BERNOULLT

Jacques ou Jakob Bernoulli (27 décembre 1654 - 16 aott 1705) est un ma-
thématicien et physicien suisse (né et mort a Béle).

Jacques Bernoulli nait au sein d’une famille de commergants, Nicolas Ber-
noulli et son épouse Margaretha Schénauer.

Son pere est un riche importateur d’épices d’Extréme-Orient, la famille Ber-
noulli exergant ce métier avec une indéniable réussite depuis de nombreuses
générations. Jacques ayant fait preuve des sa tendre enfance d’une vive intel-
ligence, son pere lui permet d’entamer des études universitaires et c’est ainsi
que Jacques integre I'université de Bale pour y étudier la philosophie. Pour-
tant, pendant ces années-la, le jeune homme se laisse peu a peu séduire par
les mathématiques, la physique et ’astronomie et, avant méme de quitter
I'université, il sait déja que la science est sa vocation. Son pere ne 'accepte
pas de bon gré et Jacques part vivre a Genéve ou, une année durant, il est
employé comme répétiteur de mathématiques. Peu de temps apres, son pére
revient a de meilleurs sentiments et accepte méme de financer son voyage
a travers I’Europe pour y rencontrer les scientifiques les plus renommeés de
I’époque.

C’est ainsi qu’en 1678 Jacques Bernoulli se rend en France et étudie un
temps avec d’anciens disciples de René Descartes.
Les premiéres contributions importantes de Jacques Bernoulli sont une étude
publiée en 1685 dans laquelle il établit des paralleles entre la logique et
I’algébre, un travail sur les probabilités en 1685 et un sur la géométrie en
1687 dans lequel il donne une construction pour diviser un triangle en quatre
parties égales par deux droites perpendiculaires.

En 1689, il publie sous le titre Positiones arithmeticae de seriebus infinitis
un important travail sur les séries infinies 2 et sa loi des grands nombres
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dans la théorie des probabilités. Jacques Bernoulli a publié cinq traités sur

les séries infinies entre 1682 et 1704 .

Les deux premiers de ces traités contiennent de nombreux résultats, tel que

le résultat fondamental selon lequel la série >~ 1/n diverge.

Bernoulli croyait que ce résultat était nouveau, mais il avait été résolu par

le mathématicien francais Nicole Oresme et effectivement prouvé par Pietro

Mengoli 40 ans plus tot.

Le Bélois Bernoulli n’a pu trouver la valeur exacte de JFEO:O 1/n?, mais il a
n=1

montré qu’il y avait convergence vers une limite finie inférieure a 2 .

Le Balois Euler a été le premier a trouver la somme de cette série en 1737

et a la démontrer en 1741, résolvant ainsi ce qu’il est convenu d’appeler le

probléeme de Bale.

1.2 Tchebychev

Pafnouti Tchebychev, né le 16 mai 1821 a Okatovo, dans I'ouest de la Russie,
est un mathématicien russe du XIXe siecle. Issu d’une famille de militaires,
riche et cultivée, il est d’abord éduqué chez ses parents. Il recoit alors de
trés bons enseignements en mathématiques, mais aussi en francais, ce qui
lui permettra plus tard d’échanger facilement avec les mathématiciens occi-
dentaux.

Son enfance est marquée par un handicap (il a une jambe plus longue que
Pautre) qui 'empéche de pratiquer certaines activités, et aussi d’envisager
une carriere militaire.

En 1837, il entre a I'université de Moscou, ou il étudie les mathématiques
sous la direction de Brashman.

Alors qu’il commence a obtenir ses premiers résultats, sa situation finan-
ciere change dramatiquement en 1841 quand une famine frappe durement
la Russie. Ses parents doivent quitter Moscou et ne peuvent plus subvenir a
ses besoins.

Méme s’il vit désormais misérablement, Tchebychev persiste a continuer ses
études. Il soutient sa these en 1846, ot il poursuit le programme de Bernoulli
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et de Poisson consistant a donner un cadre théorique aux théoremes limites
des probabilités. En 1847, il devient professeur a Saint-Petersbourg.

