
''' 3 - Intelligence artificielle'''

'''3-1 - Algorithme KNN - Reconnaissance de panneaux'''

'''Dossier partagé images: https://www.dropbox.com/sh/2zce39bxxtfcl58/AADVz2oW9QxT-leD-0l3Mopba?dl=0

3-2 - Algorithme KNN - Reconnaissance de panneaux

def Distance_uv(u,v):
 n = len(u)
 Dst = 0
 for i in range(n):
 di = u[i]-v[i]
 Dst += di**2
 Dst = Dst**(1/2)
 return Dst

def Distance(u,Lv):
 Ld = []
 for i in range(len(Lv)):
 v = Lv[i]
 Dst = Distance_uv(v,u)
 Res = [Dst,i]
 Ld.append(Res)
 return Ld

def Proches(u,Lv,k):
 Ld = Distance(u,Lv)
 Ld.sort()
 Res = Ld[:k]
 return Res

Lecture des images

Affichage

import matplotlib.pyplot as plt
plt.close('all')

def Affiche(image):
 plt.figure()
 plt.imshow(image)
 plt.axis('off')
 plt.show()
 plt.pause(0.00001)

Lecture des images

def Lecture(Chemin):
 Image = plt.imread(Chemin)
 return Image

Fonctions d'analyse des images

def Analyse(Image):
 Nl,Nc = Image.shape[0:2]
 N = Nl * Nc
 L_RGB = []
 for ligne in Image:
 for pixel in ligne:

1

 R,G,B = pixel
 R = float(R)
 G = float(G)
 B = float(B)
 L_RGB += [R,G,B]
 return L_RGB

''' Vérification
len(Analyse(Lecture('Sources\\0\\0.bmp')))
'''

def Analyse_Globale(L_Chemin):
 Res = []
 N = len(L_Chemin)
 for i in range(len(L_Chemin)):
 Chemin = L_Chemin[i]
 print("Apprentissage image",i+1,"sur",N)
 Image = Lecture(Chemin)
 Image = Image[:,:,:3] # Si RGBA
 Analyse_im = Analyse(Image)
 Res.append(Analyse_im)
 return Res

Création de la base des données

Ouverture des images sources

Sources = "Sources\\"
Dossiers = [0,1,2,3,4,5,6,7]
Nb_Dossiers = len(Dossiers)
Nb_Images_Dossiers = [5,5,5,5,5,5,5,5]

Liste_Chemin = []
Liste_Dossier = []
Liste_Num = []
for d in Dossiers:
 Nb_Im = Nb_Images_Dossiers[d]
 for im in range(Nb_Im):
 Chemin = Sources + str(d) + "\\" + str(im) + ".bmp"
 Liste_Chemin.append(Chemin)
 Liste_Dossier.append(d)
 Liste_Num.append(im)

Analyse des images

Donnees = Analyse_Globale(Liste_Chemin)

Reconnaissance automatique

Fermeture des images

plt.close('all')

Ouverture et analyse de l'image recherchée

Recherche = "Recherche\\"
Im_Cherchee_Chemin = Recherche + "11.bmp"
Im_Cherchee = Lecture(Im_Cherchee_Chemin)
Affiche(Im_Cherchee)
Im_Cherchee_Infos = Analyse(Im_Cherchee)

2

Recherche des k plus proches voisins

k = 5
Resultat_Proches = Proches(Im_Cherchee_Infos,Donnees,k)
Resultat_Ind = [Resultat_Proches[i][1] for i in range(k)]
Resultat_Dossiers = [Liste_Dossier[ind] for ind in Resultat_Ind]
Resultat_Num = [Liste_Num[ind] for ind in Resultat_Ind]
print("Dossiers trouvés: ",Resultat_Dossiers)
print("Numéros des images: ",Resultat_Num)

Selection du résultat

def Max_Occurences(L,n):
 Occ = [0 for _ in range(n)]
 for t in L:
 Occ[t] += 1
 Max = max(Occ)
 for t in L:
 if Occ[t]==Max: # Remarque
 return t

Remarque: Ne pas rechercher Occ[i]==Max. En cas d'exaeqo, cela renvoie le premier dossier dans l'ordre des dossiers et non des apparitions dans L

Dossiers_final = Max_Occurences(Resultat_Dossiers,Nb_Dossiers)
print("Dossier: ",Dossiers_final)

Affichage du résultat

Im_Trouvee_Chemin = Sources + str(Dossiers_final) + "\\0" + ".bmp"
Im_Trouvee = Lecture(Im_Trouvee_Chemin)
Affiche(Im_Trouvee)

Matrice de confusion

'''
Cette partie est adaptée aux dossiers numérotés de 0 à 7 et à la bonne organisation des images recherchées qui doivent dans leur nom commencer par le même chiffre
'''

M(1,0)=1

'''
On a recherché une image 11 ou 12 de sens interdit
L'algorithme a renvoyé le résultat du dossier 0: sens prioritaire inverse
'''

Resolution

def Resolution(N,k):
 Recherche = "Recherche\\"
 Im_Cherchee_Chemin = Recherche + N + ".bmp"
 Im_Cherchee = Lecture(Im_Cherchee_Chemin)
 Im_Cherchee_Infos = Analyse(Im_Cherchee)
 Resultat_Proches = Proches(Im_Cherchee_Infos,Donnees,k)
 Resultat_Ind = [Resultat_Proches[i][1] for i in range(k)]
 Resultat_Dossiers = [Liste_Dossier[ind] for ind in Resultat_Ind]
 Resultat_Num = [Liste_Num[ind] for ind in Resultat_Ind]
 Dossiers_final = Max_Occurences(Resultat_Dossiers,Nb_Dossiers)
 return Dossiers_final

N = "11"
k = 5

3

Resolution(N,k)

Liste LR

LR = ["01","11","12","21","22","31","41","42","51","52","61","71"]

Etude k

import numpy as np

def Etude(k):
 A = np.zeros([Nb_Dossiers,Nb_Dossiers])
 for R in LR:
 l = int(R[0])
 c = Resolution(R,k)
 A[l,c] += 1
 return A

M1 = Etude(1)
print(M1)

Matrices pour k=1 à 5

for k in range(1,41):
 Mk = Etude(1)
 print('k=',k)
 print(Mk)

''' Quel que soit k de 1 à 40
[[1. 0. 0. 0. 0. 0. 0. 0.]
 [0. 2. 0. 0. 0. 0. 0. 0.]
 [0. 0. 2. 0. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 2. 0. 0. 0.]
 [0. 0. 0. 0. 0. 2. 0. 0.]
 [0. 0. 0. 0. 0. 0. 1. 0.]
 [0. 0. 0. 0. 0. 0. 0. 1.]]
'''

'''
On a de la chance, ici l'algorithme fonctionne très bien.
Il faudrait essayer d'agandir notre base de données avec des panneaux plus ressemblants et avoir plus de panneaux recherchés pour mettre plus de difficulté dans tout ça
'''

4

