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Chap.13 : Séries de Fourier
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1 Introduction
Jean Baptiste Joseph Fourier

Brillant mathématicien, humaniste, égyptologue proche des frères Cham-
pollion, Joseph Fourier (Auxerre, 1768 - Paris, 1830) est remarqué par Napo-
léon Bonaparte lors de l’expédition en Égypte et rédige la préface historique
de la Description de l’Égypte.
Nommé préfet de l’Isère (1802-1815) à son retour, il concilie son activité
avec ses recherches scientifiques ; il est notamment à l’origine de l’assèche-
ment des marais de Bourgoin et d’une route reliant Grenoble à Turin par
les cols du Lautaret et de Montgenèvre.

Une série trigonométrique de période T > 0 est une fonction f : R → R
de la forme :

f(x) = a0 +
+∞∑
n=1

an cos
(

n
2π

T
x

)
+ bn sin

(
n

2π

T
x

)

où (an)n∈N et (bn)n∈N∗ sont des suites de nombres réels.
La théorie des séries de Fourier permet sous certaines conditions de décom-
poser de manière effective une fonction T -périodique f : R → R sous la
forme (*).

Les prémices de ce type de problème remontent à une controverse écla-
tant aux alentours de 1750 entre d’Alembert, Euler et Daniel Bernoulli sur
le problème des cordes vibrantes.
Le français d’Alembert détermine l’équation d’onde ainsi que ses solutions
sous formes analytiques, tandis que Bernoulli les obtient sous forme de dé-
composition en série trigonométrique.
La discussion porte sur la nécessité de concilier ces deux points de vue.

En 1807 ,Joseph Fourier introduit les séries de Fourier et la transforma-
tion de Fourier dans son mémoire "Théorie de la propagation de la chaleur
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dans les solides" qu’il présente à l’Académie des sciences afin de résoudre
l’équation de la chaleur. Ces premiers travaux, controversés sur le plan de
l’analyse, ne furent pas publiés, mais on les retrouve en grande partie dans
son œuvre maîtresse Théorie analytique de la chaleur publiée en 1822.

D’un point de vue moderne, les travaux de Fourier manquent de rigueur,
notamment à cause du flou entourant les notions de fonction et d’intégrale
au début du XIXe siècle. Par la suite, Dirichlet et Riemann ont contribué
à la formalisation des idées de Fourier. Le premier a démontré en 1829 le
théorème de convergence de la série de Fourier portant aujourd’hui son nom.
Le second a présenté en 1854, à l’occasion de sa thèse d’habilitation à l’Uni-
versité de Göttingen, un travail intitulé Sur la possibilité de représenter une
fonction par une série trigonométrique qui constitue une avancée décisive :
l’auteur lève un obstacle majeur en définissant pour la première fois une
théorie de l’intégration satisfaisante.

Du point de vue de la physique, on sait que tout signal se décompose
comme une superposition de signaux sinusoïdaux. La théorie des séries de
Fourier permet de déterminer cette décomposition dans le cas d’un signal
périodique.

Dans tout ce chapitre T désignera un réel strictement positif et ω = 2π
T

la pulsation associée à T .

2 Fonctions T -périodiques

2.1 Définition

Définition 2.1. Soient T > 0 et f : R → R.f est dite périodique de
période T ou T -périodique si :

∀t ∈ R, f(t + T ) = f(t)

Exemple 2.2. 1. La fonction t 7→ sin(t) est 2π-périodique.
2. La fonction t 7→ cos(2πt) est 1-périodique.
3. Voici la fonction f, 3-périodique, définie par ∀t ∈ [0; 3[, f(t) =

√
t :
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4. Voici la fonction g, 2π-périodique et impaire, définie par :

∀t ∈]0; π[, g(t) = 1 et g(π) = 0 :

Dans tout ce chapitre T désignera un réel strictement positif et ω = 2π
T

la pulsation associée à T .

2.2 Régularité

On rappelle la définition suivante, vue dans le chapitre "Intégrales : rap-
pels et généralisation".

Définition 2.3. Soit f une fonction définie sur [a; b](a < b) et à valeurs
dans R.
On dit que la fonction f est continue par morceaux sur [a; b] (resp. de
classe C 1 par morceaux) si, et seulement si, il existe une subdivision

a0 = a < a1 < . . . < an−1 < an

telle que, pour tout i ∈ J0; n − 1K, la restriction de f à l’intervalle ]ai; ai+1 [
peut se prolonger en une fonction continue (resp. de classe C 1)

sur [ai; ai+1].
Autrement dit la fonction f est continue (resp. de classe C 1)

sur tous les
intervalles ]ai; ai+1[ et f (resp. f et f ′) admet (resp. admettent) des limites
finies à droite et à gauche en ai pour tout i.

