
Concours Commun Blanc 2025

ÉPREUVE SPÉCIFIQUE - FILIÈRE TSI

INFORMATIQUE

Mercredi 12 mars 8 h - 11 h

N.B. : le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la
rédaction.
Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa
copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à
prendre. ·

RAPPEL DES CONSIGNES
• Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction de votre composition ;
d'autres couleurs, excepté le vert, peuvent être utilisées, mais exclusivement pour les schémas et la mise en
évidence des résultats.
• Ne pas utiliser de correcteur.
• Écrire le mot FIN à la fin de votre composition.

Les calculatrices sont interdites

Le sujet est composé de trois parties, toutes indépendantes.
Seul le document réponse est à rendre.

Le sujet comporte :
- le texte du sujet et une annexe, 7 pages,
- le Document Réponse (DR) à rendre en fin d'épreuve, 11 pages.

Important : vous pouvez utiliser les fonctions des questions précédentes, même si vous ne les avez pas
toutes démontrées.

Vous devez répondre directement sur le Document Réponse, soit à l'emplacement prévu pour la réponse
lorsque celle-ci implique une rédaction, soit en complétant les différents programmes en langage Python.

1/7

Autour du séquençage du génome

Dans ce sujet, on s' intéresse à la recherche d'un motif dans une molécule d' ADN.
Une molécule d' ADN est constituée de deux brins complémentaires, qui sont un long enchaînement
de nucléotides de quatre types différents désignés par les lettres A, T, C et G. Les deux brins sont
complémentaires : "en face" d'un 'A', il y a toujours un 'T' et "en face" d'un 'C', il y a toujours un 'G'.
Pour simplifier le sujet, on va considérer qu'une molécule d' ADN est une chaîne de caractères sur
l'alphabet {A,C,G,T} (on s' intéresse donc seulement à un des deux brins). On parlera de séquence
d' ADN.

Partie I -Génération d'une séquence d' ADN

On considère la chaîne de caractère seq='ATCGTACGTACG'.

Q1. Que renvoie la commande seq[3]? Que renvoie la commande seq[2:6] ?

Les fonctions que nous allons construire par la suite devront prendre en paramètre une chaîne
de caractères ne contenant que des 'A', 'C', 'G' et 'T' (ceci correspond à une séquence d' ADN).
Nous allons commencer par construire aléatoirement une séquence d' ADN.

Pour générer aléatoirement une séquence d' ADN composée de n caractères, on utilisera le principe
suivant.

1. On commence par créer une chaîne de caractères vide.
2. Puis on tire aléatoirement n chiffres compris entre 1 et 4 et

- si on obtient un 1, alors on ajoute un 'A' à notre chaîne de caractères;
- si on obtient un 2, alors on ajoute un 'C' à notre chaîne de caractères;
- si on obtient un 3, alors on ajoute un 'G' à notre chaîne de caractères;
- si on obtient un 4, alors on ajoute un 'T' à notre chaîne de caractères.

3. On renvoie la chaîne de caractères ainsi construite.

Q2. Écrire une fonction generation() qui prend en paramètre un entier n et qui renvoie une chaîne
de caractères aléatoires de longueur n ne contenant que des 'A', 'C', 'G' et 'T'.
On pourra utiliser les fonctions random() ou randint() détaillées en annexe.

Q3. Que fait la fonction mystere(seq) qui prend en argument une séquence d' ADN 'seq' (une
chaîne de caractères ne contenant que des 'A', 'C', 'G' et 'T') ?
Le code de la fonction mystere() se trouve dans le DR 2.

Q4. Quelle est la complexité de la fonction mystere()?
Donner le nom de la variable permettant de montrer la terminaison de l'algorithme (on
justifiera le raisonnement).

Partie II -Recherche d'un motif

Soit une chaîne de caractères S='ACTGGTCACT', on appelle sous-chaîne de caractères de S une
suite de caractères incluse dans S. Par exemple, 'TGG' est une sous-chaîne de S mais 'TAG' n'est pas
une sous-chaîne de S.
Objectif
Rechercher une sous-chaîne de caractères M de longueur m appelée motif dans une chaîne de
caractères S de longueur n.

2/7

Il s'agit d'une problématique classique en informatique, qui répond aux besoins de nombreuses
applications.
On trouve plus de 100 algorithmes différents pour cette même tâche, les plus célèbres datant des
années 1970, mais plus de la moitié ont moins de 10 ans.

