R Python
9 LY Oral

CONCOURS CENTRALE-SUPELEC M P! P C y PS I y TS I

Analyse numérique

La plupart des fonctions présentées dans cette section nécessitent I'import du module numpy et de sous-modules
du module scipy. Les instructions nécessaires aux exemples suivants sont listés ci-dessous.

import numpy as np

import scipy.optimize as resol
import scipy.integrate as integr
import matplotlib.pyplot as plt

Nombres complexes

Python calcule avec les nombres complexes. Le nombre imaginaire pur ¢ se note 1j. Les attributs real et imag
permettent d’obtenir la partie réelle et la partie imaginaire. La fonction abs calcule le module d’un complexe.

>>> a =2 + 3j
>>>b =5 - 3j

>>> ax*b

(19+93)

>>> a.real

2.0

>>> a.imag

3.0

>>> abs(a)
3.6055512754639896

Fonctions mathématiques

La constante m s’obtient grace a la commande pi.

Le module numpy connait les fonctions mathématiques usuelles. La fonction partie entiére s’obtient par la
commande floor. Attention la fonction logarithme népérien a pour nom de commande log.

>>> np.exp(1)
2.7182818284590451
>>> np.cos(np.pi)
-1.0

>>> np.log(np.exp(1))
1.0

>>> np.floor(3.4)

3

>>> np.floor(-3.7)

-4

15 mai 2017 08:37 (z Python-AN-1

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

Résolution approchée d’équations

Pour résoudre une équation du type f(z) = 0 ou f est une fonction d’une variable réelle, on peut utiliser la
fonction fsolve du module scipy.optimize. Il faut préciser la valeur initiale x, de l'algorithme employé par
la fonction fsolve. Le résultat peut dépendre de cette condition initiale.

def f(x):
return x**2 - 2

>>> resol.fsolve(f, -2.)
array([-1.41421356])

>>> resol.fsolve(f, 2.)
array([1.41421356])

Dans le cas d’'une fonction f a valeurs vectorielles, on utilise la fonction root. Par exemple, pour résoudre le
systeme non linéaire

22—y =1

z+2y—3=0

def f(v):
return v[0]**2 - v[1]**2 - 1, v[0] + 2*xv[1] - 3

>>> sol = resol.root(f, [0,0])
>>> sol.success

True

>>> sol.x

array([1.30940108, 0.84529946])

>>> sol=resol.root(f, [-5,5])

>>> sol.success

True

>>> sol.x

array([-3.30940108, 3.15470054]1)

Calcul approché d’intégrales

La fonction quad du module scipy.integrate permet de calculer des valeurs approchées d’intégrales. Elle
renvoie une valeur approchée de I'intégrale ainsi qu'un majorant de I’erreur commise. Cette fonction peut aussi
s’employer avec des bornes d’intégration égales & +00 ou —oo.

def f(x):
return np.exp(-x)

>>> integr.quad(f, 0, 1)
(0.6321205588285578, 7.017947987503856e-15)

>>> integr.quad(f, O, np.inf)
(1.0000000000000002, 5.842607038578007e-11)

Cette fonction peut étre employée pour la définition d’intégrales a parametres. Ainsi si on veut obtenir des
+oo

valeurs approchées de I'(z) = / e tt*~1dt pour x réel strictement positif on pourra procéder ainsi :

0

def g(x):
def £(t):
return np.exp(-t)*t*x*(x-1)
return integr.quad(f,0,np.inf) [0]

>>> g(2)
0.9999999999999998

15 mai 2017 08:37 (z Python-AN-2

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

Résolution approchées d’équations différentielles

Pour résoudre une équation différentielle ” = f(x,t), on peut utiliser la fonction odeint du module scipy.in-
tegrate. Cette fonction nécessite une liste de valeurs de ¢, commencant en ¢, et une condition initiale z,. La
fonction renvoie des valeurs approchées (aux points contenus dans la liste des valeurs de t) de la solution x
de I’équation différentielle qui vérifie z(¢,) = x,. Pour trouver des valeurs approchées sur [0, 1] de la solution
2’(t) = tx(t) qui vérifie z(0) = 1, on peut employer le code suivant.

