
TP Euler - CORRECTION
Exercice 0.1. Résolution numérique d’une équation différentielle non-linéaire
d’ordre 1 : chute avec frottements

import matplotlib.pyplot as pl
import time
import math as mt
import numpy as np

Constantes physiques
k = .2
m = 70.
g = 9.81
t0 = 0.
v0 = 0.
tmax = 20.

Fonction f
def f(y,t):

return -k/m*y**2.+g

Methode d'Euler d'ordre 1
def euler1(f,t0,y0,tmax,h):

Initialisations
t=[t0]
y=[y0]
while t[-1]<= tmax:

y.append(y[-1] + h*f(y[-1],t[-1]))
t.append(t[-1] + h)

return (y,t)
Resolution de l'ED et affichage de la courbe
v,t = euler1(f,t0,v0,tmax,.1)

pl.plot(t,v,label='vitesse de chute')
pl.title('Vitesse d\'un parachutiste')
pl.xlabel('temps (s)')
pl.ylabel('vitesse (m/s)')
pl.legend()

Complexite en temps de calcul
for h in [.1,.01,.001]:

tic=time.time()
euler1(f,t0,v0,tmax,h)
tac=time.time()
print('Le temps de calcul pour h=',h,'est de',tac-tic,'s')

TSI2-Lycée Antonin Artaud 1

R : tps de calcul inversement proportionnel a h. C'est donc une methode d'ordre 1 (complexite en O(n))

Exercice 0.2. Résolution numérique d’une équation différentielle d’ordre
2 : oscillateur amorti

Constantes physiques
k = 25.
m = .1
w0 = mt.sqrt(k/m)
g = 9.81
t0 = 0.
x0 = .01
v0 = 0.
tmax = 4.

Fonction f
def f(x,v,t):

return (v,-w0**2*x)

Methode d'Euler d'ordre 1
def euler2(f,t0,x0,v0,tmax,h):

Initialisations
t=[t0]
x=[x0]
v=[v0]
while t[-1]<= tmax:

xn,vn = tuple(np.array([x[-1],v[-1]]) +h*np.array(f(x[-1],v[-1],t[-1])))
t.append(t[-1] + h)
x.append(xn)

TSI2-Lycée Antonin Artaud 2

v.append(vn)

return (x,v,t)

Resolution de l'ED et affichage de la courbe
for h in [.001,.0001,0.00001]:

x,v,t=euler2(f,t0,x0,v0,tmax,h)

pl.plot(x,v)
pl.title('Portrait de phase')
pl.xlabel('x (m)')
pl.ylabel('v (m/s)')
pl.legend()

pl.show()

R : diverge pour h trop grand !!

pl.close()

def f(x,v,t):
return (v,-w0/Q*v-w0**2*x)

Resolution de l'ED et affichage de la courbe
for Q in [2.,.5,.1]:

x,v,t=euler2(f,t0,x0,v0,tmax,.0001)

pl.plot(x,v)
pl.title('Portrait de phase')
pl.xlabel('x (m)')
pl.ylabel('v (m/s)')
pl.legend()

pl.show()

TSI2-Lycée Antonin Artaud 3

Exercice 0.3. Résolution numérique d’un système d’équation différentielle
d’ordre 1 : modèle de Lotka-Volterra d’évolution des populations

def euler1(f,t0,y0,tmax,h):
Initialisations
t=[t0]
y=[y0]
while t[-1]<= tmax:

y.append(y[-1] + h*f(y[-1],t[-1]))
t.append(t[-1] + h)

return (y,t)

a = 2.
b = 0.001
t0 = 0.
tmax = 5.

Fonction f

TSI2-Lycée Antonin Artaud 4

def f1(x,t):
return (a-b*x)*x

for y0 in [500,1000,2000,3000,5000]:
y,t = euler1(f1,t0,y0,tmax,.01)

pl.plot(t,y,label=str(y0)+' lievres')
pl.title('Nombre de lievres au cours du temps')
pl.xlabel('temps (an)')
pl.ylabel('lievres')

pl.show()

pl.close()

def euler2(f,t0,x0,v0,tmax,h):
Initialisations
t=[t0]
x=[x0]
v=[v0]
while t[-1]<= tmax:

xn,vn = tuple(np.array([x[-1],v[-1]]) +h*np.array(f(x[-1],v[-1],t[-1])))
t.append(t[-1] + h)
x.append(xn)
v.append(vn)

return (x,v,t)

Constantes physiques
a = 2.
b = 0.001
t0 = 0.
tmax = 5.

Fonction f
def f1(x,t):

return (a-b*x)*x

Constantes physiques
a = 1.5
b = 0.05
c = 0.48
d = 0.05
t0 = 0.

TSI2-Lycée Antonin Artaud 5

y0=4.
l0=4.
tmax = 50.
h = 0.0005

Fonction f
def f2(l,y,t):

return (a*l-b*l*y , -c*y + d*l*y)

l,y,t = euler2(f2,t0,l0,y0,tmax,h)

pl.plot(t,y,label='Lynx')
pl.plot(t,l,label='Lievres')
pl.legend()
pl.title('Population de lievres et de Lynx')
pl.xlabel('temps (an)')
pl.ylabel('population (en lynx et en kilolievre)')
pl.show()
pl.close()

for y0 in [10,15,30,40]:

l,y,t = euler2(f2,t0,l0,y0,tmax,h)

pl.plot(l,y)
pl.title('Portrait de Phase')
pl.ylabel('population de lynx')
pl.xlabel('population de lievre (en kilolievre))')

pl.show()

TSI2-Lycée Antonin Artaud 6

TSI2-Lycée Antonin Artaud 7