Dans cette partie, nous allons d'abord nous intéresser à l'algorithme naïf (sous-partie II.1), puis à
deux autres algorithmes : l'algorithme de Knuth-Morris-Pratt (sous-partie II.2), et un algorithme
utilisant une structure de liste (sous-partie II.3) et enfin, aux fonctions de hachage (sous-partie
II.4).

Les différentes sous-parties sont indépendantes.

II.1 - Algorithme naïf

Principe de l'algorithme naïf
On parcourt la chaîne. À chaque étape, on regarde si on a trouvé le bon motif. Si ce n'est pas le cas,
on recommence avec l'élément suivant de la chaîne de caractères.

Cet algorithme a une complexité en O(nm) avec n, la taille de la chaîne de caractère et m, la taille du
motif.

Q5. Écrire une fonction recherche() qui a une sous-chaîne de caractères M et une chaîne de
caractères S renvoie -1 si M n'est pas dans S, et la position de la première lettre de la chaîne
de caractères M si M est présente dans S.
Cet algorithme doit correspondre à l'algorithme naïf.

Q6. Combien faut-il d'opérations pour chercher un motif de 50 caractères dans une séquence
d'ADN en utilisant l'algorithme naïf? On supposera qu'une séquence d'ADN est composée de
3.109 caractères.
En combien de temps un ordinateur réalisant 1012 opérations par seconde fait-il ce calcul?

En génétique, on utilise des algorithmes de recherche pour identifier les similarités entre deux
séquences d'ADN. Pour cela, on procède de la manière suivante :

- découper la première séquence d' ADN en morceaux de taille 50 ;
- rechercher chaque morceau dans la deuxième séquence d' ADN.

Q7. En utilisant les calculs précédents, combien de temps faut-il pour un ordinateur réalisant 1012

opérations par seconde pour comparer deux séquences d'ADN avec l' algorithme naïf ?
Vous semble-t-il intéressant d'utiliser l'algorithme de recherche naïf ?

II.2 - Algorithme de Knuth-Morris-Pratt (1970)

Lorsqu'un échec a lieu dans l'algorithme naïf, c'est-à-dire lorsqu'un caractère du motif est différent
du caractère correspondant dans la séquence d' ADN, la recherche reprend à la position suivante en
repartant au début du motif. Si le caractère qui a provoqué l'échec n'est pas au début du motif, cette
recherche commence par comparer une partie du motif avec une partie de la séquence d' ADN qui a
déjà été comparée avec le motif. L'idée de départ de l'algorithme de Knuth-Morris-Pratt est d'éviter
ces comparaisons inutiles. Pour cela, une fonction annexe qui recherche le plus long préfixe d'un
motif qui soit aussi un suffixe de ce motif est utilisée.

3/7

Avant d'étudier l'algorithme de Knuth-Morris-Pratt (sous-partie II.2.b) nous allons définir les
notions de préfixe et suffixe (sous-partie II.2.a).

II.2.a - Préfixe et suffixe

Un préfixe d'un motif M est un motif u, différent de M, qui est un début de M.
Par exemple, 'mo' et 'm' sont des préfixes de 'mot', mais 'o' n'est pas un préfixe de 'mot' .

Un suffixe d' un motif M est un motif u, différent de M, qui est une fin de M.
Par exemple, 'ot' et ' t' sont des suffixes de ' mot', mais 'mot' n'est pas un suffixe de 'mot' .

Q8. Donner tous les préfixes et les suffixes du motif 'ACGTAC'.

Q9. Quel est le plus grand préfixe de 'ACGTAC' qui soit aussi un suffixe?
Quel est le plus grand préfixe de 'ACAACA' qui soit aussi un suffixe?

II.2.b - Algorithme de Knuth-Morris-Pratt

Nous rappelons que l'algorithme de Knuth-Morris-Pratt (KMP) est une fonction de recherche qui
utilise une fonction annexe prenant en argument une chaîne de caractères M dont on notera la
longueur m.
Cette fonction annexe, appelée fonctionannexe(), doit permettre, pour chaque lettre à la position i,
de trouver le plus grand sous-mot de M qui finit par la lettre M[i] (c'est donc le plus grand suffixe
de M[:i+ 1]) qui soit aussi un préfixe de M.
Le code de fonctionannexe() se trouve à la question Q11 du DR 5.

Q10. Quel est le type de la sortie de la fonctionfonctionannexe()?