def f(x, t):
return t*x

>>> T = np.arange(0, 1.01, 0.01)
>>> X = integr.odeint(f, 1, T)
>>> X[0]

array([1.1)

>>> X[-1]

array ([1.64872143])

>>> plt.plot(T,X)

>>> plt.show()

1 ? 1] 1 1

la |

15F

14}

13}

12

11f

1|:| i i i i
0.0 0.2 04 0.6 0.8 10

Si on veut résoudre, sur [0,1], le systeme différentiel

{x'(t) — —a(t) — ()
y(t) = a(t) — y(t)

avec la condition initiale z(0) = 2,y(0) = 1 le code devient le suivant.

def f(x, t):
return np.array([-x[0]-x[1], x[0]-x[1]1)

>>> T = np.arange(0, 5.01, 0.01)

>>> X = integr.odeint(f, np.array([2.,1.]1), T)
>>> X[0]

array([2., 1.1)

>>> plt.plot(X[:,0], X[:,1])

>>> plt.show()

15 mai 2017 08:37 @c) Python-AN-3

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

1 2 T T T 1

10

0.8

0.6

0.4

0.2

0.0

_Dz i i
-0.5 0.0 05 10 15 20

Pour résoudre une équation différentielle scalaire d’ordre 2 de solution x, on demandera la résolution du systéme
différentiel d’ordre 1 satisfait par X (¢) = (;,(é)))

Ainsi, si on considére la fonction x qui vérifie 'équation différentielle z”(¢) + 2z’ (t) + 3z(t) = sin(t) avec les
e _ e . S x'(t)
conditions initiales z(0) = 0, 2/(0) = 1 et , le vecteur X vérifiera X'(t) = (—296’(15) ~3a(t) — sin(t)) Pour

obtenir la représentation graphique de x sur U'intervalle [0, 37|, on pourra utiliser le code suivant :

def f(x,t):
return np.array([x[1], -2*x[1] - 3*x[0] + np.sin(t)])

T = np.arange(0, 3*np.pi + 0.01, 0.01)
X = integr.odeint(f, np.array([0,1]1), T)
plt.plot(T, X[:,0])

plt.show()
iLd
o ——
a3 ,r'; \\ ..r/\\\
] A
ozt] A f
| \ .-".l
I| '-.I |I.'
0.1 \ /
.' /
0.0 l".ll !
f
=01 \ f
\ J
\
-0.3 \ /
L
L J
.
=04
v 2 F] 3 E: 1

[®) ev-nc-sa_ Python-Ali-4

15 mai 2017 08:37

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

R Python
9 LY Oral

CONCOURS CENTRALE-SUPELEC M P! P C y PS I y TS I

Reéalisation de tracés

Les fonctions présentées dans ce document permettent la réalisation de tracés. Elles nécessitent I'import du
module numpy et du module matplotlib.pyplot. De plus pour effectuer des tracés en dimension 3, il convient
d’importer la fonction Axes3d du module mpl_toolkits.mplot3d. Les instructions nécessaires aux exemples
qui suivent sont listés ci-dessous.

import math

import matplotlib.pyplot as plt

import numpy as np

from mpl_toolkits.mplot3d import Axes3D

Tracés de lignes brisées et options de tracés

On donne la liste des abscisses et la liste des ordonnées puis on effectue le tracé. La fonction axis permet de
définir la fenétre dans laquelle est contenue le graphique. L’option equal permet d’obtenir les mémes échelles
sur les deux axes. Les tracés relatifs a divers emplois de la fonction plot se superposent. La fonction plt.clf ()
efface les tracés contenus dans la fenétre graphique.

