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Chap.14 : Isométries d’un espace
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Dans tout ce chapitre (E, (. | .)) désigne un espace euclidien de dimension
n > 1, c’est-a~dire E est un R-espace vectoriel de dimension finie n et (. | .)
est un produit scalaire sur E. On notera de plus ||.|| la norme euclidienne
associée au produit scalaire (. | .).

1 Isométries

1.1 Groupe orthogonal

Définition 1.1. Soit f € L (FE). On dit que [ est une isométrie de E si
et seulement si f "conserve la norme’, c’est-a-dire :

vieE, |f(@) =

Application 1.2. Soit f I’endomorphisme de R® (muni de son produit sca-
laire canonique) défini par f(z,y,2) = (z,z,y).
Montrer que f est une isométrie de R3.

Proposition 1.3. Soit f € ZL(FE).f est une isométrie de E si et seulement
si f "comserve le produit scalaire”, c¢’est-a-dire :

v(@,9) € B, (f(@) | f(7) = (Z|7)

Preuve :
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Proposition 1.4. Les affirmations suivantes sont équivalentes :
1. f est une isométrie de F ;

2. f est un endomorphisme de E transformant toute base orthonormée
de E en une base orthonormée de F ;

3. f est un endomorphisme de E et il existe une base orthonormée de E
que f transforme en une base orthonormeée.

Méthode 1.5. Dans un espace euclidien, pour montrer qu’un endomor-
phisme est une isométrie on dispose donc pour linstant de trois méthodes :

e montrer qu’il conserve la norme :
vie E, |f@)|=Iz;
e montrer qu’il conserve le produit scalaire :

V(@) € B2 (f(@) | () = (T |9

e montrer qu’il transforme une base orthonormée (on peut choisir une
base ou en prendre une quelconque) en une base orthonormée.

Définition 1.6. L’ensemble de toutes les isométries de E s’appelle le groupe
orthogonal de E et se note O(E)
Proposition 1.7. Soient [ et g deux isométries de E.

e fog est une isométrie de E.(O(FE) est stable par composée.)

e f est un automorphisme de E (c’est-a-dire f est bijectif) et f~' est

ausst une isométrie.

Preuve :

Proposition 1.8. Soit f une isométrie de E et F' un sous-espace vectoriel
de E. Si I est stable par f (c’est-a-dire f(F) C F ) alors F*+ est stable par
f-
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Preuve :

1.2  Symétrie orthogonale

Définition 1.9. Soit F' un sous-espace vectoriel de E.

Comme E = F é F* (car E de dimension finie), pour tout & € E, il existe
un unique vecteur if € F' et un unique vecteur 7 € F tels que & =7 + 7.
L’application sp qui a tout vecteur ¥ de E associe le vecteur i — Z' s’appelle
la symétrie orthogonale par rapport a F.

Proposition 1.10. Soit F' un sous-espace vectoriel de E et sp la symétrie
orthogonale par rapport a F.

Alors sp est la symétrie vectorielle par rapport ¢ F parallélement ¢ F*,
c’est-a-dire sp est un endomorphisme de E tel que sp o sp = idg.

Remarque 1.11. Pas de démonstration détaillée ici, mais il suffit de re-
marquer que l'application sp définie ci-dessus est une application linéaire et
on voit rapidement que :

sp(sp(T) =sp(f—2) =7 — (=2) = T.

Proposition 1.12. Soit F' un sous-espace vectoriel de E et sp la symétrie
orthogonale par rapport a F. Alors sp est une isométrie de E.

Preuve :
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Définition 1.13. Soit F' un hyperplan de E (c’est-a-dire dim(F') = dim(E)—
1).

Alors la symétrie orthogonale par rapport a F s’appelle aussi la réflexion
par rapport a F.

1.3 Matrices orthogonales

Définition 1.14. Soit M € #,(R). On dit que M est une matrice or-
thogonale si et seulement si elle vérifie

M xM=1,

ou I, désigne la matrice identité.

0 01
Application 1.15. Montrer que A= | —1 0 0 | est une matrice or-
0 1 0

thogonale.

Définition 1.16. L’ensemble de toutes les matrices orthogonales de .y, (R)
s’appelle le groupe orthogonal d’ordre n et se note 0'(n) ou 0, (R).