Q11. Une ou des erreurs de syntaxe s'est (se sont) glissée(s) dans la fonction fonctionannexe() .
Identifier la ou les erreur(s) et corriger la fonction pour qu' il n'y ait plus de message d'erreur
quand on compile la fonction.

Q12. Décrire l'exécution de la fonctionfonctionannexe() lorsque M= 'ACAACA' en précisant sur le
DR 6, pour les six premiers tours dans la boucle while, à la sortie de la boucle, le contenu des
variables : i, jet F.

Q13. Expliquer et commenter les groupements de lignes de l'algorithme KMP donnés dans le DR 6.

II.3 -Algorithme utilisant la structure de liste

Une autre possibilité pour chercher un motif dans une chaîne de caractères (ou séquence d'ADN) est
de construire une liste contenant tous les sous-motifs de notre chaîne, triés par ordre alphabétique,
puis de faire la recherche dans cette liste.
Par exemple, à la chaîne 'CATCG', on peut lui associer la liste :
['C','A','T','G','CA','AT','TC','CG','C,AT','ATC','TCG','CATC','ATCG','CATCG'] que l'on peut ensuite
trier pour obtenir la liste :
['A',' AT',' ATC' ,' ATCG' ,'C' ,'CA' ,'CAT' ,'CATC' ,'CATCG' ,'CG' ,'G' ,'T' ,'TC' ,'TCG'].

La première étape de cette méthode est donc de trier une liste.

Q14. Écrire une fonction triinsertion() de tri par insertion d' une liste de nombres.

Q15. Comment peut-on adapter la fonction triinsertion() à une liste de chaîne de caractères?

4/7

Après avoir obtenu une liste triée, on peut faire une recherche dichotomique dans cette nouvelle
liste.

Q16. Écrire une fonction recherchedichotomique() de recherche dichotomique dans une liste de
nombres triés.
Quel est l'intérêt de ce type d'algorithme (on parlera de complexité)?

II.4 -Fonction de hachage et évaluation de polynôme

II.4.a - Fonction de hachage, algorithme de Karp-Rabin

Certains algorithmes, comme l'algorithme de Karp-Rabin (1987), utilisent une fonction de hachage
h qui à un motif renvoie une valeur numérique.

Voici un exemple de fonction de hachage :
• à chaque caractère de l'alphabet, on associe une valeur. Ici, on va associer à 'A' la valeur 0, à

'C' la valeur 1, à 'G' la valeur 2 et à 'T' la valeur 3. Pour un motif de taille n, on obtient donc
une suite de chiffre an-1...a1a0 . Par exemple, à la chaîne 'TAGC', on lui associe la suite de
chiffre 3021 ;

• cette suite de chiffre est considérée comme l'écriture d'un entier en base b, où b est le
nombre de caractères présents dans l'alphabet. On a donc ici b = 4 ;

• on calcule ensuite cet entier en base 10 (on calcule donc an-1bn-1+...+ a1b1 + a0b0);
• puis on calcule le reste de la division euclidienne de ce nombre par 13.

Q17. On ne considère que des motifs de taille 3. Que renvoie la fonction de hachage avec les motifs
'CCC', 'ACG', 'GAG'? On détaillera les calculs.

Dans cette fonction de hachage, nous avons besoin de transformer un entier en base b en un entier
en base 10. On remarque que 1' on peut éventuellement faire ce calcul en évaluant un polynôme.

II.4.b - 11.4.b Évaluation de polynôme, Algorithme de Hörner

Dans cette sous-partie, nous allons nous intéresser à l'évaluation d' un polynôme et de son coût
lorsque l'on compte les multiplications, les additions et les affectations comme des opérations
unitaires.

Soit P=∑
k=0

n

ak X
k un polynôme, il sera représenté par la liste [an ,...,a0].

Q18. Écrire une fonction eval() ayant pour paramètre un polynôme P (donc une liste de nombres
[an ,...,a0]) et un nombre b. Cette fonction doit renvoyer la valeur de P en b, c'est-à-dire

calculant : P=∑
k=0

n

ak b
k .

En admettant que le calcul de bk utilise k - 1 multiplications, on trouve une complexité quadratique.
On peut être plus astucieux en utilisant l'algorithme de Horner qui se base sur l'égalité suivante :

P(X) = ((... ((an X + an-1)X + an-2)X + ...)X+ a1)X + a0 .

Plus précisément, pour évaluer P en b, on commence par calculer an x b + an-1 puis on multiplie le
résultat par b et on ajoute an-2, etc. On trouvera alors une complexité linéaire.

