
Dictionnaires/SQL

DS : Requêtes SQL / Dictionnaires
CORRECTION

1 Exercice 1
On souhaite créer un programme permettant de gérer un carnet d’adresses

à l’aide de la structure de données dictionnaire en Python.
Chaque contact sera représenté par un dictionnaire contenant les in-

formations suivantes :
— telephone

— email

— ville

L’ensemble des contacts sera stocké dans un dictionnaire principal,
dont les clés seront les noms (ou identifiants) des contacts.

Exemple :

contac t s = {
" A l i c e " : { " te l ephone " : " 0612345678 " ,
" emai l " : " a l i c e@mai l . com" , " v i l l e " : " Par i s " } ,

"Bob" : { " te l ephone " : " 0755667788 " , " emai l " : " bob@mail . com" ,
" v i l l e " : " Lyon " }}

Vous devez rédiger les six fonctions suivantes permettant de manipu-
ler ce carnet d’adresses.

1. Fonction ajouter_contact(contacts, nom, telephone, email, ville)

• Ajoute un nouveau contact dans le dictionnaire contacts.
• Si le contact existe déjà, la fonction ne doit pas l’écraser et doit

afficher un message d’avertissement.
• Retourne le dictionnaire mis à jour.

2. Fonction supprimer_contact(contacts, nom)

• Supprime le contact portant le nom indiqué, s’il existe.
• Si le nom n’est pas trouvé, affiche un message d’erreur.
• Retourne le dictionnaire mis à jour.

3. Fonction rechercher_contact(contacts, nom)

• Recherche un contact par son nom.
• Si trouvé, retourne le dictionnaire associé à ce contact.
• Sinon, retourne None.

4. Fonction modifier_contact(contacts, nom, champ, nouvelle_valeur)

TSI2-Lycée Antonin Artaud 1 Page 1/5



Dictionnaires/SQL

• Permet de modifier un champ (telephone, email ou ville) pour
un contact donné.

• Si le contact ou le champ n’existe pas, affiche un message d’erreur.
• Retourne le dictionnaire mis à jour.

5. Fonction afficher_contacts(contacts)

• Affiche proprement la liste de tous les contacts sous la forme :

Nom : Alice | Téléphone : 0612345678 | Email : alice@mail.com
| Ville : Paris

• Si le dictionnaire est vide, indique que le carnet est vide.
6. Fonction rechercher_par_ville(contacts, ville)

• Retourne une liste des noms des contacts habitant dans la ville
donnée.

• Si aucun contact ne correspond, retourne une liste vide.
Exemple d’utilisation attendue

contac t s = {}
contac t s = ajouter_contact ( contacts ,
" A l i c e " , " 0612345678 " , " a l i c e@mai l . com" , " Par i s " )

contac t s = ajouter_contact ( contacts , "Bob" , " 0755667788 " ,
" bob@mail . com" , " Lyon " )
a f f i c h e r_con t a c t s ( contac t s )

print ( rechercher_contact ( contacts , " A l i c e " ) )
contac t s = modi f i e r_contact ( contacts , " A l i c e " , " v i l l e " , " Ma r s e i l l e " )
print ( r e che rche r_par_v i l l e ( contacts , " Ma r s e i l l e " ) )
contac t s = supprimer_contact ( contacts , "Bob" )
a f f i c h e r_con t a c t s ( contac t s )

CORRECTION

1. de f a jouter_contact ( contacts , nom, te lephone , email , v i l l e ) :
" " " Ajoute un nouveau contact dans l e d i c t i o n n a i r e . " " "
i f nom in contac t s :

p r i n t ( f " Le contact ’{nom} ’ e x i s t e de ja . " )
e l s e :

contac t s [ nom] = {" te l ephone " : te lephone , " emai l " : email ,
" v i l l e " : v i l l e }

re turn contac t s

TSI2-Lycée Antonin Artaud 2 Page 2/5



Dictionnaires/SQL

def supprimer_contact ( contacts , nom) :
" " " Supprime un contact s ’ i l e x i s t e . " " "
i f nom in contac t s :

de l contac t s [ nom]
e l s e :

p r i n t ( f " Le contact ’{nom} ’ n ’ e x i s t e pas . " )
r e turn contac t s