] r r r r r

5 4
x=[1., 2.5, 4.] 3 : : |
y=1[3., 1., 5.]
plt.axis('equal') r .
plt.plot(x, y)
plt.axis([-1., 5., -1., 6.1) 2r i
plt.grid() WL |
plt.show()

0o 1

_l 1 1 1 1 1

-2 o 2 4 &

La fonction plot admet de nombreuses options de présentation. Le parameétre color permet de choisir la couleur

("g': vert, 'r' : rouge, 'b' : bleu). Pour définir le style de la ligne, on utilise linestyle ('~ : ligne continue,
'--': ligne discontinue, ' :' : ligne pointillée). Si on veut marquer les points des listes, on utilise le parameétre
marker ('+', '.', 'o', 'v' donnent différents symboles).
B - - - - .
5F [] 8
al _
x = [1., 2.5, 4.] K
y=1[3., 1., 5.] 3l . g 1
plt.axis([-1., 5., -1., 6.1) e)
plt.plot(x, y, color='r', linestyle=':", 2| e . i
marker='o") L
plt.show() 1t] :
ok 1
] i i i i I
-1 o 1 2 3 4 5

15 mai 2017 09:43 @c) Python-plot-1

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

Tracés de fonction

On définit une liste d’abscisses puis on construit la liste des ordonnées correspondantes. L’exemple ci-dessous
trace z = sinz sur [0, 37].

10

05
def f(x):

return math.sin(x)
X = np.arange(0, 3*np.pi, 0.01) 0ar
Y=[£f(x) for x in X]
plt.plot(X, Y)
plt.show() 05}
-1.0 -
o] 10

Il est généralement plus intéressant d’utiliser les fonctions du module numpy, plutét que celles du module math,
car elles permettent de travailler aussi bien avec des scalaires qu’avec des tableaux (on les appelle fonctions
vectorisées et universal function ou ufunc dans la documentation officielle de Python).

10

oSt
def f(x):

return np.sin(x)
X = np.arange(0, 3*np.pi, 0.01) 0ar
Y = £(X)
plt.plot(X, Y)
plt.show() -05}
-1.0 -
0 8 10

Une autre solution consiste a utiliser la fonction vectorize du module numpy qui permet de transformer une
fonction scalaire en une fonction capable de travailler avec des tableaux. Il est cependant beaucoup plus efficace
d’utiliser directement des fonctions vectorisées.

def f(x):
return math.sin(x)

f = np.vectorize(f)

Tl est & noter que les opérateurs python (+, -, *, etc.) peuvent s’appliquer & des tableaux, ils agissent alors terme
a terme. Ainsi la fonction f définie ci-dessous est une fonction vectorisée, elle peut travailler aussi bien avec
deux scalaires qu’avec deux tableaux et méme avec un scalaire et un tableau.

def f(x, y):
return np.sqrt(x**2 + y**x2)

>>> (3, 4)

5.0

>>> f(np.array([1, 2, 3]), np.array([4, 5, 6]))
array([4.12310563, 5.38516481, 6.70820393])
>>> f(np.array([1, 2, 31), 4)

array([4.12310563, 4.47213595, 5. D

15 mai 2017 09:43 (z Python-plot-2

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

Tracés d’arcs paramétrés

Dans le cas d’'un arc paramétré plan, on définit d’abord la liste des valeurs données au parametre puis on
construit la liste des abscisses et des ordonnées correspondantes. On effectue ensuite le tracé.

def

def

>

plt
plt

plt.

x(t) :
return np.sin(2*t)

y(t) :
return np.sin(3%t)

= np.arange(0, 2*np.pi, 0.01)
= x(T)

= y(T)

.axis('equal')

.plot (X, Y)

show ()

10

05}

00

-1.0

Voici un exemple de tracé d’un arc paramétré de l’espace.

ax = Axes3D(plt.figure())

N ~< > 4
nonou

np.arange(0, 2%np.pi, 0.01)
np.cos(T)

np.sin(T)

T

ax.plot(X, Y, T)

plt

.show()

Tracé de surfaces

15 10 05 0.0 05 10 15

Pour tracer une surface d’équation z = f(x,y), on réalise d’abord une grille en (x,y) puis on calcule les valeurs
de z correspondant aux points de cette grille. On fait ensuite le tracé avec la fonction plot_surface.

