Interpolation polynomiale

Chap. 8 : Interpolation polynomiale
de Lagrange

D’apres le dictionnaire de I’Académie Frangaise :
Interpolation : XIVe siécle. Emprunté du latin impérial interpolatio,
« action de changer ¢a et la », puis « altération, erreur ».

En mathématiques : intercalation, entre certaines valeurs d’une fonction,

de valeurs qu’on calcule par approximation et qui permettent d’établir une
continuité de la fonction et de sa représentation graphique.
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Pour les différents scripts Python, nous importons les bibliotheques sui-
vantes :

from sympy import =*

import matplotlib.pyplot as plt
import math

init_printing ()

X = Symbol('x")

Dans tout ce qui suivra :

1. n désigne un entier naturel.

2. I est un intervalle de R.

3. g < w1 <...<xzysont n+ 1 points distincts de 1.

4. f est une fonction de I vers R.

1 Le probléme de l’interpolation

Probléme : trouver un polynéme P de degré inférieur ou égal a n tel
que :
Vi € [0;n], P (z;) = [ (zi)
Nous allons voir que ce probléeme admet une unique solution. Le polynéme
correspondant est appelé le polynéme d’interpolation de f aux points ;.

Nous allons dans ce cours :
1. Montrer I’existence et 'unicité d’un tel polynome.

2. Calculer efficacement la valeur du polynéme d’interpolation en un
point x.

3. Majorer |f(z) — P(x)| pour x € I.

4. Voir comment rendre ce majorant aussi petit que possible en choisis-
sant astucieusement les x;.

2 Les polynomes élémentaires de Lagrange

Définition 2.1. Pour k=0,...,n le kiéme polynome de Lagrange est
le polynome :
H X — Xy
J#k
Ly—-—
g Il zp —x;
J#k

C’est l'unique polynéme de degré inférieur ou égal a n qui s’annule en tous
les z;, sauf en xy, ot il prend la valeur 1.
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Proposition 2.2. & = (Ly, L1,...,Ly,) est une base de l’espace R, [X] des
polynomes de degré inférieur ou égal a n.

Preuve :
Comme Card# = dimR,[X] il suffit de montrer que 2 est libre.
Soient Ak, k=0,1,...,nn + 1 réels. Supposons que :

n
> ALk =0
k=0

V(i k) € [0;n]?, L, () = Op

ot le symbole de Kronecker dj; vaut 1 si k =i et 0 sinon. Evaluons I’égalité
ci-dessus en x;. Il vient :

0= MeLi (i) =D Ml = Ni
k=0 k=0

ceci pour tout ¢. D’ou la liberté.

Tout polyndéme P de degré inférieur ou égal a n est donc combinaison
linéaire des L, d’ou leur nom "élémentaires".

Sous Python :
La fonction lagrange ci-dessous prend en parametre un entier k, un réel x
et une liste xs = [z, ..., z,] de réels distincts. Elle renvoie Ly (x).

def lagrange(k, x, xs):
p=1
n = len(xs) - 1
for j in range(n + 1):
if j 1= k:
p *= (x - xs[jl) / (xs[k]l - xs[j])
return p

Ayant défini au préalable £ comme un symbole, nous pouvons donc ob-
tenir une expression explicite des Ly :
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In [6]: expand(lagrange(l, x, [-2, -1, 0, 1, 21))

Out [6]:

¥ 22?7 2x

"6tz T

In [7]: expand(lagrange(2, x, [-2, -1, 0, 1, 21))

Out [7]:

3 Subdivisions régulieres

Soient a,b € R, a < b.
Une subdivision du segment [a, b] est une suite :

ro=a<x1<...<xp=0>0.

Pour tout entier n > 1, la subdivision réguliére a n 4+ 1 points de [a, b] est

définie par :
b—a

T =a+k Jk=0,...,n

Sous Python :
def subdi(a, b, n):

d=(b-a) /n
return [a + k¥ * d for k in range(n + 1)]

On obtient par exemple une subdivision réguliere a 11 points de 'intervalle
[—1;1] :

In [8]: def subdi(a, b, n):
d=(b-a) /n
return [a + k * d for k in range(n + 1)]

In [10]: xs = subdi(-1, 1, S(10))
Xs

Out [10]:
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4 Graphes des polynomes élémentaires

Nous pouvons maintenant effectuer quelques petits affichages.
Commencons par le graphe des polynémes élémentaires. Pour :

xs = subdi(-1,1,5(3))
ps = [expand(lagrange(k, x, xs)) for k in range(len(xs))]
On obtient :

In [8]: xs

out[a]:

1 1
-1, —=, =, 1
In [9]: ps
out[9]:

"6 "6 6 16 16 16 16 160 16 16 16 16016 16 16 16

{9;»3 922 1 2723 922 272 9 2723 922 2T 9 923 927 g 1

La fonction tracer__poly qui suit trace la courbe de p pour x entre xmin
et xmax.
Les parametres optionnels de la fonction sont passés a plt.plot.
def tracer_poly(p, xmin, xmax, *xoptl, **opt2):
Xs = subdi(xmin, xmax, 300)
ys = [p.subs(x, t) for t in xs]
plt.plot(xs, ys, *optl, *xopt2)

Voici le graphique obtenu :

10

ik}
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0o

—lTDO —0??5 —0.‘50 —0?25 D(IJD DéS DISD 0%5 1(‘]0

Exercice 4.1. Parmi les quatre graphiques ci-dessus, retrouver les poly-
nomes d’interpolation de Lagrange correspondants.
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5 Le polynéome d’interpolation

Proposition 5.1. I existe un unique polynome P de degré inférieur ou égal
an tel que P (xy) = f (z) pour k =0,...,n. Le polynome P est donné par

n

P=>"f(xx) Ly

k=0
ot les Ly sont les polynomes élémentaires de Lagrange.