Proposition 1.17. Soit M € .#,,(R). Les affirmations suivantes sont équi-
valentes :
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1. M est une matrice orthogonale ;

2. les colonnes de M forment une base orthonormée de R™ muni de son
produit scalaire canonique;

3. les lignes de M forment une base orthonormée de R™ muni de son
produit scalaire canonique ;

4. M est inversible et M~ = MT.
Méthode 1.18. Voici les méthodes dont nous disposons pour linstant pour
montrer qu’une matrice carrée est orthogonale :
o Vérifier que Uon a MT x M =1I,,.
o Vérifier que les colonnes (ou les lignes) de M, vues comme des n-
uplets, sont orthogonales deuz d deux et sont toutes de norme 1. (Les

colonnes formeront donc une famille orthonormée, donc libre, de n
vecteurs de R™, par conséquent une BON.)

e Sion a déja calculé M~", remarquer que M~' = M™. (Assez rarement
utilisée)
Remarque 1.19. Pour une matrice orthogonale M~ = M7T donc :

MTxM=MxMT=1,.

1 2 2
Application 1.20. Montrer que la matrice % 2 1 =2 | estune ma-
2 -2 1

trice orthogonale et en en déduire M.

Proposition 1.21. Soit & une base orthonormée de E.
La base &' est une base orthonormée de E si et seulement si la matrice de
passage de B a B’ est une matrice orthogonale.

Méthode 1.22. o Cette propriété nous donne une méthode supplémen-
taire pour montrer qu’une matrice est orthogonale : si on remarque
que la matrice que l’énoncé nous donne est la matrice de passage entre
deuz bases orthonormée alors on peut conclure que cette matrice est
orthogonale.
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e Pour une matrice de passage entre deux bases orthonormées, pas besoin
de gros calculs pour avoir P~ :

p~t=pT

o Cette propriété nous donne aussi une méthode supplémentaire pour
montrer qu’une base %' est orthonormée : si on sait que B est une base
orthonormée et que la matrice de passage de 9B o 9B’ est orthogonale
alors on peut conclure que %' est une base orthonormée.

Proposition 1.23. Soit M une matrice orthogonale. Alors :
det(M) € {—1;1}.

Preuve :

Définition 1.24. L’ensemble des matrices orthogonales de déterminant 1
s’appelle le groupe spécial orthogonal d’ordre n et se note .0 (n) ou
S O0n(R).

L’ensemble des matrices orthogonales de déterminant —1 se note 0~ (n).

Proposition 1.25. e SiM et N sont deux matrices orthogonales d’ordre
n, alors M N est une matrice orthogonale d’ordre n.(0(n) est stable
par produit)

e Si M est une matrices orthogonale d’ordre n, alors M~ est une ma-
trice orthogonale d’ordre n.
O(n) est stable par passage a l'inverse.

e Si M et N appartiennent a . 0(n) alors :
MN € #0(n) et M~' € S0 (n)

S 0(n) est stable par produit et passage a l'inverse.

e Si M appartient & 0~ (n) alors M~1 € 0~ (n).
(0~ (n) est stable par passage da linverse)
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Preuve :

Remarque 1.26. 0~ (n) n’est pas stable par produit :
siMe 0 (n) et Ne 0 (n) alors

det(MN) =det(M)det(N) = (-1) x (-1) =1
, donc MN € S0(n).

1.4 Lien entre isométrie et matrice orthogonale
Proposition 1.27. Soit f un endomorphisme de E. Les affirmations swi-
vantes sont équivalentes :

1. f est une isométrie;

2. il existe une base orthonormée dans laquelle la matrice associée a f
est une matrice orthogonale ;

3. la matrice associée a f dans toute base orthonormée est une matrice

orthogonale.

Remarque 1.28. Attention il est trés important que la matrice associée a
f soit relative a une base orthonormée !

Méthode 1.29. Cette propriété nous donne une méthode supplémentaire
pour montrer qu’un endomorphisme donné est une isométrie : il suffit de
montrer que sa matrice dans une base orthonormée est une matrice ortho-
gonale.

Corollaire 1.30. Soit f € O(F). Alors det(f) € {—1;1}.

Preuve :
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Définition 1.31. o L’ensemble des isométries vectorielles dont le dé-
terminant vaut 1 se note S O(E) et est appelé groupe spécial or-
thogonal ou encore groupe des isométries positives.

e Une isométrie positive s’appelle aussi une rotation.
o L’ensemble des isométries vectorielles dont le déterminant vaut —1
(aussi appelés isométries négatives) se note 0~ (E).