ax

= Axes3D(plt.figure())

def f(x,y):

return x**2 — y**2

f=np.vectorize(f)

X =
Y =

np.arange(-1, 1, 0.02)
np.arange(-1, 1, 0.02)

X, Y = np.meshgrid(X, Y)

Z =

(X, V)

ax.plot_surface(X, Y, Z)
plt.show()

15 mai 2017 09:43

(@) ov-nc-sa

[N,]

Python-plot-3

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

Tracé de lignes de niveau

Pour tracer des courbes d’équation f(x,y) = k, on fait une grille en = et en y sur laquelle on calcule les valeurs
de f. On emploie ensuite la fonction contour en mettant dans une liste les valeurs de k pour lesquelles on veut
tracer la courbe d’équation f(x,y) = k.

def f(x,y):
return x**2 + y**2 + x*y 05 L

=np.vectorize(f)

= np.arange(-1, 1, 0.01)
np.arange(-1, 1, 0.01)

, Y = np.meshgrid(X, Y)

=f(X, Y)

plt.axis('equal')

plt.contour(X, Y, Z, [0.1,0.4,0.5])
plt.show()

0o

f
X
Y
X
Z

-10 - - - - -
-15 -1.0 -0.5 0.0 05 10

15 mai 2017 09:43 (z Python-plot-4

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

R Python
9 LY Oral

CONCOURS CENTRALE-SUPELEC M P! P C y PS I y TS I

Probabilités

Les fonctions d’échantillonnage et de génération de valeurs pseudo-aléatoires sont regroupées dans la bibliotheque
numpy . random.

import numpy.random as rd
L’expression randint(a, b) permet de choisir un entier au hasard dans Uintervalle [a, b[. La fonction randint

prend un troisiéme parametre optionnel permettant d’effectuer plusieurs tirages et de renvoyer les résultat sous
forme de tableau ou de matrice.

>>> rd.randint (1, 7) # un lancer de dé
2
>>> rd.randint (1, 7, 20) # 20 lancers de dé

array([5, 2, 2, 3, 1, 5, 5, 3, 6, 4, 2, 6, 6, 4, 3, 2, 4, 5, 1, 3])
>>> rd.randint(1, 7, (4, 5)) # 20 lancers de dé sous forme d'une matrice 4x5

array([[3, 6, 1, 6, 3],
[5, 1, 6, 2, 21,
[3, 1, 2, 2, 5],
(5, 2, 6, 1, 411D

La fonction random renvoie un réel compris dans Uintervalle [0, 1[. Si X désigne la variable aléatoire correspondant
au résultat de la fonction random, alors pour tout a et b dans [0,1] avec a < b, on a Pla < X < b) =b—a.
Cette fonction accepte un parametres optionnel permettant de réaliser plusieurs tirages et de les renvoyer sous
forme de tableau ou de matrice.

>>> rd.random()

0.9168092013708049

>>> rd.random(4)

array([0.98748897, 0.86589972, 0.53683001, 0.50687386])

>>> rd.random((2,4))

array([[0.78230688, 0.83803526, 0.62077457, 0.27432819],
[0.66522387, 0.71258365, 0.25813448, 0.28833084]])

La fonction binomial permet de simuler une variable aléatoire suivant une loi binomiale de parametres n et p.
Elle permet donc également de simuler une variable aléatoire suivant une loi de Bernoulli de parametres p en
prenant simplement n = 1. Cette fonction prend un troisieme parametre optionnel qui correspond, comme pour
les fonctions précédentes, au nombre de valeurs & obtenir.

>>> rd.binomial (10, 0.3, 7)
array([2, 2, 2, 2, 2, 4, 3])
>>> rd.binomial(1l, 0.6, 20)
array([O, 1, 1, 1, 1, O, 1, 1, O, O, O, 1, 1, 1, 1, 0, 1, 1, 1, 1])

Les fonctions geometric et poisson fonctionnement de la méme maniere pour les lois géométrique ou de Poisson.
>>> rd.geometric(0.5, 8)
array([1, 1, 3, 1, 3, 2, 5, 1])

>>> rd.poisson(4, 15)
array([5, 2, 3, 4, 6, 0, 5, 3, 1, 5, 1, 5, 9, 4, 6])

15 mai 2017 09:41 (z Python-random

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

¢ L
S L Oral

Python

CONCOURS CENTRALE-SUPELEC M P! P C y PS I y TS I

Calcul matriciel

On travaille avec les modules numpy et numpy.linalg.

import numpy as np
import numpy.linalg as alg

Création de matrices

Pour définir une matrice, on utilise la fonction array du module numpy.

