Dictionnaires/SQL

DS : Requétes SQL / Dictionnaires
CORRECTION

1 Exercice 1

On souhaite créer un programme permettant de gérer un carnet d’adresses
a l'aide de la structure de données dictionnaire en Python.

Chaque contact sera représenté par un dictionnaire contenant les in-
formations suivantes :

— telephone
— email
— ville

L’ensemble des contacts sera stocké dans un dictionnaire principal,
dont les clés seront les noms (ou identifiants) des contacts.

Exemple :
contacts = {
"Alice": {"telephone": "0612345678",
"email": "alice@mail.com", "ville": "Paris"},

"Bob": {"telephone": "0755667788", "email":

"bob@mail .com" ,
"ville": "Lyon"}}

Vous devez rédiger les six fonctions suivantes permettant de manipu-
ler ce carnet d’adresses.

1. Fonction ajouter_contact(contacts, nom, telephone, email, ville)
o Ajoute un nouveau contact dans le dictionnaire contacts.

o Si le contact existe déja, la fonction ne doit pas 1’écraser et doit
afficher un message d’avertissement.

e Retourne le dictionnaire mis a jour.
2. Fonction supprimer_contact(contacts, nom)
e Supprime le contact portant le nom indiqué, s’il existe.

e Sile nom n’est pas trouvé, affiche un message d’erreur.
o Retourne le dictionnaire mis a jour.

3. Fonction rechercher contact(contacts, nom)
e Recherche un contact par son nom.
e Si trouvé, retourne le dictionnaire associé a ce contact.

e Sinon, retourne None.

4. Fonction modifier_contact(contacts, nom, champ, nouvelle_valeur)

TSI2-Lycée Antonin Artaud 1 Page 1/5

Dictionnaires/SQL

o Permet de modifier un champ (telephone, email ou ville) pour
un contact donné.

o Sile contact ou le champ n’existe pas, affiche un message d’erreur.
e Retourne le dictionnaire mis a jour.

5. Fonction afficher_contacts(contacts)
o Affiche proprement la liste de tous les contacts sous la forme :

Nom : Alice | Téléphone : 0612345678 | Email : alice@mail.com
| Ville : Paris

¢ Si le dictionnaire est vide, indique que le carnet est vide.
6. Fonction rechercher_par_ville(contacts, ville)

¢ Retourne une liste des noms des contacts habitant dans la ville
donnée.

e Si aucun contact ne correspond, retourne une liste vide.

Exemple d’utilisation attendue

contacts = {}

contacts = ajouter__contact(contacts,

"Alice", "0612345678", "alice@mail.com", "Paris")
contacts = ajouter__contact(contacts, "Bob", "0755667788",

"bob@mail.com" , "Lyon")
afficher_contacts (contacts)

print (rechercher_contact (contacts, "Alice"))

contacts = modifier_contact(contacts, "Alice", "ville", "Marseille")
print (rechercher_par_ville(contacts, "Marseille"))

contacts = supprimer_contact(contacts, "Bob")

afficher__contacts (contacts)

CORRECTION

1. def ajouter_contact(contacts, nom, telephone, email, ville):
"""Ajoute un nouveau contact dans le dictionnaire."""
if nom in contacts:
print (f"Le contact ’{nom}’ existe deja.")
else:
contacts [nom] = {"telephone": telephone, "email": email,
"ville ": ville}

return contacts

TSI2-Lycée Antonin Artaud 2 Page 2/5

Dictionnaires/SQL

def
3. def
4. def
5. def

supprimer__contact (contacts , nom):
"""Supprime un contact s’il existe.
if nom in contacts:

del contacts [nom]
else:

print (f"Le contact ’{nom}’ n’existe pas.")
return contacts

nnon

rechercher__contact (contacts, nom):
"""Retourne les informations d’un contact ou None.
if nom in contacts:
return contacts [nom]
else:
return None

modifier _contact (contacts , nom, champ, nouvelle valeur):

if nom not in contacts:
print (f"Le contact ’{nom}’ n’existe pas.")
elif champ not in contacts[nom]:

