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Chap.14 : Isométries d’un espace
euclidien
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Dans tout ce chapitre (E, ⟨. | .⟩) désigne un espace euclidien de dimension
n ⩾ 1, c’est-à-dire E est un R-espace vectoriel de dimension finie n et ⟨. | .⟩
est un produit scalaire sur E. On notera de plus ∥.∥ la norme euclidienne
associée au produit scalaire ⟨. | .⟩.

1 Isométries

1.1 Groupe orthogonal

Définition 1.1. Soit f ∈ L (E). On dit que f est une isométrie de E si
et seulement si f "conserve la norme", c’est-à-dire :

∀x⃗ ∈ E, ∥f(x⃗)∥ = ∥x⃗∥

Application 1.2. Soit f l’endomorphisme de R3 (muni de son produit sca-
laire canonique) défini par f(x, y, z) = (z, x, y).
Montrer que f est une isométrie de R3.

Proposition 1.3. Soit f ∈ L (E).f est une isométrie de E si et seulement
si f "conserve le produit scalaire", c’est-à-dire :

∀(x⃗, y⃗) ∈ E2, ⟨f(x⃗) | f(y⃗)⟩ = ⟨x⃗ | y⃗⟩

Preuve :
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Proposition 1.4. Les affirmations suivantes sont équivalentes :
1. f est une isométrie de E ;
2. f est un endomorphisme de E transformant toute base orthonormée

de E en une base orthonormée de E ;
3. f est un endomorphisme de E et il existe une base orthonormée de E

que f transforme en une base orthonormée.

Méthode 1.5. Dans un espace euclidien, pour montrer qu’un endomor-
phisme est une isométrie on dispose donc pour l’instant de trois méthodes :

• montrer qu’il conserve la norme :

∀x⃗ ∈ E, ∥f(x⃗)∥ = ∥x⃗∥ ;

• montrer qu’il conserve le produit scalaire :

∀(x⃗, y⃗) ∈ E2, ⟨f(x⃗) | f(y⃗)⟩ = ⟨x⃗ | y⃗⟩;

• montrer qu’il transforme une base orthonormée (on peut choisir une
base ou en prendre une quelconque) en une base orthonormée.

Définition 1.6. L’ensemble de toutes les isométries de E s’appelle le groupe
orthogonal de E et se note O(E)

Proposition 1.7. Soient f et g deux isométries de E.
• f ◦ g est une isométrie de E.(O(E) est stable par composée.)
• f est un automorphisme de E (c’est-à-dire f est bijectif) et f−1 est

aussi une isométrie.

Preuve :

Proposition 1.8. Soit f une isométrie de E et F un sous-espace vectoriel
de E. Si F est stable par f (c’est-à-dire f(F ) ⊂ F ) alors F ⊥ est stable par
f .
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Preuve :

1.2 Symétrie orthogonale

Définition 1.9. Soit F un sous-espace vectoriel de E.
Comme E = F

⊥
⊕ F ⊥ (car E de dimension finie), pour tout x⃗ ∈ E, il existe

un unique vecteur y⃗ ∈ F et un unique vecteur z⃗ ∈ F ⊥ tels que x⃗ = y⃗ + z⃗.
L’application sF qui à tout vecteur x⃗ de E associe le vecteur y⃗ − z⃗ s’appelle
la symétrie orthogonale par rapport à F .

Proposition 1.10. Soit F un sous-espace vectoriel de E et sF la symétrie
orthogonale par rapport à F .
Alors sF est la symétrie vectorielle par rapport à F parallèlement à F ⊥,
c’est-à-dire sF est un endomorphisme de E tel que sF ◦ sF = idE.

Remarque 1.11. Pas de démonstration détaillée ici, mais il suffit de re-
marquer que l’application sF définie ci-dessus est une application linéaire et
on voit rapidement que :

sF (sF (x⃗)) = sF (y⃗ − z⃗) = y⃗ − (−z⃗) = x⃗.

Proposition 1.12. Soit F un sous-espace vectoriel de E et sF la symétrie
orthogonale par rapport à F . Alors sF est une isométrie de E.

Preuve :
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Définition 1.13. Soit F un hyperplan de E (c’est-à-dire dim(F ) = dim(E)−
1).
Alors la symétrie orthogonale par rapport à F s’appelle aussi la réflexion
par rapport à F .

1.3 Matrices orthogonales

Définition 1.14. Soit M ∈ Mn(R). On dit que M est une matrice or-
thogonale si et seulement si elle vérifie

MT × M = In

où In désigne la matrice identité.

