
TABLE DES MATIÈRES

1 Introduction 3
1.1 Les pères de l’informatique. 3
1.2 La mémoire . 4
1.3 Les niveaux de langages de programmation . 5

1.3.1 Le langage humain. 5
1.3.2 Les langages de haut niveau. 5
1.3.3 L’assembleur. 6
1.3.4 Le code machine. 6
1.3.5 Un historique des langages de programmation. 7

1.4 Le code compilé ou interprété. 7

2 La représentation des nombres. 9
2.1 Représentation d’un nombre entier naturel . 9
2.2 Représentation d’un nombre entier relatif. 10
2.3 Représentation d’un nombre réel. 12

2.3.1 Les nombres à virgule fixe. 12
2.3.2 Les nombres à virgule flottante. 12
2.3.3 Limites de la représentation des réels. 14

2.4 Représentation d’un caractère : le code ASCII . 15

3 Algorithmique et Programmation 17
3.1 Introduction. 17
3.2 Affectation des variables. 18
3.3 Fonctions. 19
3.4 Instructions conditionnelles. 20
3.5 Instructions itératives. 22
3.6 Types de variables. 24
3.7 Conception d’un algorithme. 28
3.8 Complexité d’un algorithme. 30
3.9 Les piles . 31
3.10 La récursivité . 32
3.11 Les algorithmes de tri . 34
3.12 La méthode d’Euler . 38
3.13 L’algorithme de Dijkstra . 40

1 Autour des listes 45

1

TABLE DES MATIÈRES TABLE DES MATIÈRES

2 Recherches dans une chaîne 49

3 Cryptographie 51

4 Algorithmes dichotomiques 55

5 Tris quadratiques 57

6 Graphes 59

7 Algorithme de Gauss-Jordan 61

8 La récursivité 67

9 Dynamique gravitationnelle 69

10 Graphes Bis 73

11 Interpolation de Lagrange 75

- 2 -

CHAPITRE 1

INTRODUCTION

1.1 Les pères de l’informatique.

Durant la deuxième guerre mondiale le mathématicien anglais Alan TURING intégra les services secrets bri-
tanniques avec pour mission de déchiffrer les messages codés utilisés par les allemands. En effet, la marine
allemande gagnait la bataille de l’atlantique grâce à sa flotte de sous-marins U-Boot et aux renseignements qui
leur étaient envoyés.

Les allemands utilisaient une machine, dénommée Enigma, pour coder leurs messages. Alan TURING, en
opposition à de nombreux scientifiques de l’époque, pensait que seule une machine pouvait comprendre une
autre machine. Il inventa donc sa propre machine et réussit !

Le décryptage des messages allemands envoyés à leurs sous-marins est considéré par les historiens comme
un élément clé de la victoire des alliés.

Alan TURING voulut aller plus loin et créer une machine capable de résoudre tous les problèmes, et surtout
capable d’imiter la pensée humaine, selon un "algorithme", qu’on nommera ensuite machine de Turing. Consi-
dérons l’expérience qui consiste à poser une série de questions à une personne qui ne doit répondre que par
"oui" ou par "non". On peut imaginer connaître parfaitement cette personne à l’aide d’une séquence finie de
questions. Cette personne serait donc représentée par une série d’instructions accompagnées de leurs réponses
binaires !

Ce concept de programmation initié par la machine de Turing est alors utilisé par les premiers concepteurs
d’ordinateurs.

Dans le même temps, le mathématicien americano-hongrois John VON NEUMANN, qui participa au projet
Manhattan et travailla ainsi à la découverte de la bombe atomique, rapporta un certain nombre de travaux de
l’époque sur l’informatique. Sa publication conduit à la création d’un modèle de calculateur, qu’il attribuait
lui-même à Alan TURING, portant le nom d’architecture de von Neumann et utilisé dans la quasi totalité des
ordinateurs aujourd’hui.

3

CHAPITRE 1 : Introduction 1.2 La mémoire

FIGURE 1.1 – Schéma de l’architecture de von Neumann

1.2 La mémoire

Une mémoire est caractérisée par sa capacité, son temps d’accès aux données et son débit.

Les données sont enregistrées dans une mémoire sous forme binaire, l’information élémentaire est appelée
bit (Binary Digit). Le nombre de bits que peut contenir une mémoire définit sa capacité. Toutefois, les capacités
ne sont pas données en nombre de bits, mais en nombre d’octets, c’est-à-dire en groupement de huit bits. On
définit ensuite les multiples suivants :

1 kilooctet (ko) = 1000 octets = 103 octets
1 mégaoctet (Mo) = 1000 ko = 106 octets
1 gigaoctet (Go) = 1000 Mo = 109 octets
1 téraoctets (To) = 1000 Go = 1012 octets

Remarque. Dans les débuts de l’informatique, les préfixes "kilo", "méga", ... ont été utilisés de manière er-
ronée pour désigner des puissances de 2. Plus précisément, comme 1024 ' 1000, le kilooctet était utilisé pour
désigner 1024 soit 210 octets ; le mégaoctet pour 220 octets... Il faut se méfier de cet usage qui perdure même s’il
va à l’encontre de la norme.