Définition 2.4. Une fonction T -périodique est dite continue par morceaux
(resp. de classe C 1 par morceaux) si elle est continue par morceaux (resp.
de classe C 1 par morceaux) sur une période (c’est-à-dire un intervalle du
type [a; a + T ])

Exemple 2.5. • La fonction représentée sur la figure 1 est continue par
morceaux mais pas de classe C 1 par morceaux car en 0+la dérivée de
f n’admet pas une limite finie.

• La fonction représentée sur la figure 2 est de classe C 1 par morceaux
(donc aussi continue par morceaux).

Proposition 2.6. L’ensemble des fonctions T -périodiques et continues par
morceaux est un R-espace vectoriel que nous noterons C M,T (R).
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Remarque 2.7. • Cela signifie que toute combinaison linéaire de deux
fonctions T -périodiques et continues par morceaux est une fonction
T -périodique et continue par morceaux.

• On notera CT (R) l’espace vectoriel des fonctions continues et T -périodiques.

2.3 Intégration

Proposition 2.8. Soit f ∈ CM,T (R). Alors :
• Pour tout réel a :

∫ a+T
a f(t)dt =

∫ T
0 f(t)dt.

En particulier
∫ T

0 f(t)dt =
∫ T/2

−T/2 f(t)dt

• Si f est une fonction paire :
∫ T

0 f(t)dt = 2
∫ T/2

0 f(t)dt.
• Si f est une fonction impaire :

∫ T
0 f(t)dt = 0

Preuve :

3 Séries de Fourier

3.1 Interprétation géométrique dans le cas des fonctions conti-
nues

On considère l’espace vectoriel CT (R) (fonctions continues T -périodiques)
muni du produit scalaire :

⟨f | g⟩ = 1
T

∫ T
0 f(t)g(t)dt

et ω = 2π
T la pulsation associée à T .

Pour tout n ∈ N on note cn la fonction définie par :

cn(t) = cos(nωt)

et sn la fonction définie par :

sn(t) = sin(nωt).
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Ces fonctions s’appellent les modes de Fourier associés à la période T .
Pour tout N ∈ N∗ on considère

FN = Vect (c0, c1, . . . , cN , s1, s2, . . . , sN ).

Nous allons déterminer le projeté orthogonal de la fonction f sur le sous-
espace vectoriel FN .

1. Cherchons une BON de FN :
On remarque tout d’abord que la famille (c0, c1, . . . , cN , s1, s2, . . . , sN ) est
une famille orthogonale :

• ∀(i, j) ∈ J0; NK2, tels que i ̸= j :

⟨ci | cj⟩ =

• ∀(i, j) ∈ J1; NK2, tels que i ̸= j :

⟨si | sj⟩ =

• ∀(i, j) ∈ J0; NK × J1; NK, la fonction t 7→ cos(iωt) sin(jωt) est T -
périodique et impaire donc :

⟨ci | sj⟩ =

TSI2-Lycée Antonin Artaud 6 Page 6/15



Séries de Fourier www.jmcabrera.net

Donc la famille (c0, c1, . . . , cN , s1, s2, . . . , sN ) est libre (car orthogo-
nale) et génératrice de FN .
C’est donc une base de FN .
Comme c’est une famille orthogonale, il suffit de normer les vecteurs
pour obtenir une BON.

− ∥c0∥2 = 1
T

∫ T

0
1 dt = 1

− ∀i ∈ J1; NK, ∥ci∥2 = 1
T

∫ T

0
(cos(iωt))2 dt = 1

T

∫ T

0

1
2(1 + cos(2iωt))dt = 1

2

− ∀i ∈ J1; NK, ∥si∥2 = 1
T

∫ T

0
(sin(iωt))2 dt = 1

T

∫ T

0

1
2(1 − cos(2iωt))dt = 1

2

La famille
(
c0,

√
2c1, . . . ,

√
2cN ,

√
2s1,

√
2s2, . . . ,

√
2sN

)
est une BON

de FN .
2. Projection orthogonale : Soit f ∈ CT (R). Alors on sait que :

pFN
(f)(t) = ⟨f | c0⟩ c0 +

N∑
n=1

(〈
f |

√
2cn

〉 √
2cn +

〈
f |

√
2sn

〉 √
2sn

)

= ⟨f | c0⟩︸ ︷︷ ︸
a0(f)

+
N∑

n=1
(2 ⟨f | cn⟩︸ ︷︷ ︸

an(f)

cos(nωt) + 2 ⟨f | sn⟩︸ ︷︷ ︸
bn(f)

sin(nωt))

Or c0(t) = 1 donc a0(f) = ⟨f | c0⟩ = 1
T

∫ T
0 f(t)dt.