>>> A = np.array([[1, 2, 3], [4, 5, 6]]1)
>>> A
array([[1, 2, 3],

(4, 5, 611)

L’attribut shape donne la taille d'une matrice : nombre de lignes, nombre de colonnes. On peut redimensionner

une matrice, sans modifier ses termes, a ’aide de la méthode reshape.

>>> A.shape
2, 3
>>> A = A.reshape((3, 2))
>>> A
array([[1, 2],
[3, 41,
(5, 611D

L’acces a un terme de la matrice A se fait a I'aide de 'opération d’indexage A[i, j] ou i désigne la ligne
et j la colonne. Attention, les indices commencent a zéro ! A laide d’intervalles, on peut également
récupérer une partie d’une matrice : ligne, colonne, sous-matrice. Rappel, a:b désigne l'intervalle ouvert a
droite [a, b[, : désigne l'intervalle contenant tous les indices de la dimension considérée. Notez la différence entre

I’indexation par un entier et par un intervalle réduit a un entier.

>>> A1, 0] # terme de la deuxiéme ligne, premiére colonne
3
>>> A[0, :] # premiére ligne sous forme de tableau & 1 dimension

array([1, 2])

>>> A[0, :].shape

(2,)

>>> A[0:1, :] # premiére ligne sous forme de matrice ligne
array([[1, 2]1)

>>> A[0:1, :].shape

(1, 2)
>>> A[:, 1] # deuxiéme colonne sous forme de tableau & 1 dimension
>>> array([2, 4, 6])
Al:, 1:2] # deuxiéme colonne sous forme de matrice colonne
array([[2],

41,

[611)

>>> A[1:3, 0:2] # sous-matrice lignes 2 et 3, colonnes 1 et 2
array([[3, 4],
(5, 611D

15 mai 2017 08:56 (@) Bv-Nc-sA_

Python-matrices-1

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

Les fonctions zeros et ones permettent de créer des matrices remplies de 0 ou de 1. La fonction eye permet de
créer une matrice du type I,, ot n est un entier. La fonction diag permet de créer une matrice diagonale.

>>> np.zeros((2,3))

array([[0., 0., 0.],
(0., 0., 0.1

>>> np.ones((3,2))

array([[1., 1.1,
[1., 1.1,
[1., 1.1

>>> np.eye(4)

array([[1., 0., 0., 0.1,
[o0., 1., 0., 0.1,
[o0., 0., 1., 0.1,
[0., 0., 0., 1.1

>>> np.diag([1,2,3])

array([[1, 0, 0],
[O, 2’ O]’
[0, o, 311)

Enfin la fonction concatenate permet de créer des matrices par blocs en superposant (axis=0) ou en plagant
cOte a cote (axis=1) plusieurs matrices.

>>> A = np.ones((2,3))
>>> B = np.zeros((2,3))
>>> np.concatenate((A,B), axis=0)
array([[1., 1., 1.1,
1., 1., 1.7,
(0., 0., 0.1,
[o0., 0., 0.1
>>> np.concatenate((A,B), axis=1)
array([[1., 1., 1., 0., O.,
(1., 1., 1., 0., 0.,

Quelques méthodes ou fonctions utiles avec les tableaux Numpy

Pour copier un tableau, il est recommandé d’utiliser la méthode copy.

>>> A = np.array([[1,-2,3], [-4,5,-61])
>>> B = A.copy()
>>> B[1, 0] = 8
>>> A
array([[1, -2, 3],

[-4, 5, -611)
>>> B
array([[1, -2, 3],
[8, 5, -611)

Les fonctions amax,amin et mean du module numpy permettent respectivement de calculer le maximum, le
minimum et la moyenne des éléments d’un tableau.