Application 1.15. Montrer que A =

 0 0 1
−1 0 0
0 1 0

 est une matrice or-

thogonale.

Définition 1.16. L’ensemble de toutes les matrices orthogonales de Mn(R)
s’appelle le groupe orthogonal d’ordre n et se note O(n) ou On(R).

Proposition 1.17. Soit M ∈ Mn(R). Les affirmations suivantes sont équi-
valentes :
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1. M est une matrice orthogonale ;
2. les colonnes de M forment une base orthonormée de Rn muni de son

produit scalaire canonique ;
3. les lignes de M forment une base orthonormée de Rn muni de son

produit scalaire canonique ;
4. M est inversible et M−1 = MT .

Méthode 1.18. Voici les méthodes dont nous disposons pour l’instant pour
montrer qu’une matrice carrée est orthogonale :

• Vérifier que l’on a MT × M = In.
• Vérifier que les colonnes (ou les lignes) de M , vues comme des n-

uplets, sont orthogonales deux à deux et sont toutes de norme 1. (Les
colonnes formeront donc une famille orthonormée, donc libre, de n
vecteurs de Rn, par conséquent une BON.)

• Si on a déjà calculé M−1, remarquer que M−1 = MT . (Assez rarement
utilisée)

Remarque 1.19. Pour une matrice orthogonale M−1 = MT donc :

MT × M = M × MT = In.

Application 1.20. Montrer que la matrice 1
3

 1 2 2
2 1 −2
2 −2 1

 est une ma-

trice orthogonale et en en déduire M−1.

Proposition 1.21. Soit B une base orthonormée de E.
La base B′ est une base orthonormée de E si et seulement si la matrice de
passage de B à B′ est une matrice orthogonale.

Méthode 1.22. • Cette propriété nous donne une méthode supplémen-
taire pour montrer qu’une matrice est orthogonale : si on remarque
que la matrice que l’énoncé nous donne est la matrice de passage entre
deux bases orthonormée alors on peut conclure que cette matrice est
orthogonale.
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• Pour une matrice de passage entre deux bases orthonormées, pas besoin
de gros calculs pour avoir P −1 :

P −1 = P T

• Cette propriété nous donne aussi une méthode supplémentaire pour
montrer qu’une base B′ est orthonormée : si on sait que B est une base
orthonormée et que la matrice de passage de B à B′ est orthogonale
alors on peut conclure que B′ est une base orthonormée.

Proposition 1.23. Soit M une matrice orthogonale. Alors :

det(M) ∈ {−1; 1}.

Preuve :

Définition 1.24. L’ensemble des matrices orthogonales de déterminant 1
s’appelle le groupe spécial orthogonal d’ordre n et se note S O(n) ou
S On(R).
L’ensemble des matrices orthogonales de déterminant −1 se note O−(n).

Proposition 1.25. • Si M et N sont deux matrices orthogonales d’ordre
n, alors MN est une matrice orthogonale d’ordre n.(O(n) est stable
par produit)

• Si M est une matrices orthogonale d’ordre n, alors M−1 est une ma-
trice orthogonale d’ordre n.
O(n) est stable par passage à l’inverse.

• Si M et N appartiennent à S O(n) alors :

MN ∈ S O(n) et M−1 ∈ S O(n)

S O(n) est stable par produit et passage a l’inverse.
• Si M appartient à O−(n) alors M−1 ∈ O−(n).

(O−(n) est stable par passage à l’inverse)
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Preuve :

Remarque 1.26. O−(n) n’est pas stable par produit :
si M ∈ O−(n) et N ∈ O−(n) alors

det(MN) = det(M) det(N) = (−1) × (−1) = 1

, donc MN ∈ S O(n).

1.4 Lien entre isométrie et matrice orthogonale

Proposition 1.27. Soit f un endomorphisme de E. Les affirmations sui-
vantes sont équivalentes :

1. f est une isométrie ;
2. il existe une base orthonormée dans laquelle la matrice associée à f

est une matrice orthogonale ;
3. la matrice associée à f dans toute base orthonormée est une matrice

orthogonale.

Remarque 1.28. Attention il est très important que la matrice associée à
f soit relative à une base orthonormée !

Méthode 1.29. Cette propriété nous donne une méthode supplémentaire
pour montrer qu’un endomorphisme donné est une isométrie : il suffit de
montrer que sa matrice dans une base orthonormée est une matrice ortho-
gonale.

Corollaire 1.30. Soit f ∈ O(E). Alors det(f) ∈ {−1; 1}.