Outre ses travaux en théorie des probabilités, Tchebychev est aussi cé-
lebre pour les avancées qu’il a réalisées en arithmétique.
Ainsi, en 1850, il démontre le postulat de Bertrand, & savoir que, pour tout
entier naturel n > 2, il existe toujours au moins un nombre premier com-
pris entre n et 2n. Il étudie également le nombre P(n) de nombre pre-
miers inférieurs a n . Confortant une conjecture de Gauss, il obtient que
si (P(n)log(n))/n admet une limite quand n tend vers 'infini, alors cette
limite est nécessairement 1 .

Aimant combiner les aspects théoriques et appliqués des mathématiques,
trés habile de ses mains, il a conc¢u plusieurs machines arithmétiques ou
autres structures mécaniques. C’est dans un article consacré a la mécanique
qu’il a introduit les polynomes dits de Tchebychev. A la suite de cela, il est
le premier a ébaucher une théorie des polynémes orthogonaux.

2 Généralités sur les variables aléatoires discréetes

2.1 Définition, propriétés

Définition 2.1. Soit Q un ensemble. On appelle variable aléatoire réelle
(VAR) toute application X définie sur Q2 et a valeurs dans R.

Soit X une variable aléatoire définie sur € :

e Si X(Q) est un ensemble dénombrable, on dit que X est une variable
aléatoire réelle discréte.

o Si X () est un ensemble fini, on dit que X est une variable aléatoire
réelle finte.

X(Q) est l’ensemble des valeurs prises par X.

Remarque 2.2. Dans la définition rien n’impose que §2 soit un ensemble
dénombrable mais en pratique il le sera toujours...

Exemple 2.3. Un joueur lance deuz fois de suite un dé cubique équilibré et
note les deux nombres obtenus sous la forme d’un couple : par exemple si le
joueur obtient 2 puis 5 , on note son résultat sous la forme (2,5).
L’univers de notre expérience est Q@ = [1;6] x [1;6].

On définit la variable aléatoire réelle discréte X qui, a chaque couple, associe
la somme des deux nombres obtenus.

Ici, on a X () ={2,3,...,12}.

Donc X est une variable aléatoire réelle finie.
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Exemple 2.4. On effectue une succession de lancers indépendants d’un dé
cubique équilibré jusqu’a obtenir 6 pour la premiére fois. Soit X le nombre
de lancers effectués.

Tel que I’énoncé est posé, on ne sait pas trop comment décrire 'univers
de notre expérience mais on peut tout de méme donner trés clairement X ().

On a ici X(Q2) = N* (on ne prend pas en compte le fait de ne jamais
obtenir 6 ) et donc X est une variable aléatoire réelle discréte infinie.

Définition 2.5. Soit X une variable aléatoire réelle discréte définie sur €.
Pour toute partie J de R, lensemble {w € Q/X (w) € J} est un événement
que l'on notera [X € J] ou (X € J).

Cas particuliers :

e Lorsque J = {a}, afin d’alléger les notations, ’événement
(X €{a}] ={w e Q/X(w) = a} sera noté [X = aj.

e Lorsque J =| — 00;al, on note [X < al.

e Lorsque J = [a;b] on note [a < X < b).

Exemple 2.6. Revenons au premier exemple ot un joueur lance deux fois
de suite un dé et X est la somme des deuz chiffres obtenus. On a :

X =2 = {(1,1)}
[X = 4] = {(173)7 (272)’ (37 1)}
(X <5 ={(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2), (4, 1)}.

Dans le deuzieme exemple, on a [X = 4] = S1 N S2 N S3N Sy, ot Sy

n

désigne l’événement " obtenir 6 au k**™¢ lancer ".

Dans toute la suite de ce chapitre, (€2, P) est un espace probabilisé et X
une variable aléatoire réelle discrete définie sur cet espace.