Le temps d’accès est le temps mis par la machine entre l’instant de lancement de la commande d’écriture
et l’instant où elle est réalisée.

Le débit est le nombre de bits écrits ou lus en une seconde.
Il s’exprime en bit/s. Parfois, lors de la transmission de données, le débit est donné en bauds, ce qui repré-

sente le nombre d’unité de signal par unité de temps. On a la formule :

débit binaire = débit en bauds × nombre de bits par baud

Lorsque chaque bit est codé par un signal électrique, le débit binaire est égal au débit en bauds.

On peut classer les mémoires en deux catégories : les mémoires vives et les mémoires de masse.

Les mémoires vives ou RAM pour Random Access Memory sont usuellement plus rapides et de plus faible
capacité (4 à 8 Go) que les mémoires de masse et surtout volatiles car elles perdent leur contenu dès qu’elles
sont hors tension. Une RAM est constituée de composants électroniques.

Les mémoires de masse ou ROM pour Read Only Memory sont plus lentes mais de plus grande capacité
(jusqu’à plusieurs To) et surtout n’ont pas besoin de courant pour garder l’information. Un disque dur classique
(HDD) est composé de plateaux tournants et de têtes de lecture.

La rapidité d’un ordinateur dépend de la rapidité en lecture et en écriture des mémoires. Or, les mémoires
les plus rapides sont aussi les plus chères et ne conservent pas les données après extinction de l’alimentation.
C’est pour cela qu’un ordinateur utilise toujours les deux types de mémoires précédents : l’un pour stocker

- 4 -

1.3 Les niveaux de langages de programmation CHAPITRE 1 : Introduction

les informations à long terme, l’autre pour réaliser des opérations sur les données. Ainsi ces deux mémoires
échangent en permanence des informations.

Le disque dur SSD ((Solid State Drive) est un nouveau type de disque dur qui n’utilise pas la même techno-
logie que le disque dur classique. Ce disque dur utilise une mémoire flash, il est muni de composants électro-
niques pour stocker les données, sauf qu’à la différence de la RAM, les données restent inscrites sur le disque
dur même si on éteint l’ordinateur ; comme les clés USB ou les cartes SD. Cette mémoire flash allie donc rapidité
des mémoires vives au stockage des données hors tension des mémoires mortes.

1.3 Les niveaux de langages de programmation

Pour communiquer avec un ordinateur, il existe plusieurs niveaux de langages. Le langage de plus haut
niveau est le langage de l’homme, et donc incompréhensible pour la machine. Le langage de plus bas niveau
est celui qui peut être interprété par le processeur, mais incompréhensible pour l’homme.

Pour illustrer ces niveaux de langage, utilisons l’algorithme de Syracuse, qui crée une suite de nombres se
terminant toujours par 4, 2 et 1. Nous écrirons cet algorithme à l’aide de différents langages, du plus haut niveau
jusqu’au plus bas.

1.3.1 Le langage humain.

C’est le langage courant, du plus haut niveau possible. Lorsqu’un algorithme est écrit dans ce langage, on
parle de pseudo code.

« Je prends un nombre entier,
tant qu’il est supérieur à un,
s’il est pair je le divise par deux,
s’il est impair je le multiplie par trois et j’ajoute un. »

1

FIGURE 1.2 – Le langage humain ou pseudo code

1.3.2 Les langages de haut niveau.

Un langage évolué de programmation est une notation conventionnelle destinée à formuler des algorithmes
et produire des programmes informatiques qui les appliquent. D’une manière similaire à une langue naturelle,
un langage évolué de programmation est fait d’un alphabet, un vocabulaire, des règles de grammaire, et des
significations. Il existe de nombreux langages de programmation, voici deux exemples :

int main()
{

while (N > 1)
{

if (N % 2 == 0)
{

N = N / 2;
} else {

N = 3 * _N + 1;
}

}
mainendloop: goto mainendloop;

}

« Je prends un nombre entier,
tant qu’il est supérieur à un,
s’il est pair je le divise par deux,
s’il est impair je le multiplie par trois et j’ajoute un. »

def syracuse(n):
while n>1:

if n%2==0:
n=n/2
print(n)

else:
n=3*n+1
print(n)

return n

1

FIGURE 1.3 – Langage C et langage python

- 5 -

CHAPITRE 1 : Introduction 1.3 Les niveaux de langages de programmation

1.3.3 L’assembleur.

Un langage d’assemblage ou langage assembleur est un langage de bas niveau qui représente le langage ma-
chine sous une forme lisible par un humain. Les combinaisons de bits du langage machine sont représentées
par des symboles dits mnémoniques, faciles à retenir. Le programme assembleur convertit ces mnémoniques
en langage machine en vue de créer par exemple un fichier objet ou un fichier exécutable.