Preuve :
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Définition 1.31. • L’ensemble des isométries vectorielles dont le dé-
terminant vaut 1 se note S O(E) et est appelé groupe spécial or-
thogonal ou encore groupe des isométries positives.

• Une isométrie positive s’appelle aussi une rotation.
• L’ensemble des isométries vectorielles dont le déterminant vaut −1

(aussi appelés isométries négatives) se note O−(E).
Proposition 1.32. Soit f ∈ L (E), B une base orthonormée de E et
A = MB(f).
Si A est une matrice orthogonale et symétrique alors f est la symétrie or-
thogonale par rapport à ker (f − idE).

Preuve :

• Comme A est une matrice orthogonale et symétrique on a :
A × A = AT × A = In.

Ainsi on a f ◦f = idE , ce qui signifie que f est une symétrie vectorielle.
• Un symétrie vectorielle est une symétrie par rapport à ker (f − idE)

et parallèlement à ker (f + idE).
Pour montrer que f est une symétrie orthogonale il nous reste à mon-
trer que ker (f − idE) et ker (f + idE) sont orthogonaux.
Soit x⃗ ∈ ker (f − idE) et y⃗ ∈ ker (f + idE). On a donc f(x⃗) = x⃗ et
f(y⃗) = −y⃗. Cela nous permet d’écrire :

⟨x⃗ | y⃗⟩ = ⟨f(x⃗) | −f(y⃗)⟩ = −⟨f(x⃗) | f(y⃗)⟩ = −⟨x⃗ | y⃗⟩

Pour la dernière égalité on a utilisé le fait que f est une isométrie car
sa matrice dans une base orthonormée est orthogonale.
On a donc ⟨x⃗ | y⃗⟩ = −⟨x⃗ | y⃗⟩ et ainsi ⟨x⃗ | y⃗⟩ = 0.
On a donc bien montré que ker (f − idE) ⊥ ker (f + idE).

En conclusion on a bien montré que f est la symétrie orthogonale par rapport
à ker (f − idE).
Remarque 1.33. Attention ! ! ! Si la matrice de f est uniquement symé-
trique on ne peut pas dire que f est une symétrie !.
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2 Description du groupe orthogonal en dimension
2 et 3

2.1 Orientation d’un espace vectoriel

Définition 2.1. On considère un espace euclidien et on choisit une base
orthonormée B que l’on appelle base de référence.
Un base orthonormée B′ est alors dite directe lorsque det

(
PB,B′

)
> 0.

Dans le cas contraire la base B′ est dite rétrograde ou indirecte.
Lorsqu’on choisit la base de référence on dit que l’on oriente E.

Remarque 2.2. Lorsque B et B′ sont deux bases orthonormées directes,
PB,B′ est une matrice orthogonale donc son déterminant vaut 1 et c’est donc
une matrice de S O(n).
Si B′ est une base rétrograde alors :

det
(
PB,B′

)
= −1.

2.2 En dimension 2

Dans toute cette partie E désigne un espace euclidien orienté de dimen-
sion 2 .

Théorème 2.3. • Soit A ∈ S O(2). Alors il existe θ tel que :

A =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

• Soit A ∈ O−(2). Alors il existe θ tel que :

A =
(

cos(θ) sin(θ)
sin(θ) − cos(θ)

)

Preuve :
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Remarque 2.4. On note souvent R(θ) =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
les matrices

de S O(2).

Proposition 2.5.

Soient θ et α deux réels. Alors :

R(θ) × R(α) = R(θ + α) et R−1(θ) = R(−θ).

Preuve :

Théorème 2.6. Soit f ∈ S O(E). Alors il existe θ ∈ R tel que dans n’im-
porte quelle base orthonormée directe de E on a :

M (f) =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
= R(θ)

On dit alors que f est la rotation d’angle θ.

Remarque 2.7.

Il est important de comprendre que la valeur de θ ne change pas même
si on change de base orthonormé directe.

Preuve :
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Application 2.8. Donner la matrice dans la base canonique de la rotation
de R2 d’angle 2π

3 .

Théorème 2.9. Soit f ∈ O−(E). Alors il existe une base orthonormée de
E, notée B, telle que :

MB(f) =
(

1 0
0 −1

)

f est donc la symétrie orthogonale par rapport à ker (f − idE).

Remarque 2.10. Dans une base orthonormée quelconque de E la matrice

de f ∈ O−(E) sera de la forme
(

cos(θ) sin(θ)
sin(θ) − cos(θ)

)
avec θ qui changera

en fonction de la base choisie.
Le théorème affirme qu’en choisissant bien la base orthonormée la matrice

de f sera de la forme
(

1 0
0 −1

)
.