Proposition 1.32. Soit f € ZL(F),% une base orthonormée de E et

A= Mx5(f).

Si A est une matrice orthogonale et symétrique alors f est la symétrie or-

thogonale par rapport a ker (f —idg).

Preuve :

e Comme A est une matrice orthogonale et symétrique on a :
Ax A=AT x A=1,.

Ainsion a fof =idg, ce qui signifie que f est une symétrie vectorielle.
o Un symétrie vectorielle est une symétrie par rapport a ker (f — idg)

et parallelement a ker (f +idg).

Pour montrer que f est une symétrie orthogonale il nous reste a mon-

trer que ker (f —idg) et ker (f +idg) sont orthogonaux.

Soit & € ker (f —idg) et ¥ € ker (f +idg). On a donc f(Z) = & et

f(y) = —y. Cela nous permet d’écrire :

@9 = @) | =f@) =@ | (&) = —(Z|7)

Pour la derniére égalité on a utilisé le fait que f est une isométrie car

sa matrice dans une base orthonormée est orthogonale.

On a donc (¥ | §) = —(Z | ¥) et ainsi (¥ | §) = 0.

On a donc bien montré que ker (f —idg) L ker (f +idg).
En conclusion on a bien montré que f est la symétrie orthogonale par rapport
a ker (f —idg).
Remarque 1.33. Attention !!! Sila matrice de [ est uniquement symé-
triqgue on ne peut pas dire que f est une symétrie /.
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2 Description du groupe orthogonal en dimension
2et3
2.1 Orientation d’un espace vectoriel

Définition 2.1. On considére un espace euclidien et on choisit une base
orthonormée % que l'on appelle base de référence.

Un base orthonormée B’ est alors dite directe lorsque det (Pg g) > 0.
Dans le cas contraire la base &' est dite rétrograde ou indirecte.
Lorsqu’on choisit la base de référence on dit que l'on oriente E.

Remarque 2.2. Lorsque B et B’ sont deux bases orthonormées directes,
Py g est une matrice orthogonale donc son déterminant vaut 1 et c’est donc
une matrice de ./ 0(n).

Si B’ est une base rétrograde alors :

det (Pﬂ’gg/) =—1.

2.2 En dimension 2

Dans toute cette partie E désigne un espace euclidien orienté de dimen-
sion 2 .

Théoréme 2.3. o Soit A€ S0(2). Alors il existe 0 tel que :

[ cos(#) —sin(8)
A= ( sin(f)  cos(6) )

o Soit A€ 0 (2). Alors il existe 0 tel que :

[ cos(#)  sin(8)
A= ( sin(f) — cos(h) )

Preuve :
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Remarque 2.4. On note souvent R(0) = ( Zfs((gi _ccs)lslzg?)

de S0(2).

) les matrices

Proposition 2.5.
Soient 6 et o deux réels. Alors :
R(0) x R(a) = R(0 + «) et R‘l(é?) = R(-0).

Preuve :

Théoréme 2.6. Soit f € S O(E). Alors il existe § € R tel que dans n’im-
porte quelle base orthonormée directe de E on a :

= (Sl ) < o

On dit alors que f est la rotation d’angle 0.
Remarque 2.7.

Il est important de comprendre que la valeur de 6 ne change pas méme
si on change de base orthonormé directe.

Preuve :
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Application 2.8. Donner la matrice dans la base canonique de la rotation
de R? d’angle %’r

Théoréme 2.9. Soit f € O~ (E). Alors il existe une base orthonormée de

E, notée A, telle que :
1 0
Mz(f) = ( 0 —1 )

f est donc la symétrie orthogonale par rapport da ker (f —idg).
Remarque 2.10. Dans une base orthonormée quelconque de E la matrice

de f € O~ (F) sera de la forme ( cos(0)  sin(6)

sin(0) — cos(0) ) avec 0 qui changera

en fonction de la base choisie.
Le théoréme affirme qu’en choisissant bien la base orthonormée la matrice

de f sera de la forme ( (1] _01 )

Application 2.11. Donner la matrice dans la base canonique de la symétrie
orthogonale par rapport a A = Vect((1;2)).

Méthode 2.12. Etude d’une matrice de 0(2)
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€2

f({z)w R

f (e1)

IB]_

e

fle2)

On dispose d’une matrice A € #>(R) et on note f l’endomorphisme de R?
canoniquement associé a A.

