PROGRAMME DE COLLE SEMAINE n° 10

CHAPITRE 8: SÉRIES NUMÉRIQUES

1. Généralités.

Définition d'une série à termes réels ou complexes comme la suite des sommes partielles. La série $\sum u_n$ converge si, et seulement la suite des sommes partielles est convergente.

Dans ce cas, la somme de la série est notée $\sum_{n=0}^{+\infty} u_n$. Définition du reste d'ordre N, comme $\sum_{n=N+1}^{+\infty} u_n$.

Le terme général d'une série convergente tend vers 0.

Séries géométriques : sommes partielles, condition nécessaire et suffisante de convergence, valeur de la somme en cas de convergence.

Séries télescopiques.

Une suite (u_n) est une suite convergente si, et seulement si la série $\sum (u_{n+1} - u_n)$ est une série convergente. Linéarité des séries convergentes.

2. Séries à termes positifs.

Une série à termes positifs converge si, et seulement si la suite des sommes partielles est majorée.

Théorème de comparaison : si (u_n) et (v_n) sont positives et si, pour tout n, $u_n \le v_n$ (ou si $u_n = o(v_n)$), alors

la convergence de $\sum v_n$ implique celle de $\sum u_n$, et $\sum_{n=0}^{+\infty} u_n \leqslant \sum_{n=0}^{+\infty} v_n$, dans le cas où $u_n \leqslant v_n$. Si (u_n) et (v_n) sont positives et si $u_n \sim v_n$, alors la convergence de $\sum v_n$ est équivalente à celle de $\sum u_n$.

Comparaison à une série géométrique : règle de d'Alembert.

Toute autre règle de comparaison est hors programme

Théorème de comparaison série-intégrale : si f : $[n_0, +\infty[\to \mathbb{R} \text{ est une fonction continue, positive et décroissante, alors la série <math>\sum_{n \ge n_0} f(n)$ et l'intégrale $\int_{n_0}^{+\infty} f(t) \, \mathrm{d}t$ sont de même nature.

Encadrement du reste : en cas de convergence on a : $\int_{N+1}^{+\infty} f(t) dt \le R_N \le \int_{\infty}^{+\infty} f(t) dt$. Séries de Riemann.

3. Séries absolument convergentes.

Convergence absolue d'une série à termes réels ou complexes.

La convergence absolue implique la convergence.

Inégalité triangulaire.

4. Séries alternées.

Critère de convergence d'une série alternée : si (u_n) est une suite de nombres réels positifs et décroissante vers 0, alors la série $\sum (-1)^n u_n$ est convergente.

DÉMONSTRATIONS À CONNAÎTRE:

- ★ Le terme général d'une série convergente tend vers 0.
- ★ Une suite (u_n) est une suite convergente si, et seulement si la série des différences $\sum (u_{n+1} u_n)$ est une série convergente.
- \star si (u_n) est une suite de nombres réels positifs et décroissante vers 0, alors la série $\sum (-1)^n u_n$ est convergente.