
TD 15 - Découverte du théorème d’Ampère

Le théorème d’Ampère (que nous démontrerons en cours) est

˛
C
B⃗ · d⃗l = µ0Ienlacés (1)

Nous allons voir dans ce TD les notions mathématiques liées à cette expression pour l’apprivoiser.

1 Contour fermé et courant enlacé

Définition : Un contour fermé C est une ligne orientée qui boucle sur elle même. Un contour fermé définit
ainsi une surface S⃗ qu’il entoure. L’orientation du contour fermé C oriente la surface S selon la règle de la
main droite.

1. Reproduire sur votre feuille les contour fermés de la figure 1. Décrire dans chaque cas la surface S
entourée par ces contours fermés et l’orienter. Donner le vecteur unitaire que porte la surface S⃗ dans les
deux cas.

Figure 1: Exemple de contour fermé. On appelle celui de droite le contour 1 C∞ et celui de gauche le contour
2 C∈.

2. Pour le contour C1, en coordonnées cylindriques donner l’expression de d⃗l l’élément de longueur in-
finitésimal le long de ce contour.

3. Faire de même pour les quatre tronçons A1B1, A2B2, A3B3 et A4B4 du contour C2.

Définition : Soit une grandeur vectorielle A⃗. On définit la circulation de A⃗ dans C comme l’intégrale de A⃗
le long de C,

¸
C A⃗ · d⃗l.

4. En coordonnées cylindriques (r, θ, z) on considère une grandeur vectorielle A⃗ = A(r)e⃗θ. Calculer

˛
C1

A⃗ · d⃗l et

˛
C2

A⃗ · d⃗l (2)
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Définition : On appelle courants enlacés Ienlacés la somme algébrique des courants enlacés par un contour
fermé C. Le signe est donné par l’orientation respective du courant et de la surface engendrée par le contour
fermé.

Figure 2: Exemple de courants enlacés dans un contour fermé C. On notera Sa la section du tube contenant
la densité volumique de courant j⃗S .

5. Calculer Ienlacés dans le cas présenté sur la figure 2.

2 Symétries du champ magnétique

Propriétés :

• Le champ magnétique créé en un point M d’un plan de symétrie (Π) d’une distribution de courants
est orthogonal à ce plan.

• Le champ électrique créé en un point M d’un plan d’antisymétrie (Π∗) d’une distribution de courants
est contenu dans ce plan.

Pour déterminer l’orientation du champ magnétique en un point on a ainsi besoin de deux plans d’antisymétrie
ou d’un plan de symétrie.

Pour les invariances, c’est la même chose que pour le champ électrique : si la distribution de courant
est invariante selon une transformation impliquant une coordonnée, la champ B⃗ ne dépend pas de cette
coordonnée.

1. Pour un fil infini d’axe Oz parcouru par un courant I uniforme, étudier les symétries et les invariances
de la distribution de courant montrer que

B⃗(M) = B(r)e⃗θ (3)

2. Pour un solénöıde (une bobine) infini, schématisé sur la figure 3, étudier les symétries et invariances de
la distribution de courant et montrer que

B⃗(M) = B(r)e⃗z (4)
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Figure 3: Schéma du solénöıde supposé infini.

3 Premières applications

Méthode générale La méthode à suivre pour déterminer l’expression d’un champ magnétique à l’aide du
théorème d’Ampère est très similaire à celle utilisée pour le théorème de Gauss.

• On schématise la distribution de courant et on choisit le système de coordonnées en conséquence.

• On analyse les symétries et les invariances pour simplifier l’expression de B⃗.

• On choisit le contour adapté : idéalement le champ magnétostatique est constant et tangent à ce
contour.

• On calcule la circulation du champ magnétostatique le long de ce contour, puis les courants enlacés.

• On applique enfin le théorème d’Ampère pour déduire l’expression de B⃗.

Faire attention à :

• Bien compter algébriquement les courants enlacés, le signe étant donné par l’orientation du contour
choisi.

• Ne pas oublier le µ0 dans la formule.

1. Appliquer cette méthode à l’exemple du fil infini d’axe Oz parcouru par un courant I uniforme pour
montrer que

B⃗ =
µ0I

2πr
e⃗θ (5)

2. Faire de même pour un câble (cylindre) de rayon R d’axe Oz parcouru par la densité volumique de
courant j⃗ = je⃗z uniforme et montrer que

• Si r < R

B⃗ =
µ0jr

2
e⃗θ (6)

• Si r > R

B⃗ =
µ0jR

2

2r
e⃗θ =

µ0I

2πr
e⃗θ (7)
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