On notera dorénavant X (Q) = {x;/i € I} les valeurs prises par X, ou [
est une partie (finie ou non) de N ou Z.

2.2 Loi d’une VAR discréte

Définition 2.7. On appelle loi de probabilité de la variable aléatoire réelle
discréte X (ou distribution de X ) l’ensemble des couples (xz;,p;) ot :

r, € X(Q) et pi=P((X=ux))

On note parfois Px lapplication définie sur X () par Px (z;) = P ([X = x]).
Pour simplifier les notations, on notera : P ([X = z;]) = P(X = z;).
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Méthode 2.8. o Lorsque vous devez répondre a la question "déterminer
la loi de X", il faut commencer par donner clairement X (§2).

Puis pour chaque élément x; de cet ensemble X () il faut donner

e Lorsque X (Q) est fini et ne contient "pas trop" d’éléments, on peut

présenter les résultats sous forme de tableau avec dans la premicre
ligne les valeurs de x; et dans la deuxiéme ligne P (X = x;).

Application 2.9. On reprend le deuziéme exemple de ce chapitre : on lance
un dé cubique équilibré jusqu’d obtenir 6 pour la premiére fois et X désigne
le nombre de lancers effectués.

Donner la loi de X.

Proposition 2.10. La famille d’événements ([X = x;]);c; est un systéme
complet d’événements.
En particulier on a Y, P(X =z;) = 1.

i€l
Remarque 2.11. Cette propriété permet de vérifier la cohérence de vos ré-
sultats lorsque vous donnez la loi de X.
Comme ([X = x4]);c; est un systéme complet d’événements, on peut appli-
quer la formule des probabilités totales pour n’importe quel événement A :

P(A) =) P(X =) Px—y)(A) =) _P(X =z]NA).
icl iel
Application 2.12. Vérifier la cohérence de la loi obtenue dans l’application
précédente.
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Théoréme 2.13. Caractérisation de la loi d’une variable aléatoire

réelle discréte.

Soit {(ws,p;) /i € I} une partie de R?, ot I = N,Z ou une de leurs parties.

Si pour tout i € I,p; >0 et st >, p; = 1, alors il existe un espace probabilisé
iel

(Q, P) et une VAR discréte X définie sur Q tels que {(xi,p;) /i € I} est la

loi de X.

Application 2.14. Pour une variable aléatoire réelle X telle que X (Q2) =
Z\{0; —1}, on pose :

1

vn € M0 -1} P(X=n) = 5 omy

Vérifier que ceci définit bien une loi de probabilité pour X.

2.3 Fonction de répartition
Définition 2.15. On appelle fonction de répartition de X application
Fxy :R—R

définie par :
Fx(x) = P(X < x)

Proposition 2.16. La fonction de répartition d’une VAR discréte est une
fonction en escalier.

Application 2.17. On considére toujours notre exemple de lancers succes-
sifs d’un dé cubique équilibré jusqu’a obtenir 6 et X la variable aléatoire
réelle égale au nombre de lancers nécessaires.

1. Calculer plusieurs valeurs de Fx : Fx(—2), Fx(2,1), Fx(2,99).
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2. Déterminer la fonction de répartition.

Proposition 2.18. Soit F'x la fonction de répartition de la variable aléatoire
réelle discréte X. Alors Fx vérifie les propriétés suivantes :

1. Vz € R, Fx(z) € [0;1]

2. Fx est croissante.

Preuve :

Remarque 2.19. Une autre propriété intéressante, mais hors-programme,
de la fonction de répartition est que :

xll)IElooFx(x) =0 et xll}l_il_loo Fx(z)=1
Théoréme 2.20. Loi d’une VAR discréte a partir de sa fonction de répar-
tition
On rappelle que X(Q) = {z;/i € I}.

Si les x; sont rangés par ordre croissant, alors pour touti € I tel quei—1 € 1
(on a donc xi—1 < x;) on a :

P(X = xz) = FX (-731) — FX (a:i_l)
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Preuve :

Application 2.21. Un sac contient 4 boules numérotés de 1 a 4 .