Application 2.11. Donner la matrice dans la base canonique de la symétrie
orthogonale par rapport à ∆ = V ect((1; 2)).

Méthode 2.12. Étude d’une matrice de O(2)
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On dispose d’une matrice A ∈ M2(R) et on note f l’endomorphisme de R2

canoniquement associé à A.
L’énoncé nous demande de déterminer la nature et les éléments caractéris-
tiques de f .

1. Vérifier que A est une matrice orthogonale : les colonnes forment une
famille orthonormée ou les lignes forment une famille orthonormée ou
encore AT A = I2.

2. Nature de f :
(a) Si A est une matrice symétrique alors f est une symétrie ortho-

gonale.
(b) Si A n’est pas une matrice symétrique f est une rotation vecto-

rielle.
3. Éléments caractéristiques : on ne traite que le point correspondant

à la nature trouvée pour f .
(a) On cherche les invariants de f :

f((x, y)) = (x, y) ⇔ A

(
x
y

)
=
(

x
y

)
⇔ . . .

Donc ker (f − idE) = . . . .

(b) Il nous faut l’angle de la rotation :

on sait que A =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
donc on peut trouver θ.

4. Conclusion : encore une fois on ne prend en compte que le point
correspondant à la nature trouvée pour f .
(a) f est la symétrie orthogonale par rapport à... (on met ce que l’on

a trouvé pour les invariants de f)
(b) f est la rotation vectorielle d’angle ... (on met ce que l’on a trouvé

pour θ )

Application 2.13. Déterminer la nature et les éléments caractéristiques de
l’endomorphisme f de R2 dont la matrice dans la base canonique est :
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A = 1
5

(
3 4
4 −3

)
.

Application 2.14. Déterminer la nature et les éléments caractéristiques de
l’endomorphisme de R2 dont la matrice dans la base canonique est :

B = 1
5

(
4 3

−3 4

)
.

2.3 En dimension 3

Dans cette partie E désigne un espace euclidien orienté de dimension 3.

Théorème 2.15. • Soit f ∈ S O(E). Alors il existe une base orthonor-
mée directe B = (e1, e2, e3) et un réel θ tels que :

MB(f) =

 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


On dit que f est la rotation d’axe dirigé par e1 d’angle θ.
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• Soit f ∈ O−(E). Alors il existe une base orthonormée directe B =
(e1, e2, e3) et un réel θ tels que :

MB(f) =

 −1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 =

 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


 −1 0 0

0 1 0
0 0 1


f est alors la composée de la rotation d’axe dirigé par e1 d’angle θ et
de la symétrie orthogonale par rapport à (vect (e1))⊥.

Remarque 2.16.

• Lorsque f ∈ S O(E) et θ = π, f est la symétrie orthogonale par
rapport à la droite vectorielle vect (e1).

• Lorsque f ∈ O−(E) et θ = 0, f est tout simplement la symétrie ortho-
gonale par rapport au plan (V ect (e1))⊥.

• Lorsque f ∈ O−(E) et θ = π, on a MB(f) = −I3 et donc f = −idE .

Application 2.17. Déterminer la matrice dans la base canonique de R3 de
la rotation vectorielle d’axe ∆ dirigé par u = (2; −1; 1) et d’angle 5π

6 .
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Application 2.18. Déterminer la matrice dans la base canonique de R3 de
la symétrie orthogonale par rapport à F = {(x; y; z), −x + y + 2z = 0}.

Théorème 2.19. Soit A ∈ O(3). Alors il existe une matrice orthogonale P
telle que :

P T AP =

 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 ou P T AP =

 −1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


Méthode 2.20. Étude d’une matrice de O(3) On dispose d’une matrice
A ∈ M3(R) et on note f l’endomorphisme de R3 canoniquement associé à
A. L’énoncé nous demande de déterminer la nature et les éléments caracté-
ristiques de f .

1. Vérifier que A est une matrice orthogonale : les colonnes forment
une famille orthonormée ou les lignes forment une famille orthonor-
mée ou encore AT A = I3.

2. Nature de f :
(a) Si la matrice A est symétrique f est une symétrie orthogonale.
(b) Si A n’est pas une matrice symétrique et A ∈ S O(3) ( pour

déterminer cela deux méthodes : on vérifie que det(A) = 1 ou que
C1 ∧ C2 = C3) alors f est une rotation vectorielle.
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(c) Si A n’est pas une matrice symétrique et A ∈ O−(3) ( pour dé-
terminer cela deux méthodes : on vérifie que det(A) = −1 ou que
C1 ∧ C2 = −C3) alors f est la composée d’une rotation vectorielle
et d’une symétrie orthogonale.

