""" 3 - Intelligence artificielle'"'

'''3-1 - Algorithme KNN - Reconnaissance de panneaux'''

'''Dossier partagé images: https://www.dr x.com/sh/2z xxtfc158/AADVZz20W9QxT-1eD-
3-2 - Algorithme KNN - Reconnaissance de panneaux

def Distance_uv(u,v):

n = len(u)

Dst = 0

for i in range(n):
di = u[i]-v[i]
Dst += di**2

Dst = Dst**(1/2)

return Dst

def Distance(u,Lv):

Ld = []

for i in range(len(Lv)):
v = Lv[i]
Dst = Distance uv(v,u)
Res = [Dst,i]
Ld.append(Res)

return Ld

def Proches(u,Lv,k):
Ld = Distance(u,Lv)
Ld.sort()
Res = Ld[:Kk]
return Res

Lecture des images
Affichage

import matplotlib.pyplot as plt
plt.close('all')

def Affiche(image):
plt.figure()
plt.imshow(image)
plt.axis('off"')
plt.show()
plt.pause(0.00001)

Lecture des images

def Lecture(Chemin):
Image = plt.imread(Chemin)
return Image

Fonctions d'analyse des images

def Analyse(Image):
N1,Nc = Image.shape[0:2]
N = NUL * Nc
L RGB = []
for ligne in Image:
for pixel in ligne:

,B = pixel
float(R)
float(G)
float(B)
_RGB += [R,G,B]
return L RGB

’

nmninao

—rooOXxXo

"' Vérification
len(Analyse(Lecture('Sources\\0\\0.bmp')))

def Analyse_Globale(L Chemin):

Res = []

N = len(L Chemin)

for i in range(len(L Chemin)):
Chemin = L Chemin[1i]
print("Apprentissage image",i+1,"sur",N)
Image = Lecture(Chemin)
Image = Image[:,:,:3] # Si RGBA
Analyse im = Analyse(Image)
Res.append(Analyse im)

return Res

Création de la base des données
Quverture des images sources

Sources = "Sources\\"

Dossiers = [0,1,2,3,4,5,6,7]

Nb Dossiers = len(Dossiers)

Nb Images Dossiers = [5,5,5,5,5,5,5,5]

Liste Chemin = []
Liste Dossier = [
Liste Num = []
for d in Dossiers:
Nb Im = Nb_Images Dossiers[d]
for im in range(Nb Im):
Chemin = Sources + str(d) + "\\" + str(im) + ".bmp"
Liste Chemin.append(Chemin)
Liste Dossier.append(d)
Liste Num.append(im)

]

Analyse des images

Donnees = Analyse Globale(Liste Chemin)

Reconnaissance automatique

Fermeture des images

plt.close('all')

Ouverture et analyse de 1'image recherchée
Recherche = "Recherche\\"

Im Cherchee Chemin = Recherche + "11.bmp"

Im Cherchee = Lecture(Im Cherchee Chemin)

Affiche(Im Cherchee)
Im Cherchee Infos = Analyse(Im Cherchee)

Recherche des k plus proches voisins

k=5

Resultat Proches = Proches(Im Cherchee Infos,Donnees,k)
Resultat Ind = [Resultat Proches[i][1] for i in range(k)]
Resultat Dossiers = [Liste Dossier[ind] for ind in Resultat Ind]
Resultat Num = [Liste Num[ind] for ind in Resultat Ind]
print("Dossiers trouvés: ",Resultat Dossiers)

print("Numéros des images: ",Resultat Num)

Selection du résultat

def Max_Occurences(L,n):
Occ = [0 for in range(n)]
for t in L:
Occ[t] +=1
Max = max(0cc)
for t in L:
if Occ[t]==Max: # Remarque
return t

Remarque: Ne pas rechercher Occ[i]==Max. En cas d'exaeqo, cela renvoie le premier doss

Dossiers final = Max Occurences(Resultat Dossiers,Nb Dossiers)
print("Dossier: ",Dossiers final)

Affichage du résultat

Im Trouvee Chemin = Sources + str(Dossiers final) + "\\0" + ".bmp"
Im Trouvee = Lecture(Im Trouvee Chemin)
Affiche(Im Trouvee)

Matrice de confusion

Cette partie est adaptée aux dossiers numérotés de © a 7 et a la bonne organisation des

M(1,0)=1

On a recherché une image 11 ou 12 de sens interdit
L'algorithme a renvoyé le résultat du dossier 0: sens prioritaire inverse

Resolution

def Resolution(N,k):
Recherche = "Recherche\\"
Im Cherchee Chemin = Recherche + N + ".bmp"
Im Cherchee = Lecture(Im_Cherchee Chemin)
Im Cherchee Infos = Analyse(Im Cherchee)
Resultat Proches = Proches(Im Cherchee Infos,Donnees,k)
Resultat Ind = [Resultat Proches[i][1] for i in range(k)]
Resultat Dossiers = [Liste Dossier[ind] for ind in Resultat Ind]
Resultat Num = [Liste Num[ind] for ind in Resultat Ind]
Dossiers final = Max_Occurences(Resultat Dossiers,Nb Dossiers)
return Dossiers final

||11||
5

>
||

Resolution(N, k)

Liste LR

IR =["O1","11","12"," 21", "22","31","41","42","51","52","61","71"]
Etude k

import numpy as np

def Etude(k):
A = np.zeros([Nb Dossiers,Nb Dossiers])
for R in LR:
1 = int(R[0O])
¢ = Resolution(R,k)
All,c] +=1
return A

M1 = Etude(1l)
print(M1)

Matrices pour k=1 a 5

for k in range(1,41):
Mk = Etude(1)

print('k=",k)

print(Mk)
"' Quel que soit k de 1 a 40
[[1. 0. 0. 0. 0. 0. 0. 0.]
[0. 2. 0. 0. 0. 0. 0. 0.]
[0. 0. 2. 0. 0. 0. 0. 0.]
[0. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 0. 2. 0. 0. 0.]
[0. 0. 0. 0. 0. 2. 0. 0.]
[0. 0. 0. 0. 0. 0. 1. 0.]
[0. 0. 0. 0. 0. 0. 0. 1.]]

On a de la chance, ici l'algorithme fonctionne trés bien.
I1 faudrait essayer d'agandir notre base de données avec des panneaux plus ressemblants