On tire successivement deux boules avec remise. On note X1 le numéro de
la premiére boule, Xo le numéro de la seconde boule, et Y le plus grand des
deux numéros obtenus.

Déterminer la loi de Y.

2.4 Fonction d’une variable aléatoire

Définition 2.22. Soient X une VAR discréte sur un espace probabilisé
(Q, P) et g une fonction définie sur X () d valeurs dans R.
On note g(X) Uapplication de Q dans R définie pour tout w € Q par :

g(X)(w) = g(X(w))

Proposition 2.23. Soient X une VAR discréte sur un espace probabilisé
(Q, P) et g une fonction définie sur X(Q) a valeurs dans R.
Alors Y = g(X) est une VAR discréte définie sur ) et telle que :

e V() ={g(zi),iel}
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e VyeY(®), PV =y = > PX=u)
i/g(z)=y

Application 2.24. Soit X une VAR dont la loi est définie par :

valeur de X | —1
probabilité

L RS

W
NI

Déterminer les lois de Y =2X + 1 et de Z = X2.

3 Moments d’une VAR discréte

3.1 Espérance

Définition 3.1. On dit que la VAR X admet une espérance, ou que l’espé-
rance de X existe, lorsque X (Q2) est fini ou lorsque la série > x; P (X = x;)
est absolument convergente.

On appelle alors espérance de X, le réel :

il
+o0
Remarque 3.2. ¢ On note parfois : E(X) = Y, xP(X =uz).
zeX ()

o Lorsque X est une VAR discréte finie, X admet forcément une espé-
rance.

e Sipour touti € I,a < z; < b alors a < E(X) < b (ceci permet de
vérifier la cohérence de votre résultat).

e En particulier si pour tout i,x; > 0 alors E(X) > 0.

Application 3.3. Reprenons une nouvelle fois la VAR X désignant le
nombre de lancers d’un dé cubique afin d’obtenir pour la premiére fois 6
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1. Démontrer que X admet une espérance.
2. Déterminer la valeur de E(X).

Théoréme 3.4. Théoréme de transfert

Soit g une fonction définie sur X(Q2) et a valeurs dans R.

Alors la variable aléatoire réelle g(X) admet une espérance si, et seulement
st, la série erX(Q)g(a:)P(X = x) est absolument convergente et dans ce
cas, on a :

E(gX)= > gl@)P(X =x).

z€X(Q)

Application 3.5. Reprendre l’ezemple précédent et déterminer E (X 2) st
elle existe.

Corollaire 3.6. Linéarité de l’espérance.
Si X admet une espérance alors pour tout (a,b) € R% aX + b admet une
espérance et

E(aX +b) =aE(X)+b.
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3.2 Variance et écart type

Proposition 3.7. Si E (X?) existe alors E(X) existe.
ATTENTION !!! La réciproque de cette propriété est fausse.

Exemple 3.8. On considére la VAR X dont la loi est donnée par X(Q) =
N* et pour tout n € N* :

1 t®,
P(X=n)=y3 avec A= 3 13-
k=1

On a nP(X =n) = 1= donc Y [nP(X =n)| converge et E(X) existe.
De plus n?P(X =n) = 5= donc 3 [n*P(X = n)| diverge et E (X?) n'existe
pas.

Définition 3.9. Soit X une VAR discréte telle que X? admet une espérance.
On appelle variance de X le réel :

V(X)=E(X?) - (E(X))> Formule de Kenig-Huygens.
De plus, lorsque V(X)) existe, on appelle écart-type de X le réel :
o(X) = vV(X).

Remarque 3.10. e Si X n'admet pas d’espérance, X ne peut pas ad-
mettre de variance.

e Il existe une autre définition de la variance (au programme de TSI1) :
V(X) = E((X - B(X))?).

Les deux définitions sont évidemment équivalentes.

La wvariance est donc la moyenne du carré de la distance entre les
valeurs de X et la moyenne de X. Ainsi, la variance est une mesure
de dispersion de X par rapport a E(X).