De plus an(f) = 2 ⟨f | cn⟩ = 2 × 1
T

∫ T
0 f(t) cos(nωt)dt.

Et enfin : bn(f) = 2 ⟨f | sn⟩ = 2 × 1
T

∫ T
0 f(t) sin(nωt)dt.

L’objectif de ce chapitre est de déterminer si, en faisant tendre N vers
+∞, pFN

(f) se " rapproche" de f et pour quels types de fonctions cela
fonctionne.
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3.2 Coefficients de Fourier

3.2.1 Définition

Définition 3.1. Soit T > 0, ω = 2π
T la pulsation associée à T et f ∈

CM,T (R).
On appelle coefficients de Fourier trigonométriques de f les réels dé-
finis par :

a0(f) = 1
T

∫ T

0
f(t)dt = 1

T

∫ T/2

−T/2
f(t)dt

∀n ∈ N∗, an(f) = 2
T

∫ T

0
f(t) cos(nωt)dt = 2

T

∫ T/2

−T/2
f(t) cos(nωt)dt

∀n ∈ N∗, bn(f) = 2
T

∫ T

0
f(t) sin(nωt)dt = 2

T

∫ T/2

−T/2
f(t) sin(nωt)dt

Remarque 3.2. • Lorsqu’il n’y aura pas de confusion possible on pourra
noter an et bn au lieu de an(f) et bn(f).

• Dans cette définition deux formules sont données pour chaque coeffi-
cient, mais il est évident qu’il ne faudra en utiliser qu’une en exercice :
à vous de choisir la bonne selon le contexte !

3.2.2 Cas particuliers

Proposition 3.3. • Si f ∈ CM,T (R) et si f est paire alors :

∀n ∈ N∗, bn(f) = 0

a0(f) = 2
T

∫ T/2

0
f(t)dt et ∀n ∈ N∗, an(f) = 4

T

∫ T/2

0
f(t) cos(nωt)dt

• Si f ∈ CM,T (R) et si f est impaire alors :

∀n ∈ N, an(f) = 0

∀n ∈ N∗, bn(f) = 4
T

∫ T/2

0
f(t) sin(nωt)dt

Application 3.4. Soit f la fonction 2π-périodique définie par :

∀t ∈ [−π; π], f(t) = |t|.
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Calculer ses coefficients de Fourier.

Application 3.5. On reprend la fonction g qui est 2π-périodique, impaire
et telle que :

∀t ∈ ]0; π[ , g(t) = 1.

1. Combien vaut g(π) ?
2. Tracer l’allure de la courbe de g.
3. Calculer ses coefficients de Fourier.

Proposition 3.6. Si f ∈ CM,T (R) et si pour tout x ∈ R, on a :

f
(
x + T

2

)
= −f(x)

alors tous les coefficients d’indices pairs sont nuls :

a0(f) = 0 ∀p ⩾ 1 a2p(f) = 0 b2p(f) = 0

Exemple 3.7. Voici un exemple de fonction vérifiant la propriété :

f
(
x + T

2

)
= −f(x).
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La fonction g de l’application précédente vérifie aussi cette propriété.

3.3 Série de Fourier

Définition 3.8. Soit T > 0, ω = 2π
T la pulsation associée à T et f ∈

CM,T (R).
• Pour tout réel t, la série a0(f)+∑

n⩾1 (an(f) cos(nωt) + bn(f) sin(nωt))
s’appelle la série de Fourier de f en t.

• Pour tout N ∈ N∗, on appelle somme partielle de Fourier d’ordre
N de la fonction f la fonction SN (f) définie par :

∀t ∈ R, SN (f)(t) = a0(f) +
N∑

n=1
(an(f) cos(nωt) + bn(f) sin(nωt))

• Si la série de Fourier de f en t est convergente pour tout t, on appelle
somme de la série Fourier de la fonction f la fonction S(f) définie
par :

∀t ∈ R, S(f)(t) = a0(f) +
+∞∑
n=1

(an(f) cos(nωt) + bn(f) sin(nωt))

Remarque 3.9. Dans le cas des fonction continues, SN (f) = pFN
(f).

Application 3.10. Soit f la fonction 2π-périodique définie par :
∀t ∈ [−π; π], f(t) = |t|.

déjà étudiée.
Calculer la somme partielle de Fourier d’ordre N ∈ N.
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Application 3.11. On reprend la fonction g qui est 2π-périodique, impaire
et telle que :

∀t ∈]0; π[, g(t) = 1.

Calculer la somme partielle de Fourier d’ordre N ∈ N.