L’énoncé nous demande de déterminer la nature et les éléments caractéris-
tiques de f.

1. Vérifier que A est une matrice orthogonale : les colonnes forment une

famille orthonormée ou les lignes forment une famille orthonormée ou
encore ATA = I.

2. Nature de f :

(a) Si A est une matrice symétrique alors f est une symétrie ortho-
gonale.

(b) Si A n’est pas une matrice symétrique f est une rotation vecto-
rielle.

3. Eléments caractéristiques : on ne traite que le point correspondant
d la nature trouvée pour f.

(a) On cherche les invariants de f :

Donc ker (f —idg) =....
(b) 1l nous faut l’angle de la rotation :

f) —sin(6

on sait que A = C?S( ) sin(6)

sin(f)  cos(0)

4. Conclusion : encore une fois on ne prend en compte que le point
correspondant a la nature trouvée pour f.

) donc on peut trouver 6.

(a) f estla symétrie orthogonale par rapport d... (on met ce que l'on
a trouwvé pour les invariants de f)

(b) f estla rotation vectorielle d’angle ... (on met ce que l’on a trouvé
pour 6 )

Application 2.13. Déterminer la nature et les éléments caractéristiques de
Pendomorphisme f de R? dont la matrice dans la base canonique est :
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Application 2.14. Déterminer la nature et les éléments caractéristiques de
Uendomorphisme de R? dont la matrice dans la base canonique est :

4 3
=1
B_5<_34>.

2.3 En dimension 3

Dans cette partie E désigne un espace euclidien orienté de dimension 3.

Théoréme 2.15. e Soit f € SO(F). Alors il existe une base orthonor-
mée directe B = (e1,e2,e3) et un réel 0 tels que :

1 0 0
Mp(f)=1 0 cos(d) —sin(0)
0 sin(f) cos(d)

On dit que f est la rotation d’axe dirigé par e; d’angle 0.
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o Soit f € O (FE). Alors il existe une base orthonormée directe B =
(e1,e2,e3) et un réel O tels que :

-1 0 0 1 0 0 -1
Mp(f)=| 0 cos(f) —sin(@) | =] 0 cos(d) —sin(d) 0
0 sin(f) cos(#) 0 sin(f) cos(d) 0

f est alors la composée de la rotation d’azxe dirigé par e1 d’angle 0 et
de la symétrie orthogonale par rapport a (vect (61))J_.

€1 [ (e1)

g
€9 .

fea)

€1
/},f (es)
| i) es
~ 9 //
€2~ o
f (62)

I lex)

Remarque 2.16.

o Lorsque f € SO(E) et 0 = 7, f est la symétrie orthogonale par
rapport a la droite vectorielle vect (eq).

o Lorsque f € 07 (E) et § =0, f est tout simplement la symétrie ortho-
gonale par rapport au plan (Vect (e1))™.

o Lorsque fe 07 (E)et 0 =m, ona #z(f)=—Is et donc f = —idg.

Application 2.17. Déterminer la matrice dans la base canonique de R® de
la rotation vectorielle d’axe A dirigé par u = (2;—1;1) et d’angle ‘%”.
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Application 2.18. Déterminer la matrice dans la base canonique de R3 de
la symétrie orthogonale par rapport & F = {(z;y;2),—x +y + 2z = 0}.

Théoréme 2.19. Soit A € 0(3). Alors il existe une matrice orthogonale P
telle que :

1 0 0 -1 0 0
PTAP = 0 cos(f) —sin(h) ou PTAP=1| 0 cos(d) —sin(h)
0 sin(f) cos(h) 0 sin(f) cos(h)

Méthode 2.20. Etude d'une matrice de 0(3) On dispose d’une matrice
A € #3(R) et on note f l'endomorphisme de R® canoniquement associé a
A. L’énoncé nous demande de déterminer la nature et les éléments caracté-
ristiques de f.
1. Vérifier que A est une matrice orthogonale : les colonnes forment
une famille orthonormée ou les lignes forment une famille orthonor-
mée ou encore ATA = Is.