Application 3.11. Soit encore X le nombre de lancers de dé jusqu’a obtenir
6 pour la premiére fois.
X admet-elle une variance ? Si c’est le cas, la calculer.
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Proposition 3.12. 57 X est une VAR discréte admettant une variance alors
pour tout (a,b) € R% aX + b admet une variance et :

V(aX +b) = a’V(X)
De plus : o(aX +b) =| a|o(X).

Théoréme 3.13. Inégalité de Bienaymé-Tchebychev
Soit X une variable aléatoire réelle discréte telle que X? admet une espé-
rance. Alors :

V(X)

Ve >0, P(X - E(X)|>¢) < —

Preuve :
Comme X? admet une espérance, X admet une variance et une espérance.
On pose X () = {z;,i € I} et p; = P (X = z;). Il est plus facile, pour cette
démonstration, d’utiliser la définition de la variance vue en TSI 1 .
On sait que V(X) = FE ((X — E(X))?). Donc d’aprés le théoréme de trans-
fert :
V(X)=E((X - B(X))*) = 3 (& = E(X))*p,
el
Et de plus :

P(X ~E(X)| > €)=Y pjon J = {j € I/ |; — B(X)| > ¢}
jeJ

On peut donc écrire :

Remarque 3.14. o On utilise souvent cette inégalité avec l’événement
contraire. On obtient alors :

V(X)
2

P(X -B(X)|<e)>1—

o Cette propriété exprime le fait que la probabilité que X prenne des va-

leurs situées a une distance supérieure d € de sa moyenne, est majorée
V(X)
par —5-.

On retrouve ici le fait que la variance est une mesure de dispersion.
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Application 3.15. Le taux moyen de glycémie dans une population est de
1 g-L~! avec une variance de 0,1 .

Une personne présente un taur X critique si son tauz ne se situe pas dans
lintervalle 0, 5;1, 5].

Estimer la probabilité qu’une personne présente un taux critique.

4 Lois discretes usuelles

4.1 Lois discretes finies
4.1.1 Loi de Bernoulli (ou indicatrice d’événement)

On consideére une expérience aléatoired et A un événement lié a cette
expérience tel que P(A) = p.
On définit alors la variable aléatoire X en posant X = 1 si A est réalisé et
X =0 sinon.
X est une VAR qui prend les valeurs 0 et 1 avec les probabilités :

PX=0)=1—-pet P(X=1)=p

Définition 4.1. Soit p € [0;1]. On dit qu’une VAR X suit la loi de Ber-
noulli de parameétre p si :

X(Q) ={0;1}
PX=0=1-p e PX=1)=p

On note X — A(p).
Proposition 4.2. 57 X suit une loi de Bernoulli de paramétre p alors :
EX)=p et V(X)=p(1-p).

Preuve :
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4.1.2 Loi binomiale (ou des tirages avec remise)

On considére une expérience & et on considere un événement A lié a &
tel que P(A) = p.
On suppose que ’'on effectue n fois 'expérience & dans les mémes conditions
(les expériences sont indépendantes) et on considére X le nombre de fois ou
A est réalisé au cours de ces n expériences identiques. X prend donc les
valeurs 0,1, ...,n. Soit k € [0;n].
On cherche a calculer P(X = k) c’est-a-dire la probabilité que A soit réalisé
k fois exactement.

Parmi les n expériences, il y a < " ) fagons de placer les k fois ou A est

k
réalisé.

Chacun de ces ( Z ) événements est réalisé avec la probabilité pk(l — p)”_k.

On a donc : P(X =k) = ( Z >pk(1 _p)nfk‘
Définition 4.3. Soit p € [0;1] et n € N. On dit que la VAR X suit la loi

binomiale de paramétres n et p si :

X(Q)={0,1,...,n} = [0;n]
Vk e [0;n] P(X =k)= < Z >pk(1_p)n—k;

On note X — %A(n,p).

