
Dictionnaires/SQL www.jmcabrera.net

DS : Requêtes SQL / Dictionnaires

1 Exercice 1
On souhaite créer un programme permettant de gérer un carnet d’adresses

à l’aide de la structure de données dictionnaire en Python.
Chaque contact sera représenté par un dictionnaire contenant les in-

formations suivantes :
— telephone

— email

— ville

L’ensemble des contacts sera stocké dans un dictionnaire principal,
dont les clés seront les noms (ou identifiants) des contacts.

Exemple :

contac t s = {
" A l i c e " : { " te l ephone " : " 0612345678 " ,

" emai l " : " a l i c e@mai l . com" , " v i l l e " : " Par i s " } ,
"Bob" : { " te l ephone " : " 0755667788 " , " emai l " : " bob@mail . com" ,

" v i l l e " : " Lyon " }}

Vous devez rédiger les six fonctions suivantes permettant de manipu-
ler ce carnet d’adresses.

1. Fonction ajouter_contact(contacts, nom, telephone, email, ville)

• Ajoute un nouveau contact dans le dictionnaire contacts.
• Si le contact existe déjà, la fonction ne doit pas l’écraser et doit

afficher un message d’avertissement.
• Retourne le dictionnaire mis à jour.

2. Fonction supprimer_contact(contacts, nom)

• Supprime le contact portant le nom indiqué, s’il existe.
• Si le nom n’est pas trouvé, affiche un message d’erreur.
• Retourne le dictionnaire mis à jour.

3. Fonction rechercher_contact(contacts, nom)

• Recherche un contact par son nom.
• Si trouvé, retourne le dictionnaire associé à ce contact.
• Sinon, retourne None.

4. Fonction modifier_contact(contacts, nom, champ, nouvelle_valeur)

• Permet de modifier un champ (telephone, email ou ville) pour
un contact donné.

TSI2-Lycée Antonin Artaud 1 Page 1/3

Dictionnaires/SQL www.jmcabrera.net

• Si le contact ou le champ n’existe pas, affiche un message d’erreur.
• Retourne le dictionnaire mis à jour.

5. Fonction afficher_contacts(contacts)

• Affiche proprement la liste de tous les contacts sous la forme :

Nom : Alice | Téléphone : 0612345678 | Email : alice@mail.com
| Ville : Paris

• Si le dictionnaire est vide, indique que le carnet est vide.
6. Fonction rechercher_par_ville(contacts, ville)

• Retourne une liste des noms des contacts habitant dans la ville
donnée.

• Si aucun contact ne correspond, retourne une liste vide.
7. Fonction hachage_email(contacts, nom)

• Calcule une valeur de hachage simple de l’adresse email d’un
contact.

• Le hachage est obtenu en additionnant les codes ASCII de tous
les caractères de l’email.

• Si le contact n’existe pas, la fonction doit afficher un message
d’erreur.

• Retourne la valeur entière correspondant au hachage.
Rappel : Le code ASCII associe à chaque caractère un nombre en-
tier (compris entre 0 et 127), appelé son code ASCII.

Par exemple : ’A’ → 65, ’a’ → 97, ’@’ → 64.
Exemple d’utilisation attendue

contac t s = {}
contac t s = ajouter_contact (contacts ,

" A l i c e " , " 0612345678 " , " a l i c e@mai l . com" , " Par i s ")
contac t s = ajouter_contact (contacts , "Bob" , " 0755667788 " ,
" bob@mail . com" , " Lyon ")
a f f i c h e r _ c o n t a c t s (contac t s)

print (rechercher_contact (contacts , " A l i c e "))
contac t s = modi f i e r_contact (contacts , " A l i c e " , " v i l l e " , " M a r s e i l l e ")
print (r e che rche r_par_v i l l e (contacts , " M a r s e i l l e "))
contac t s = supprimer_contact (contacts , "Bob")
a f f i c h e r _ c o n t a c t s (contac t s)

TSI2-Lycée Antonin Artaud 2 Page 2/3

Dictionnaires/SQL www.jmcabrera.net

2 Exercice 2
Une base de données gère les informations d’une librairie. Elle contient

trois tables principales :

• Auteur(id_auteur, nom, prenom, pays)
• Livre(id_livre, titre, prix, id_auteur)
• Client(id_client, nom, ville)

Les relations sont les suivantes :
• un auteur peut avoir écrit plusieurs livres ;
• chaque livre est écrit par un seul auteur ;
• la table Client est indépendante (elle ne sera utilisée que pour les

requêtes simples).

Le but de ce sujet est de rédiger plusieurs requêtes SQL, certaines portant
sur une seule table, et d’autres impliquant une jointure entre deux tables.

1. Afficher le titre et le prix de tous les livres dont le prix est supérieur
à 20 euros, triés du plus cher au moins cher.

2. Afficher les auteurs originaires de France. Le résultat doit contenir :
le nom, le prénom et le pays.

3. Afficher la liste des livres avec le nom et le prénom de leur auteur. On
souhaite les colonnes : titre, nom, prenom.

4. Afficher les titres des livres et les noms de leurs auteurs pour les livres
dont le prix est inférieur à 15 euros.

5. Afficher, pour chaque auteur, le nombre de livres écrits. Les co-
lonnes attendues sont : nom, prenom, nb_livres.

−− A completer :
SELECT . . .
FROM Auteur
JOIN Livre ON . . .
GROUP BY nom, prenom ;

6. Afficher le prix moyen des livres présents dans la table Livre. La
colonne du résultat doit s’appeler prix_moyen.

TSI2-Lycée Antonin Artaud 3 Page 3/3