2. Nature de f :
(a) Si la matrice A est symétrique [ est une symétrie orthogonale.
(b) Si A n’est pas une matrice symétrique et A € SO(3) ( pour

déterminer cela deux méthodes : on vérifie que det(A) =1 ou que
C1 N Cy = C3) alors f est une rotation vectorielle.
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(c) Si A n’est pas une matrice symétrique et A € 0~ (3) ( pour dé-
terminer cela deux méthodes : on vérifie que det(A) = —1 ou que
Cy1 N Cy = —C3) alors f est la composée d’une rotation vectorielle
et d’une symétrie orthogonale.

3. Eléments caractéristiques :
on ne traite que le point correspondant a la nature trouvée pour f.

(a) On cherche les invariants de f :

X X
flz,y,2) =(x,y,2) Al y | =y | &
z y4

Donc ker (f —idg) = ...
(b) 1l nous faut dans ce cas l'axe de la rotation et l’angle.

e Pour trouver l’axe on cherche les invariants de f :

T x

f((w,y,z)):(x,y,z)@A Yy Yy =
z z

Donc ker (f —idg) = ... = vect().

e Pour trouver l'angle on utilise deux informations : On sait
que tr(A) = 1+ 2cos(0) donc on peut trouver facilement
cos(#). On choisit un vecteur & non colinéaire a @ (en pra-
tique on prend souvent un des vecteurs de la base canonique
que R? ) et on admet que sin(f) est du méme signe que
det (4, &, f(Z)) Avec les informations sur cos(f) et sin(6)
on peut donner 0 (a 2w prés évidemment...)

(¢) 1l nous faut ici l’axe de la rotation, l’angle et I’ensemble par rap-
port auquel on fait la symétrie orthogonale :

e On applique la méthode précédente a —A : on trouve un axe
vect (@) et un angle 0. La rotation qui compose f est alors la

rotation d’aze vect (@) et d’angle 6 + .
e La symétrie orthogonale qui compose f est la symétrie ortho-

gonale par rapport a (vect())= .
4. Conclusion : on ne traite que le point correspondant a la nature
trouvée pour f.
(a) f est la symétrie orthogonale par rapport a ... (ce qu’on a trouvé
pour les invariants).

(b) f est la rotation vectorielle d’axe ... (ce qu’on a trouwvé pour les
invariants) et d’angle ...(ce qu’on a trouvé pour 6 ).
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(c) f estla composée de la la rotation vectorielle d’aze ... (ce qu’on a
trouvé pour les invariants de —f) et d’angle ... (ce qu’on a trouvé
pour @ + 1) et de la symétrie orthogonale par rapport a (...)*" (
a la place des pointillés on met les invariants de —f ).

Remarque 2.21. e Lorsque f est une symétrie orthogonale par rapport
a une droite, on dit aussi que f est un demi-tour par rapport a la droite

Eqi(f).

e Lorsque f est une symétrie orthogonale par rapport a un plan, on dit
aussi que f est une réflexion par rapport au plan E1(f).

Application 2.22. Déterminer la nature et préciser les éléments caracté-
ristiques de l’endomorphisme f de R canoniquement associé & la matrice :

A=

S = O

0
0
1

o O =

Application 2.23. Déterminer la nature et préciser les éléments caracté-
ristiques de l’endomorphisme f de R canoniquement associé & la matrice :

0 01
A= -1 0 0
0 10
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Application 2.24. Déterminer la nature et préciser les éléments caracté-
ristiques de l’endomorphisme f de R canoniquement associé & la matrice :

1 1 0
1 -1 0
0 0 —V2

_ 1
A=z

3 Matrices symétriques

On munit ., 1(R) de son produit scalaire canonique (X | Y) = X7V,

Proposition 3.1. Soit A une matrice symétrique de 4, (R).
Alors les sous-espaces propres de A sont deux d deux orthogonauz.

Preuve :
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Théoréme 3.2. Théoréme spectral
Soit A une matrice symétrique de M,(R).
Alors il existe une matrice P orthogonale et une matrice D diagonale telles
que :
A=PDP ' =PDP" <= D =P 'AP=P"AP

Autrement dit :

"Toute matrice symétrique réelle est diagonalisable en base
orthonormée"

Remarque 3.3. Pour diagonaliser une matrice symétrique en base ortho-
normée il faut donc faire trés attention au choix des vecteurs propres : il
faut qu’ils forment une base orthomormée pour que la matrice de passage
soit orthogonale.

5 -1 1
Application 3.4. On considere la matrice A= -1 1 =3

1 -3 1
Diagonaliser A selon une base orthonormée.
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