Une VAR qui suit une loi binomiale est une VAR qui "compte" le nombre
de réalisations d’un événement A de probabilité p au cours de n expériences
identiques et indépendantes.

Application 4.4. On procéde a n lancers d’un dé équilibré dont les 6 faces
sont numérotées de 1 d 6 .
On note X la variable aléatoire égale au nombre de fois ot l'on obtient un
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numéro inférieur ou égal a 2.
Quelle est la lot de X ?

Méthode 4.5. Pour justifier qu’une variable aléatoire donnée suit une loi
binomiale, plusieurs "mots-clés" sont nécessaires :

e une succession de n erpériences;
o les expériences doivent étre identiques et indépendantes ;

e X doit désigner le nombre de fois ot un événement A de probabilité p
est réalisé.

St ces trois points sont vérifiés, vous pouvez affirmer sans calculs que X suit
la loi binomiale de paramétres n et p.

Proposition 4.6. Soit X une VAR qui suit la loi B(n,p). Alors on a :

EX)=np e V(X)=np(l-p).

4.1.3 Loi uniforme

Définition 4.7. Soit n € N*. On dit que X suit la lot uniforme sur [1;n]

" X(9) = [L:n]

Vk e [l;n], P(X=k)=

S |-

On note X — 2 ([1;n]).

Remarque 4.8. Lorsque X suit une loi uniforme, tous les événements
[X = k] sont équiprobables.

On peut ainsi étendre cette notion de loi uniforme sur n’importe quel en-
semble fini.

Proposition 4.9. Soit X une VAR qui suit la loi uniforme sur [1;n].

Alors :
- n+1 n?—1

2 12

E(X)

TSI2-Lycée Antonin Artaud 16 Page 16/20



V.A.R. discrétes www.jmeabrera.net

Preuve :

4.2 Lois discreétes infinies

4.2.1 Loi géométrique (ou loi d’attente d’un premier succés dans
un processus sans mémoire)

On considere une expérience aléatoire & et un événement A lié a & tel
que P(A) =p.
On répete 'expérience & dans des conditions identiques (les expériences sont
indépendantes) et on appelle X le nombre d’épreuves effectuées jusqu’a ce
que A soit réalisé pour la premiere fois.
On note A; I'événement "A est réalisé lors de la ™
Soit R I’événement "A ne se réalise jamais" .
On peut montrer que P(R) = 0.
On peut donc considérer que X prend ses valeurs dans N*.
De plus pour tout £ € N* :

¢ expérience".

P(X =k) :P<Em£m...0Ak_1ﬂAk) =(1-p)""p

Définition 4.10. Soit p €]0;1]. On dit qu'une VAR X suit la loi géomé-
trique de paramétre p si :

X(Q) =N
VEeN*, P(X=k)=(1-pkp

On note X — 9(p).

Exemple 4.11. L’exemple que nous suivons depuis le début de ce chapitre
est un exemple de lot géométrique.

En effet, X désignait le rang d’apparition pour la premiére fois de l’événe-
ment " obtenir un 6" qui est de probabilité % ) au cours d’une succession
illimitée d’expériences identiques et indépendantes.

Sans aucun calcul, nous pouvons maintenant affirmer que X suit la loi géo-

métrique de parameétre %.
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Méthode 4.12. Pour justifier qu’une variable aléatoire donnée suit une loi
géométrique, plusieurs " mots-clés" sont nécessaires :

e une succession illimitée d’expériences;
e les expériences doivent étre identiques et indépendantes;

e X doit désigner le rang d’apparition pour la premiére fois d’un événe-
ment A de probabilité p.

Si ces trois points sont vérifiés, nous pouvons affirmer sans calculs que X
sutt la loi géométrique de paramétre p.

Application 4.13. Une urne contient 3 jetons blancs et 2 noirs.

On effectue dans cette urne des tirages successifs avec remise de chaque jeton
apres tirage et on note X le nombre de tirages nécessaires pour obtenir pour
la premiére fois un jeton blanc.

