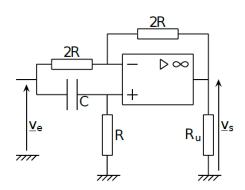
DM TSI2-Orléans

DM - Rétroaction

I Étude d'un filtre actif



Un filtre passif est un filtre qui ne dispose pas de source d'énergie extérieure : par exemple un filtre constitué uniquement de résistances, condensateurs, bobines. À l'inverse, un filtre actif dispose d'une source d'énergie extérieure, et c'est le cas par exemple s'il contient un ALI.

On considère le filtre actif ci-contre. On utilisera le modèle idéal pour l'ALI.

La résistance R_u représente le circuit sur lequel est branché ce montage. Elle ne doit pas intervenir dans vos calculs.

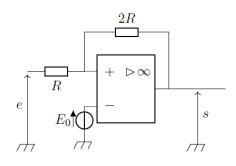
1. L'objectif est d'obtenir l'expression de la fonction de transfert $\underline{H}(j\omega) = \underline{v_s}/\underline{v_e}$.

On suivra la *méthode décrite dans le* pour un montage avec ALI en régime linéaire. En particulier, on exprimera $\underline{v_+}$ en fonction de $\underline{v_e}$, et $\underline{v_-}$ en fonction de $\underline{v_e}$ et $\underline{v_s}$.

Montrer que
$$\underline{H}(j\omega) = -\frac{1 - jRC\omega}{1 + jRC\omega}$$
.

- 2. Donner l'expression du module et de la phase de \underline{H} . Justifier pourquoi ce montage se nomme "montage déphaseur".
- 3. Tracer l'allure du diagramme de Bode en phase. Pour cela on donnera un équivalent de \underline{H} pour $\omega \to 0$ et pour $\omega \to +\infty$, et on calculera l'argument de ces équivalents. Ceci permet d'avoir les asymptotes dans le diagramme.
- **4.** Pour $R = 1.0 \,\mathrm{k}\Omega$ et $C = 130 \,\mathrm{nF}$, donner la valeur de la pulsation $\omega_0 = 1/(RC)$.

Il Comparateur à hystérésis décentré



On considère le montage ci-contre. E_0 est une tension continue. On utilise le modèle idéal pour décrire le comportement de l'ALI.

- 1 Établir le diagramme s-e de ce comparateur à hystérésis. Tracer le sens de parcours du cycle.
- **2 -** Conclure sur ce que permet la tension E_0 par rapport au montage vu

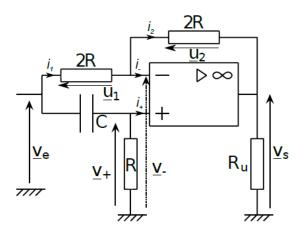
Aide:

- a) Justifier que l'ALI fonctionne en régime saturé
- b) Exprimer les potentiels V⁺ et V⁻ aux entrées de l'ALI en fonction de E₀, s et e
- c) Déterminer l'expression de la tension de basculement E+ où l'ALI bascule de -V_{sat} à +V_{sat}
- d) Déterminer l'expression de la tension de basculement E- où l'ALI bascule de +V_{sat} à -V_{sat}

DM TSI2-Orléans

Correction DM1

I Étude d'un filtre actif



Première étape : on note les tensions et courants pertinents sur le schéma.

- 1. \star L'ALI fonctionne en régime linéaire (d'après l'énoncé). On utilise le modèle idéal. De ces deux faits on en déduit que l'on a $\underline{v}_+ = \underline{v}_-$ et $\underline{i}_+ = \underline{i}_- = 0$.
 - \star Exprimons \underline{v}_+ :

Un diviseur de tension sur R (possible car $\underline{i}_{+}=0$) donne directement $\underline{v}_{+}=\underline{v}_{e}\times\frac{R}{R+\frac{1}{\mathrm{i}C\omega}}=\underline{v}_{e}\times\frac{\mathrm{j}RC\omega}{1+\mathrm{j}RC\omega}$.

 \star Exprimons \underline{v}_{-} :

On utilise la loi des nœuds exprimés en terme de potentiels :

$$\begin{split} \underline{i_1} &= \underline{i_2} \\ \Leftrightarrow & \frac{\underline{u_1}}{2R} = \frac{\underline{u_2}}{2R} \\ \Leftrightarrow & \frac{\underline{v_e} - \underline{v}_-}{2R} = \frac{\underline{v}_- - \underline{v}_s}{2R} \\ \Leftrightarrow & \underline{v}_- = \frac{\underline{v}_e + \underline{v}_s}{2} \end{split}$$

 $\star~$ Puis on injecte dans la relation $\underline{v}_+ = \underline{v}_-$:

On a donc
$$\underline{v}_e \times \frac{\mathrm{j}RC\omega}{1+\mathrm{j}RC\omega} = \frac{\underline{v}_e + \underline{v}_s}{2}$$
.