4 Les théorèmes de convergence

4.1 Théorème de Dirichlet

Définition 4.1. Soit f une fonction définie sur R. On appelle régularisée
de la fonction f , et on note f̃ , la fonction définie sur R par

f̃(t) = 1
2 lim

h→0
(f(t + h) + f(t − h))

Remarque 4.2. Lorsque f est continue en t :
1
2 lim

h→0
(f(t + h) + f(t − h)) = f(t)

et lorsque f n’est pas continue en t :
1
2 lim

h→0
(f(t + h) + f(t − h))

correspond à la moyenne de la valeur à droite et la valeur à gauche.

Théorème 4.3. Théorème de Dirichlet
Si f est une fonction T -périodique et de classe C 1 par morceaux sur R, alors
la série de Fourier de f converge pour tout réel t et on a :

∀t ∈ R, a0(f) +
+∞∑
n=1

(an(f) cos(nωt) + bn(f) sin(nωt)) =

1
2 lim

h→0
(f(t + h) + f(t − h)) = f̃(t)

Application 4.4. À l’aide de la fonction g, 2π-périodique et impaire, définie
par :
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∀t ∈ ]0; π[ , g(t) = 1 et g(π) = 0

calculer la valeur de
+∞∑
n=0

(−1)n

2n+1 .

Voici sur un même tracé les courbes des fonctions g et SN pour différentes
valeurs de N .
Si N = 6 :

Si N = 20 :

Corollaire 4.5. Théorème de Dirichlet pour une fonction continue
Si f une fonction T -périodique continue sur R et de classe C 1 par morceaux
sur R, alors la série de Fourier de f converge pour tout réel t et on a :

∀t ∈ R, a0(f) +
+∞∑
n=1

(an(f) cos(nωt) + bn(f) sin(nωt)) = f(t)
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Application 4.6. A l’aide de la fonction f déjà étudiée 2π-périodique dé-
finie par :

∀t ∈ [−π; π], f(t) = |t|.

montrer que la série ∑
n∈N

1
(2n+1)2 converge et calculer sa somme.

Voici sur un même tracé les courbes des fonctions f et SN pour différentes
valeurs de N .
Si N = 3 :

Si N = 8 :
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4.2 Théorème de Parseval

Théorème 4.7. Théorème de Parseval
Si f une fonction T -périodique et continue par morceaux sur R alors les
séries ∑ (an(f))2 et ∑ (bn(f))2 convergent et on a :

1
T

∫ T

0
(f(t))2 dt = (a0(f))2 + 1

2

+∞∑
n=1

(
(an(f))2 + (bn(f))2

)
Remarque :

Si on reprend le produit scalaire utilisé pour l’interprétation géométrique des
séries de Fourier pour les fonctions continues on remarque que le théorème
de Parseval s’écrit :

∥f∥2 = lim
N→+∞

∥SN (f)∥2

En effet :

∥SN (f)∥2 = ∥pFN
(f)∥2

= |⟨f | c0⟩|2 + ∑N
n=1

(∣∣∣〈f |
√

2cn

〉∣∣∣2 +
∣∣∣〈f |

√
2sn

〉∣∣∣2)
.

Or :
•

∣∣∣〈f |
√

2cn

〉∣∣∣2 = 2
(

1
T

∫ T
0 f(t) cos(nωt)dt

)2
= 1

2 (an(f))2

•
∣∣∣〈f |

√
2sn

〉∣∣∣2 = 1
2 (bn(f))2.

On obtient bien l’égalité de Parseval.

Application 4.8. A l’aide de la fonction f 2π-périodique définie par :

∀t ∈ [−π; π], f(t) = |t|.

montrer que la série ∑
n∈N

1
(2n+1)4 converge et calculer sa somme.
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5 Sous Python
Reprenons l’exemple de la fonction f , 2π-périodique définie par :

∀t ∈ [−π; π], f(t) = |t|.

On souhaite obtenir les courbes de f et de SN (la somme partielle de Fourier)
sur un même graphique.
1 import numpy as np
2 import matplotlib . pyplot as plt
3

4

5 def S(t,N):
6 s=np.pi/2
7 for i in range (0,(N -1) //2):
8 s=s -(4/ np.pi) *(1/(2* i+1) **2)*np.cos ((2*i+1)*t)
9 return s

10

11

12 N=int(input(’ Saisir N’))
13

14

15

16 T=[-np.pi +2* np.pi*i/100 for i in range (101)]
17 Y=[]
18 for t in T:
19 if t>=-np.pi and t <0:
20 Y. append (-t)
21 else:
22 Y. append (t)
23 Z=[S(t,N) for t in T]
24

25 plt.plot(T,Z,’r’)
26 plt.plot(T,Y,’y’)
27 plt.show ()
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