>>> np.amax(A)
5

>>> np.amin(A)
-6

>>> np.mean(A)
-0.5

Enfin la commande array_equal permet de tester ’égalité terme a terme de deux tableaux de méme taille.

>>> np.array_equal(A, B)
False

15 mai 2017 08:56 @c) Python-matrices-2

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

Calcul matriciel

Les opérations d’ajout et de multiplication par un scalaire se font avec les opérateurs + et *.

>>> A = np.array([[1,2], [3,4]1])
>>> B = np.eye(2)
>>> A + 3%B
array([[4., 2.1,
[3., 7.1

Pour effectuer un produit matriciel (lorsque que cela est possible), il faut employer la fonction dot.

>>> A = np.array([[1,2], [3,411)
>>> B = np.array([[1,1,1], [2,2,2]1])
>>> np.dot (A, B)
array([[5, 5, 5],

[11, 11, 1111)

On peut également utiliser la méthode dot qui est plus pratique pour calculer un produit de plusieurs matrices.
Enfin la fonction matrix_power du module numpy.linalg permet de calculer des puissances de matrices.

>>> A.dot(B)
array([[5, 5, &1,

[11, 11, 1111)
>>> A.dot(B).dot(np.ones((3,2)))
array([[15., 15.],

[33., 33.11
>>> alg.matrix_power(4,3)
array([[37, b54],

[81, 11811)

La transposée s’obtient avec la fonction transpose. L’expression A.T renvoie aussi la transposée de A.

>>> np.transpose(B)
array([[1, 21,

[1, 21,

(1, 211
>>> B.T
array([[1, 2],

[1, 21,

(1, 211)

Le déterminant, le rang et la trace d’'une matrice s’obtiennent par les fonctions det, matrix_rank du module
numpy .linalg et trace du module numpy. Enfin la fonction inv du module numpy.linalg renvoie l'inverse de
la matrice s’il existe.

>>> alg.det (A)

-2.0000000000000004

>>> alg.matrix_rank(A)

2

>>> np.trace(4)

5

>>> alg.inv(A)

matrix([[-2. , 1.],
[1.5, -0.511)

Pour résoudre le systéme linéaire Az = b lorsque la matrice A est inversible, on peut employer la fonction solve
du module numpy.linalg.

>>> b = np.array([1,5])

>>> alg.solve(A, b)
array([3., -1.1)

15 mai 2017 08:56 (z Python-matrices-3

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

Eléments propres d’une matrice

La fonction poly du module numpy appliquée a une matrice carrée renvoie la liste des coefficients du polynéme
caractéristique par degré décroissant.

>>> A = np.array([[2,-4],[1,-31])
>>> np.poly(A)
array([1., 1., -2.1)

La fonction eigvals du module numpy.linalg renvoie les valeurs propres de la matrice.

>>> alg.eigvals(A)
array([1., -2.1)

Pour obtenir en plus les vecteurs propres associés, il faut employer la fonction eig. Cette fonction renvoie un
tuple constitué de la liste des valeurs propres et d’une matrice carrée. La ™ colonne de cette matrice est un
vecteur propre associé a la '™ valeur de la liste des valeurs propres. Dans I’exemple ci dessous, on peut conclure

que (1 > est un vecteur propre de A associé & la valeur propre -2. On vérifie aussi que A est diagonalisable.

>>> L = alg.eig(A)

>>> L

(array([1., -2.1), array([[0.9701425, 0.70710678],
[0.24253563, 0.70710678]1))

>>> L[11[:,1]

array([0.70710678, 0.70710678])

>>> L[1].dot(np.diag(L[0])) .dot(alg.inv(L[1]))

array([[2., -4.1,
(1., -3.1D)

Produit scalaire et produit vectoriel

La fonction vdot permet de calculer le produit scalaire de deux vecteurs de R™.