Après quelques manipulations, on arrive à $\underline{\underline{H}}(\mathrm{j}\omega) = \underline{\underline{v}_s} = -\frac{1-\mathrm{j}RC\omega}{1+\mathrm{j}RC\omega}.$

2. * $|\underline{H}| = |-1|\frac{|1-\mathrm{j}RC\omega|}{|1+\mathrm{j}RC\omega|}$. Or le module du complexe \underline{z} et de son conjugué sont les mêmes, donc on a $|\underline{H}| = 1$.

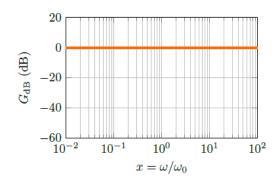
$$\arg(\underline{H}) = \arg(-1) + \arg(1 - jRC\omega) - \arg(1 + jRC\omega)$$

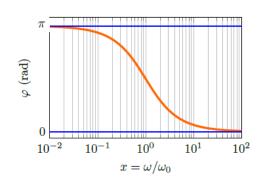
$$\arg(\underline{H}) = \pi + \arctan\left(\frac{-RC\omega}{1}\right) - \arctan\left(\frac{RC\omega}{1}\right)$$

$$\arg(\underline{H}) = \pi - 2\arctan\left(RC\omega\right).$$

On a pu utiliser la formule avec l'arctangente car à chaque fois la partie réelle du complexe est strictement positive. Il ne fallait pas non plus oublier le -1 devant la fraction, dont l'argument est π (réel négatif).

- 3. * Basses fréquences : $\underline{H} \sim -1$, dont l'argument est π .
 - \star Hautes fréquences : <u>H</u> ~ 1, dont l'argument est 0.
 - * On a l'allure suivante :





4. $\omega_0 = 7.7 \times 10^3 \,\mathrm{rad/s}$ (deux chiffres significatifs, comme pour la donnée qui en a le moins $(R \,\mathrm{ici})$).

II Comparateur à hystérésis décentre

- 1 * Rétroaction unique sur la patte + : le fonctionnement est en régime saturé. La sortie s ne peut prendre que les valeurs $+V_{\rm sat}$ et $-V_{\rm sat}$.
 - * Faire le schéma sur votre copie, annoter avec flèches de tensions et courants si besoin.
 - * Exprimons v_+ et v_- .

On a $v_{-} = E_{0}$.

Pour v_+ , un diviseur de tension indique que

$$v_{+} - e = (s - e) \frac{R}{R + 2R} = \frac{s - e}{3}.$$

On a donc $v_{+} = \frac{s}{3} + \frac{2e}{3}$.

 \star Étape 1 : on suppose que $s=+V_{\rm sat}.$ Ceci est possible si et seulement

$$v_{+} \geq v_{-} \Leftrightarrow \frac{s}{3} + \frac{2e}{3} \geq E_{0}$$

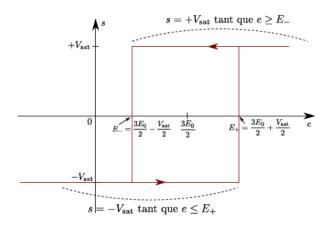
 $\Leftrightarrow \frac{V_{\text{sat}}}{3} + \frac{2e}{3} \geq E_{0}$
 $\Leftrightarrow e \geq \frac{3E_{0} - V_{\text{sat}}}{2}.$

 \star Étape 2 : on suppose que $s=-V_{\rm sat}.$ Ceci est possible si et seulement

$$\begin{split} v_{+} \leq v_{-} &\iff \frac{s}{3} + \frac{2e}{3} \leq E_{0} \\ &\iff \frac{-V_{\text{sat}}}{3} + \frac{2e}{3} \leq E_{0} \\ &\iff e \leq \frac{3E_{0} + V_{\text{sat}}}{2}. \end{split}$$

 $\star\,$ On peut tracer la caractéristique s-e.

On définit pour cela les tensions de basculement $E_- = \frac{3E_0 - V_{\rm sat}}{2} \text{ et } E_+ = \frac{3E_0 + V_{\rm sat}}{2}.$



2 - La tension continue E_0 permet ainsi de décentrer la caractéristique, et d'avoir des tensions de basculement E_- et E_+ qui ne sont pas centrées sur 0 mais sur $\frac{3E_0}{2}$.