5/7

Q19. Écrire une fonction itérative hornerit() ayant pour paramètres un polynôme P, sous forme de
liste, ainsi qu'un réel b, et renvoyant P(b) en utilisant l'algorithme de Horner.

Q20. Compléter la fonction hornerrec() pour avoir une fonction récursive qui évalue un polynôme
en utilisant l'algorithme de Horner.

Partie III - Collection Française de Bactéries Phytopathogènes

La Collection Française de Bactéries Phytopathogènes (CFBP) possède deux bases de données :
• l'une, appelée Echantillon, qui permet de stocker les différents échantillons d' ADN;
• l'autre, appelée Sequence, qui permet de mémoriser quelle personne est responsable de

l'obtention de la séquence (i.e. de l'extraction d'un gène particulier dans les différents
échantillons d'ADN).

Des extraits des tables Echantillon et Sequence sont données par les tableaux 1 et 2.

Echantillon

ADN Genre Espèce Sous-espèce

309 Pseudomonas syringae morsprunorum

...

3589 Pseudomonas syringae vignae

...
Tableau 1 - Table recensant toutes les séquences d' ADN dont dispose la CFBP

Sequence

Code Date ADN Gène Protocole Employé

A '01-03-2018' 309 gyrB Spilker Dupont

B '01-03-2018' 2028 recA Cesbron and Manceau Martin

...

AGZ '01-03-2018' 2028 leuS Deletoile Martin

...
Tableau 2 - Table recensant tous les travaux réalisés à la CFBP en mars 2018

Q21. Définir le but et le résultat de la requête(l), écrite en SQL:
SELECT count(*) FROM Sequence WHERE Date='0l-03-2018'

Q22. Écrire en SQL la requête(2), permettant d’afficher les numéros d’ ADN contenant les gènes
leuS.

Q23. Écrire en SQL la requête(3) qui permet d'obtenir la liste des espèces étudiées par M. Martin le
10 mars 2018.

Q24. Écrire en SQL la requête(4) permettant d'obtenir le nombre d'échantillons prélevés par chaque
employé.

6/7

ANNEXE - Librairie numpy

random() : génère un nombre pseudo-aléatoire compris entre 0 et 1.
randint(a,b): génère un entier aléatoire tel que a ≤ randint(a,b) < b.

FIN

7/7

Nom : ...…………....………………………...... Prénom : ……………………..……………………..

Consignes :
* Compléter l’entête de chaque feuille avant de commencer à composer
* Rédiger avec un stylo non effaçable bleu ou noir
* Rendre les copies dans l’ordre

DOCUMENT RÉPONSE
____Q1.__

1 seq='ATCGTACGTACG'
2 seq[3)

Que renvoie cette commande Python?

………………………………………………………………………………………………………..

1 seq='ATCGTACGTACG'
2 seq[2:6)

Que renvoie cette commande Python ?

………………………………………………………………………………………………………..

____Q2.__
1 def generation(n):
2 seq =

DR 1

Nom : ...…………....………………………...... Prénom : ……………………..……………………..

____Q3.__
1 def mystere(seq):
2 a,b,c,d = 0,0,0,0
3 i = len(seq)-1
4 while i>=0 :
5 if seq[i]=='A':
6 a+=1
7 i-=1
8 elif seq[i]=='C':
9 b+=1
10 i-=1
11 elif seq[i]=='G':
12 c+=1
13 i-=1
14 else :
15 d+=1
16 i-=1
17 return [a*100/len(seq),b*100/len(seq),c*100/len(seq),d*100/len(seq)]

Réponse : ……………………………………………………………………………………………

………………………………………………………………………………………………………

____Q4.__

Complexité : ……………………………………………………………………………………….

Terminaison : nom de variable : …………………………………………………………………..

justificitation : ……………………………………………………………………..

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

DR 2

Nom : ...…………....………………………...... Prénom : ……………………..……………………..

____Q5.__
1 def recherche (M,S) :

____Q6.__

Nombre d'opérations pour chercher un motif de 50 caractères : …………………………………………

Temps mis par l’ordinateur : ……………………………………………………………………………..

DR 3

Nom : ...…………....………………………...... Prénom : ……………………..……………………..

____Q7.__

Temps pour comparer deux séquences d' ADN : …………………………………………………………

Est-ce intéressant d' utiliser cette méthode ? ……………………………………………………………..

………..