>>> u = np.array([1,2])
>>> v = np.array([3,4])
>>> np.vdot(u, v)

11

La fonction cross permet de calculer le produit vectoriel de deux vecteurs de R3.

>>> u = np.array([1,0,0])
>>> v = np.array([0,1,0])
>>> np.cross(u, v)
array([0, 0, 1])

15 mai 2017 08:56 @c) Python-matrices-4

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

R Python
9 LY Oral

CONCOURS CENTRALE-SUPELEC M P! P C y PS I y TS I

Polynomes

La classe Polynomial du module numpy.polynomial.polynomial permet de travailler avec des polynomes.
from numpy.polynomial import Polynomial

Pur créer un polynoéme, il faut lister ses coefficients par ordre de degré croissant. Par exemple, pour le polynéme
X3 +2X -3,

p = Polynomial([-3, 2, 0, 11)

On peut alors utiliser cette variable comme une fonction pour calculer, en un point quelconque, la valeur de la
fonction polynéme associée. Cette fonction peut agir également sur un tableau de valeurs, elle calcule alors la
valeur de la fonction polynéme en chacun des points indiqués.

>>> p(0)

-3.0

>>> p([1, 2, 31)

array([0., 9., 30.1)

L’attribut coef donne acces aux coefficients ordonnés par degré croissant ; ainsi p.coef[i] correspond au
coefficient du terme de degré i. La méthode degree renvoie le degré du polyndéme alors que roots calcule ses
racines.

>>> p.coef

array([-3., 2., 0., 1.1)

>>> p.coef[1]

2.0

>>> p.degree()

3

>>> p.roots()

array([-0.5-1.6583124j, -0.5+1.6583124j, 1.0+0.j iD)

La méthode deriv renvoie un nouveau polynéme, dérivé du polynome initial. Cette méthode prend en argument
facultatif un entier positif indiquant le nombre de dérivations a effectuer. De la méme maniére la méthode integ
integre le polyndéme, elle prend un parametre optionnel supplémentaire donnant la constante d’intégration
a utiliser, ce parametres peut étre une liste en cas d’intégration multiple ; les constantes d’intégration non
précisées sont prises égales a zéro.

>>> p.deriv().coef

array([2., 0., 3.1)

>>> p.deriv(2).coef

array([0., 6.]1)

>>> p.deriv(5).coef

array([-0.1)

>>> p.integ() .coef

array([0. , -3. , 1. , 0. , 0.25])

>>> p.integ(l, 2).coef # intégrer une fois avec la constante 2

array([2. , -3. , 1. , 0. , 0.25])

>>> p.integ(2, [1, 2]).coef # intégrer deux fois

array([2. , 1. , -1.5 , 0.33333333, O. s
0.05 D

15 mai 2017 09:35 (z Python-polynomes-1

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

Les opérateurs +, -, * permettent d’additionner, soustraire et multiplier des polynoémes. Ils fonctionnent égale-
ment entre un polynoéme et un scalaire. L’opérateur ** permet d’élever un polynéme a une puissance entiere
positive. Enfin, on peut composer deux polynémes (p(q) remplace I'indéterminée X par le polynome q dans le
polyndéme p)

>>> a = Polynomial([1, 2, 11)

>>> b = Polynomial([5, 3])

>>> p = 2%a * b + Polynomial([-7, 2])

>>> p.coef

array([3., 28., 22., 6.1)

>>> (p**2).coef

array ([9., 168., 916., 1268., 820., 264., 36.1)
>>> a(b).coef

array([36., 36., 9.1)

L’opérateur / permet de diviser un polyndéme par un scalaire. Pour diviser deux polyndmes il faut utiliser
I’opérateur // qui renvoie le quotient ; 'opérateur % calcule le reste.

>>> (p / 2).coef

array([1.5, 14. , 11. , 3. 1)
>>q=p// a

>>r=pia

>>> q.coef

array([10., 6.]1)

>>> r.coef

array([-7., 2.1)

>>> (g * a + r).coef

array([3., 28., 22., 6.1)

15 mai 2017 09:35 (z Python-polynomes-2

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