2.3. de f rechercher_contact ( contacts , nom) :
" " " Retourne l e s in f o rmat i ons d ’ un contact ou None . " " "
i f nom in contac t s :

r e turn contac t s [ nom]
e l s e :

r e turn None

4. de f modi f i e r_contact ( contacts , nom, champ , nouve l l e_va leur ) :

i f nom not in contac t s :
p r i n t ( f " Le contact ’{nom} ’ n ’ e x i s t e pas . " )

e l i f champ not in contac t s [ nom ] :
p r i n t ( f " Le champ ’{champ} ’ n ’ e x i s t e pas pour l e contact ’{nom} ’ . " )

e l s e :
contac t s [ nom ] [ champ ] = nouve l l e_va leur

re turn contac t s

5. de f a f f i c h e r_con t a c t s ( contac t s ) :
" " "
A f f i ch e tous l e s contac t s du carnet .
− Si l e carnet e s t vide , un message s p e c i a l appara i t .
− Parcours sans u t i l i s e r . i tems ( ) .
" " "
i f not contac t s : # Test carnet v ide

p r i n t ( " Le carnet e s t v ide . " )
r e turn

f o r nom in contac t s : # Parcours des noms ( c l e s du d i c t i o nn a i r e )
i n f o s = contac t s [ nom]
te l ephone = i n f o s [ " te l ephone " ]
emai l = i n f o s [ " emai l " ]
v i l l e = i n f o s [ " v i l l e " ]

# Af f i chage formate
p r i n t ( f "Nom : {nom} | Telephone : { te l ephone } | Email : { emai l } | V i l l e : { v i l l e } " )

TSI2-Lycée Antonin Artaud 3 Page 3/5



Dictionnaires/SQL

6. de f r e che rche r_par_v i l l e ( contacts , v i l l e ) :
" " " Retourne une l i s t e des contac t s v ivant dans l a v i l l e donnee " " "
r e s u l t a t = [ ]
f o r nom in contac t s : # on parcourt seulement l e s c l e s

i f contac t s [ nom ] [ " v i l l e " ] == v i l l e :
r e s u l t a t . append (nom)

return r e s u l t a t

7. def hachage_email ( contacts , nom) :
i f nom not in contac t s :

print ( f " ␣Le␣ contact ␣ ’{nom} ’ ␣n ’ e x i s t e ␣pas . " )
return None

emai l = contac t s [ nom ] [ " emai l " ]
valeur_hash = sum(ord ( c ) for c in emai l )
return valeur_hash

2 Exercice 2
Une base de données gère les informations d’une librairie. Elle contient

trois tables principales :
• Auteur(id_auteur, nom, prenom, pays)
• Livre(id_livre, titre, prix, id_auteur)
• Client(id_client, nom, ville)

Les relations sont les suivantes :
• un auteur peut avoir écrit plusieurs livres ;
• chaque livre est écrit par un seul auteur ;
• la table Client est indépendante (elle ne sera utilisée que pour les

requêtes simples).

Le but de ce sujet est de rédiger plusieurs requêtes SQL, certaines portant
sur une seule table, et d’autres impliquant une jointure entre deux tables.

1. Afficher le titre et le prix de tous les livres dont le prix est supérieur
à 20 euros, triés du plus cher au moins cher.

2. Afficher les auteurs originaires de France. Le résultat doit contenir :
le nom, le prénom et le pays.

3. Afficher la liste des livres avec le nom et le prénom de leur auteur. On
souhaite les colonnes : titre, nom, prenom.

4. Afficher les titres des livres et les noms de leurs auteurs pour les livres
dont le prix est inférieur à 15 euros.

TSI2-Lycée Antonin Artaud 4 Page 4/5



Dictionnaires/SQL

5. Afficher, pour chaque auteur, le nombre de livres écrits. Les co-
lonnes attendues sont : nom, prenom, nb_livres.

−− A completer :
SELECT . . .
FROM Auteur
JOIN Livre ON . . .
GROUP BY nom, prenom ;

6. Afficher le prix moyen des livres présents dans la table Livre. La
colonne du résultat doit s’appeler prix_moyen.

CORRECTION

1. SELECT t i t r e , p r ix
FROM Livre
WHERE pr ix > 20
ORDER BY pr ix DESC;

2. SELECT nom, prenom , pays
FROM Auteur
WHERE pays = ’ France ’ ;

3. SELECT Livre . t i t r e , Auteur . nom, Auteur . prenom
FROM Livre
JOIN Auteur ON Livre . id_auteur = Auteur . id_auteur
ORDER BY Auteur . nom;

4. SELECT Livre . t i t r e , Auteur . nom, Auteur . prenom
FROM Livre
JOIN Auteur ON Livre . id_auteur = Auteur . id_auteur
WHERE Livre . p r ix < 15 ;

5. SELECT Auteur . nom, Auteur . prenom , COUNT( Livre . i d_ l i v r e ) AS nb_l ivres
FROM Auteur
JOIN Livre ON Livre . id_auteur = Auteur . id_auteur
GROUP BY Auteur . nom, Auteur . prenom
ORDER BY nb_l ivres DESC;

6. SELECT AVG( pr ix ) AS prix_moyen
FROM Livre ;

TSI2-Lycée Antonin Artaud 5 Page 5/5