____Q8.__

Préfixes de 'ACGTAC' : ……………………………………………………………………………………….

Suffixes de 'ACGTAC' :……………………………………………………………………………………….

____Q9.__

Plus grand préfixe de 'ACGTAC' qui soit aussi un suffixe : …………………………………………………...

Plus grand préfixe de 'ACAACA' qui soit aussi un suffixe : …………………………………………………...

____Q10.__

Type de la variable en sortie :

DR 4

Nom : ...…………....………………………...... Prénom : ……………………..……………………..

____Q11.__

Corriger la fonction suivante pour qu' il n'y ait plus de message d' erreur quand on compile la
fonction.

1 def fonctionannexe(M):
2 F=[0]
3 i=1
4 j=0
5 while i < m :
6 if M[i]=M[j]:
7 F.append(j+1)
8 i = i+1
9 j = j+1
10 else
11 if j>0 :
12 j = F[j-1]
13 else :
14 F.append(0)
15 i =i+1
16 return F

____Q12.__

Initialisation : i= l ; j=0 ; F=[0]

Fin du premier passage dans la boucle while : i= … ; j= … ; F= …………………………… ;

Fin du deuxième passage dans la boucle while : i= … ; j= … ; F= …………………………… ;

Fin du troisième passage dans la boucle while : i= … ; j= … ; F= …………………………… ;

Fin du quatrième passage dans la boucle while: i= … ; j= … ; F= …………………………… ;

Fin du cinquième passage dans la boucle while : i= … ; j= … ; F= …………………………… ;

Fin du sixième passage dans la boucle whi le : i= … ; j= … ; F= …………………………… ;

DR 5

Nom : ...…………....………………………...... Prénom : ……………………..……………………..

____Q13.__

Algorithme KMP :

1 def KMP(M, T):
2 F = fonctionannexe(M)
 3 i = 0
 4 j = 0
 5 while i < len(T):
 6 if T[i] == M[j]:
 7 if j == len(M) - 1:
 8 return (i - j)
 9 else:
 10 i = i + 1
 11 j = j + 1
 12 else:
 13 if j > 0:
 14 j = F[j - 1]
 15 else:
 16 i = i + 1
 17 return -1

Explication de la ligne 2 : ……………………………………………………………………………

………………………………………………………………………………………………………..

Explication des 1ignes 3 et 4 : ……………………………………………………………………….

………………………………………………………………………………………………………..

Quelles lignes correspondent au cas où on a trouvé le mot ? ………………………………………..

Que fait le programme dans ce cas? ………………………………………………………………….

………………………………………………………………………………………………………..

Quelles lignes correspondent au cas où on a trouvé deux lettres identiques? ……………………….

………………………………………………………………………………………………………..

Que fait le programme dans ce cas? ………………………………………………………………….

………………………………………………………………………………………………………..

DR 6

Nom : ...…………....………………………...... Prénom : ……………………..……………………..

____Q14.__

1 def triinsertion(L):

____Q15.__

………………………………………………………………………………………………………..

………………………………………………………………………………………………………..

………………………………………………………………………………………………………..

………………………………………………………………………………………………………..

DR 7

Nom : ...…………....………………………...... Prénom : ……………………..……………………..

____Q16.__

1 def recherchedichotomique(a,L):

Intérêt de ce type d'algorithme: ………………………………………………………………….

………………………………………………………………………………………………………..

DR 8

Nom : ...…………....………………………...... Prénom : ……………………..……………………..

____Q17.__

h('CCC') : ……………………………………………………………………………………………

………………………………………………………………………………………………………..

h(' ACG·') : ……………………………………………………………………………………………

………………………………………………………………………………………………………..

h('GAG') : ……………………………………………………………………………………………

………………………………………………………………………………………………………..

____Q18.__
1 def eval(P,b):

DR 9

Nom : ...…………....………………………...... Prénom : ……………………..……………………..

____Q19.__
1 def hornerit(P,b) :

____Q20.__
1 def hornerrec(P,b):
2 if ……………………...
3 return ……………….
4 else :
5 s = P[len(P)-1]
6 s1 = P[0: len(P)-1]
7 return ……………………..

____Q21.__

But de la requête(l) : ………………………………………………………………………………...

………………………………………………………………………………………………………..

DR 10

Nom : ...…………....………………………...... Prénom : ……………………..……………………..

____Q22.__

Requête(2) =

____Q23.__

Requête(3) =

____Q24.__

Requête(4) =

DR 11