Quelle est la loi de X ?

Proposition 4.14. Soit X une VAR qui suit la loi géométrique 4 (p). Alors
X admet une espérance et une variance, et :

Preuve :

e Sous réserve de convergence absolue de la série utilisée, on sait que

—+00 —+00 —+00
E(X)=) nP(X=n)=) n(l-p)"'p=pY n(l-p""
n=1 n=1 n=1

A Taide du critere de D’Alembert on montre facilement que cette sé-
rie est absolument convergente car (1 — p) €]0;1[.X admet bien une
espérance.

—+00
On sait que pour tout x € |—1; 1], ﬁ = > x™
n=0

D’apres le théoreme de dérivation terme a terme des séries entiéres,
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1 by 1
P n—
on a donc —a? = nE_l nx" .

1

On en déduit donc que E(X) = p X (1_(1%])))2, =2

« Calculons tout d’abord E (X?) (en montrant en méme temps son exis-
tence).
Sous réserve de convergence absolue de la série utilisée, on sait que :

+oo +oo Too
B(X?) =Y n?P(X =n) =Y} n*(1-p)"p=p) n*(1—p)"
n=1 n=1 n=1

A Taide du critére de D’Alembert on montre facilement que cette série
est absolument convergente car (1 — p) €]0;1[.X? admet bien une
espérance, ce qui signifie que X admet une variance.

En dérivant de nouveau terme & terme la derniere série entiere évoquée,
on obtient :

= 2 2 = 2 2 2 = 2
n—2 __ n—2 __ n—
E n(n—l):n —(1_71‘)3@ Eﬁnw —W—FE nT
n=1 n=1

n=1

On a donc F (X?) :p2p;3p.
On en déduit ainsi que :

V(X) = B (X)) - BX) =php — =2 = 1.

4.2.2 Loi de Poisson

Définition 4.15. Soit A > 0. On dit qu’une VAR X suit une loi de Pois-
son de parameétre \ si :

e—AAn

n!

X(Q)=N e VneN, PX=n)=

On note X — Z(\).

On ne dispose pas ici d’une situation concrete simple pour illustrer la loi
de Poisson.
Une variable aléatoire qui suit une loi de Poisson sera toujours introduite
sous la forme "soit X une VAR qui suit une loi de Poisson".

Proposition 4.16. Soit X une VAR qui suit la loi Z2()).
Alors X admet une espérance et une variance, et on a :

E(X)=X e V(X)=2A
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Preuve :

4.3 Approximation de la loi binomiale par la loi de Poisson

Théoréme 4.17. Soit X\ un réel strictement positif et (Xy), cy une suite de
VAR discrétes telles que X,, suit la loi binomiale de paramétre (n,py).
Si limnp, = A alors pour tout k € N, on a :
; I AN P
nEIEOOP(Xn =k)=e 35
On dit que la suite (Xy),cy converge en loi vers une VAR qui suit la loi
de Poisson. (vocabulaire hors-programme)

En pratique :
On considere que lorsque n > 50,p < 0,1 et np < 15, on peut approcher la
loi #(n,p) par la loi & (np).
On dit que la loi de Poisson est la loi des événements rares (elle approche le
tirage de n boules avec remise dans une urne contenant des boules blanche
en proportion égale & p qui est faible).

Exemple 4.18. Soit X une variable aléatoire suivant la loi binomiale 2(100;0, 05).
Nous allons calculer P(X = 2).

o Calcul exzact : P(X =2) = < 180 ) (0,05)2(0,95)% ~ 0,0812

e Calcul approché : on approche la loi $(100;0,05) par la loi 2 (5)

Remarque 4.19. Dans l'exzemple ci-dessus, aucun probléme pour faire le
calcul ezxact.

Mais si on augmente encore la valeur de n et de k (pour le calcul de P(X =
k)), le calcul des coefficients binomiauz devient trés lourd et c’est pourquoi
la loi de Poisson est parfois plus facile a manipuler.
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