Preuve :
Soit P le polynoéme défini ci-dessus. Tout d’abord, P est de degré inférieur
ou égal a n.
De plus, pour i =0,1,...,n:

n n

P(z) =Y f(xr) L (@) = > f (1) Opi = [ (z4)

k=0 k=0

Ce polyndéme est donc solution du probléme. Par ailleurs, supposons que P
et () sont solutions.

Le polynéme P — (@ est de degré inférieur ou égal a n et s’annule en les n+ 1
points xg, x1, ..., x,. C’est donc le polyndéme nul.

D’ou 'unicité.

La fonction interpoler(f,xzs) prend en parametres une fonction f et une
liste zs de points.
Elle renvoie le polynéme d’interpolation de f aux points de la liste zs .

def interpoler(f,xs):
ps=[lagrange(k, x, xs) for k in range(len(xs))]
p=0
n = len(xs)
for k in range(n):
p=p+ f(xs[k]) * ps[k]
return p

Testons sur un petit exemple : prenons f : x — zz—lﬂ et interpolons sur une
subdivision de [—1,1].

Nous allons fréquemment utiliser cette fonction dans toute la suite, alors
appelons-la exemple.

def exemple(x):
return 1 / (x *x 2 + 1)

p = expand(interpoler(exemple, subdi(-1, 1, S(3))))
xs = subdi(-1, 1, 300)

ys = [exemple(t) for t in xs]

plt.plot(xs, ys, 'r')

tracer_poly(p, -1, 1, 'k")
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plt.grid()
plt.show()

On obtient :
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Que se passe-t-il si on augmente le nombre de points de la subdivision ?

p = expand(interpoler(exemple, subdi(-1, 1, S(5))))
Xs = subdi(-1, 1, 300)

ys = [exemple(t) for t in xs]

plt.plot(xs, ys, 'r')

tracer_poly(p, -1, 1, 'k')

plt.grid()

plt.show()

On obtient :
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6 Estimation de l’erreur dans l’interpolation de
Lagrange

Avant de donner une estimation de l'erreur, nous allons démontrer la
propriété suivant.

Proposition 6.1. Soit f : [a,b] — R dérivable sur [a,b] alors, si f posséde
au moins n + 2 zéros distincts sur [a,b], f’ posséde au moins n + 1 zéros
distincts sur [a, b].

Preuve :
il suffit d’appliquer le théoreme de Rolle entre deux zéros consécutifs de f.

Corollaire 6.2. Soit f € €™ ([a,b]). Si f posséde au moins n + 2 zéros
distincts sur [a,b], alors f™V) o au moins un zéro sur [a,b].

Preuve : il suffit de faire une récurrence en appliquant la propriété pré-
cédente.

Soit f une fonction réelle définie sur un intervalle [a, b] et soient :
a<zg<...<zHp <0,

n + 1 points de [a, b].
On note P le polyndéme d’interpolation de Lagrange de f aux points zq, . .., Zy.

Théoréme 6.3. On suppose f € €1 ([a,b]), alors :

(x — o) (x —21) ... (x — xp)

_ — (n+1)
Vx € [a,b],3€ € [a,b], f(z) — P(x) = CESI] f &)
Preuve :
si ¢ = x;, alors la relation est vérifiée.
Soit z € [a,b] fixé, = différent de tous les z;.
Posons q(z) = (x — zp) (z —x1) ... (x — xp) et :
_ q(t)
W(t) = f(t) — P(t) — ——<(f(z) — P(x))
q(x)
La fonction W est de classe € 1! comme f et s’annule pour t = z, zg, 1, . .., ZTn ;

elle admet donc au moins n + 2 zéros.
D’apres le corollaire 8 :

3¢ € [a, 0], WD (&) = 0.

TSI2-Lycée Antonin Artaud 8 Page 8



Interpolation polynomiale

On en déduit la relation.

Le point £ étant inconnu, on cherche une majoration et on a le corollaire
immédiat :

Corollaire 6.4. Si f"+1) est continue sur [a,b], alors :

7 € a1 f(o) - Pla) < (2Tl g [0 )

Autrement dit, pour tout x € [a,b] :

@)= P < 2 10()

si :
e M, est un majorant de f™*1) sur [a;b]
o Qz)=(z—mo) (x —21)...(x — )
Remarque 6.5. La majoration que nous venons d’obtenir est intéressante :

e le facteur (n+1) ! au dénominateur est prometteur, puisqu’il tend trés
vite vers +00 lorsque n augmente.

o le facteur My1 ne dépend que de f et pas des x;.
o le facteur |Q(x)| ne dépend que des x; et de x, et pas de f. De plus :

v € [a,b,1Q@)] < (b— a)"+!
Une autre majoration de lerreur d’approximation devient :

b— n+1
o € fa,t]1f@) - Pla)] < G M
Exemple 6.6. Si f(z) = cos(z) ou f(x) = sin(z) alors Mp41 <1 et :

(b—a)"t!

Vx € [a,b], |f(z) — P(z)| < NCESE

7 Application

Tracer la courbe d’une fonction polynomiale passant par les points de
coordonnées :

(—5:10), (—=2,3), (—4,1) et (0, —3).

On doit obtenir :
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