3. Éléments caractéristiques :
on ne traite que le point correspondant à la nature trouvée pour f .
(a) On cherche les invariants de f :

f((x, y, z)) = (x, y, z) ⇔ A

 x
y
z

 =

 x
y
z

 ⇔ . . .

Donc ker (f − idE) = . . .

(b) Il nous faut dans ce cas l’axe de la rotation et l’angle.
• Pour trouver l’axe on cherche les invariants de f :

f((x, y, z)) = (x, y, z) ⇔ A

 x
y
z

 =

 x
y
z

 ⇔ . . .

Donc ker (f − idE) = . . . = vect(u⃗).
• Pour trouver l’angle on utilise deux informations : On sait

que tr(A) = 1 + 2 cos(θ) donc on peut trouver facilement
cos(θ). On choisit un vecteur x⃗ non colinéaire à u⃗ (en pra-
tique on prend souvent un des vecteurs de la base canonique
que R3 ) et on admet que sin(θ) est du même signe que
detBc(u⃗, x⃗, f(x⃗)) Avec les informations sur cos(θ) et sin(θ)
on peut donner θ (à 2π près évidemment...)

(c) Il nous faut ici l’axe de la rotation, l’angle et l’ensemble par rap-
port auquel on fait la symétrie orthogonale :

• On applique la méthode précédente à −A : on trouve un axe
vect (u⃗) et un angle θ. La rotation qui compose f est alors la
rotation d’axe vect (u⃗) et d’angle θ + π.

• La symétrie orthogonale qui compose f est la symétrie ortho-
gonale par rapport à (vect(u⃗))⊥.

4. Conclusion : on ne traite que le point correspondant à la nature
trouvée pour f .
(a) f est la symétrie orthogonale par rapport à ... (ce qu’on a trouvé

pour les invariants).
(b) f est la rotation vectorielle d’axe ... (ce qu’on a trouvé pour les

invariants) et d’angle ...(ce qu’on a trouvé pour θ ).
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(c) f est la composée de la la rotation vectorielle d’axe ... (ce qu’on a
trouvé pour les invariants de −f) et d’angle ... (ce qu’on a trouvé
pour θ + π) et de la symétrie orthogonale par rapport à (. . .)⊥ (
ȧ la place des pointillés on met les invariants de −f ).

Remarque 2.21. • Lorsque f est une symétrie orthogonale par rapport
à une droite, on dit aussi que f est un demi-tour par rapport à la droite
E1(f).

• Lorsque f est une symétrie orthogonale par rapport à un plan, on dit
aussi que f est une réflexion par rapport au plan E1(f).

Application 2.22. Déterminer la nature et préciser les éléments caracté-
ristiques de l’endomorphisme f de R3 canoniquement associé à la matrice :

A =

 0 0 1
1 0 0
0 1 0

.

Application 2.23. Déterminer la nature et préciser les éléments caracté-
ristiques de l’endomorphisme f de R3 canoniquement associé à la matrice :

A =

 0 0 1
−1 0 0
0 1 0

.
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Application 2.24. Déterminer la nature et préciser les éléments caracté-
ristiques de l’endomorphisme f de R3 canoniquement associé à la matrice :

A = 1√
2

 1 1 0
1 −1 0
0 0 −

√
2

.

3 Matrices symétriques
On munit Mn,1(R) de son produit scalaire canonique ⟨X | Y ⟩ = XT Y .

Proposition 3.1. Soit A une matrice symétrique de Mn(R).
Alors les sous-espaces propres de A sont deux à deux orthogonaux.

Preuve :
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Théorème 3.2. Théorème spectral
Soit A une matrice symétrique de Mn(R).
Alors il existe une matrice P orthogonale et une matrice D diagonale telles
que :

A = PDP −1 = PDP T ⇐⇒ D = P −1AP = P T AP

Autrement dit :

"Toute matrice symétrique réelle est diagonalisable en base
orthonormée"

Remarque 3.3. Pour diagonaliser une matrice symétrique en base ortho-
normée il faut donc faire très attention au choix des vecteurs propres : il
faut qu’ils forment une base orthonormée pour que la matrice de passage
soit orthogonale.

Application 3.4. On considère la matrice A =

 5 −1 1
−1 1 −3
1 −3 1

.

Diagonaliser A selon une base orthonormée.
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