print (f"Le champ ’{champ}’ n’existe pas pour le contact ’{nom
else:
contacts [nom][champ] = nouvelle_ valeur
return contacts
afficher__contacts(contacts):
Affiche tous les contacts du carnet.
— Si le carnet est vide, un message special apparait.
— Parcours sans utiliser .items/().
if not contacts: # Test carnet vide
print (" Le carnet est vide.")
return
for nom in contacts: # Parcours des noms (cles du dictionnaire)
infos = contacts [nom]
telephone = infos["telephone"]
email = infos ["email "]
ville = infos[" ville "]
Affichage formate
print (f"Nom : {nom} | Telephone : {telephone} | Email : {ema

TSI2-Lycée Antonin Artaud 3 Page 3/5

Dictionnaires/SQL

6. def rechercher par_ ville(contacts, ville):
"""Retourne une liste des contacts vivant dans la ville donnee

"

resultat = []
for nom in contacts: # on parcourt seulement les cles
if contacts [nom][" ville"] = ville:

resultat .append (nom)
return resultat

7. def hachage email(contacts, nom):
if nom not in contacts:
print (f" Le contact,,’{nom}’ n’existe pas.")
return None

email = contacts [nom]|["email"]
valeur__hash = sum(ord(c) for c in email)
return valeur hash

2 Exercice 2

Une base de données gere les informations d’une librairie. Elle contient
trois tables principales :

o Auteur(id_auteur, nom, prenom, pays)
o Livre(id_livre, titre, prix, id_auteur)
o Client(id_ client, nom, ville)
Les relations sont les suivantes :
e un auteur peut avoir écrit plusieurs livres;
e chaque livre est écrit par un seul auteur;

o la table Client est indépendante (elle ne sera utilisée que pour les
requétes simples).

Le but de ce sujet est de rédiger plusieurs requétes SQL, certaines portant
sur une seule table, et d’autres impliquant une jointure entre deux tables.

1. Afficher le titre et le prix de tous les livres dont le prix est supérieur
a 20 euros, triés du plus cher au moins cher.

2. Afficher les auteurs originaires de France. Le résultat doit contenir :
le nom, le prénom et le pays.

3. Afficher la liste des livres avec le nom et le prénom de leur auteur. On
souhaite les colonnes : titre, nom, prenom.

4. Afficher les titres des livres et les noms de leurs auteurs pour les livres
dont le prix est inférieur a 15 euros.

TSI2-Lycée Antonin Artaud 4 Page 4/5

Dictionnaires/SQL

5. Afficher, pour chaque auteur, le nombre de livres écrits. Les co-
lonnes attendues sont : nom, prenom, nb_livres.

— A completer
SELECT

FROM Auteur

JOIN Livre ON ...
GROUP BY nom, prenom;

6. Afficher le prix moyen des livres présents dans la table Livre. La
colonne du résultat doit s’appeler prix_moyen.

CORRECTION

1. SELECT titre , prix
FROM Livre
WHERE prix > 20
ORDER BY prix DESC;

2. SELECT nom, prenom, pays
FROM Auteur
WHERE pays = ’France ’;

3. SELECT Livre.titre , Auteur.nom, Auteur.prenom
FROM Livre
JOIN Auteur ON Livre.id auteur = Auteur.id auteur
ORDER BY Auteur.nom;

4. SELECT Livre. titre , Auteur.nom, Auteur.prenom
FROM Livre
JOIN Auteur ON Livre.id auteur = Auteur.id auteur
WHERE Livre.prix < 15;

5. SELECT Auteur.nom, Auteur.prenom, COUNT(Livre.id_ livre) AS nb_livres
FROM Auteur
JOIN Livre ON Livre.id auteur = Auteur.id auteur
GROUP BY Auteur.nom, Auteur.prenom
ORDER BY nb_ livres DESC;

6. SELECT AVG(prix) AS prix_moyen
FROM Livre;

TSI2-Lycée Antonin Artaud 5 Page 5/5