000002a2 <main>:
 2a2: 14 be out 0x34, r1 ; 52
 2a4: 1e c0 rjmp .+60 ; 0x2e2
<main+0x40>
 2a6: 80 91 00 01 lds r24, 0x0100
 2aa: 90 91 01 01 lds r25, 0x0101
 2ae: 80 fd sbrc r24, 0
 2b0: 0a c0 rjmp .+20 ; 0x2c6
<main+0x24>
 2b2: 80 91 00 01 lds r24, 0x0100
 2b6: 90 91 01 01 lds r25, 0x0101
 2ba: 62 e0 ldi r22, 0x02 ; 2
 2bc: 70 e0 ldi r23, 0x00 ; 0
 2be: 0e 94 78 01 call 0x2f0 ; 0x2f0 <__divmodhi4>
 2c2: cb 01 movw r24, r22
 2c4: 0a c0 rjmp .+20 ; 0x2da
<main+0x38>
 2c6: 20 91 00 01 lds r18, 0x0100
 2ca: 30 91 01 01 lds r19, 0x0101
 2ce: c9 01 movw r24, r18
 2d0: 88 0f add r24, r24
 2d2: 99 1f adc r25, r25
 2d4: 82 0f add r24, r18
 2d6: 93 1f adc r25, r19
 2d8: 01 96 adiw r24, 0x01 ; 1
 2da: 90 93 01 01 sts 0x0101, r25
 2de: 80 93 00 01 sts 0x0100, r24
 2e2: 80 91 00 01 lds r24, 0x0100
 2e6: 90 91 01 01 lds r25, 0x0101
 2ea: 02 97 sbiw r24, 0x02 ; 2
 2ec: e4 f6 brge .-72 ; 0x2a6
<main+0x4>
 2ee: ff cf rjmp .-2 ; 0x2ee
<main+0x4c>

FIGURE 1.4 – Un extrait de l’algorithme de Syracuse en assembleur

1.3.4 Le code machine.

Le langage machine, ou code machine, est la suite de bits qui est interprétée par le processeur d’un ordinateur
exécutant un programme informatique. C’est le langage natif d’un processeur, c’est-à-dire le seul qu’il puisse
traiter. Il est composé d’instructions et de données à traiter codées en binaire.

FIGURE 1.5 – Exemple de fichier HEX, contenant du code machine

Chaque processeur possède son propre langage machine, dont un code machine qui ne peut s’exécuter
que sur la machine pour laquelle il a été préparé. Le code machine est aujourd’hui généré automatiquement,
généralement par le compilateur d’un langage de programmation.

- 6 -

1.4 Le code compilé ou interprété. CHAPITRE 1 : Introduction

1.3.5 Un historique des langages de programmation.

FIGURE 1.6 – Historique des langages de programmation

1.4 Le code compilé ou interprété.

Le langage de programmation est mis en œuvre par un traducteur automatique, soit par un compilateur
comme pour le langage C, soit par un interpréteur comme pour le langage Python. Un compilateur est un pro-
gramme informatique qui transforme dans un premier temps un code source écrit dans un langage de program-
mation donné en un code cible qui pourra être directement exécuté par un ordinateur, à savoir un programme
en langage machine ou en code intermédiaire, tandis que l’interpréteur réalise cette traduction "à la volée".

- 7 -

CHAPITRE 1 : Introduction 1.4 Le code compilé ou interprété.

- 8 -

CHAPITRE 2

LA REPRÉSENTATION DES NOMBRES.

2.1 Représentation d’un nombre entier naturel

On peut donner l’écriture générale d’un nombre dans une base quelconque :

N(B) =
n−1∑
k=0

ak B k = an−1B n−1 +·· ·+ak B k +·· ·+a1B 1 +a0B 0

où :
¦ n est le nombre de chiffres composant N
¦ ak est le chiffre de rang k
¦ B est la base

On trouve des bases B de type décimale (Base 10), octale (Base 8), binaire (Base 2) et hexadécimale (Base
16).

Exemple 2.1 Ecriture d’un nombre naturel en base 10 :

247(10) = 2×102 +4×101 +7×100

où 2 est appelé "digit de poids fort" ou "Most Significant Digit" (MSD) et 7 "digit de poids faible" ou "Least
Significant Digit" (LSD).

? En binaire : la base 2 : Chaque bit prend une valeur 0 ou 1, le mot de 8 bits est l’octet, le mot de 4 bits est
le quartet.

Exemple 2.2 Ecriture d’un nombre naturel en base 2 :

1111 0111(2) = 1×27 +1×26 +1×25 +1×24 +0×23 +1×22 +1×21 +1×20

↑ ↑ = 128+64+32+16+0+4+2+1
MSB LSB = 247(10)

Remarque. Phénomène d’overflow : Si on ajoute 10 à 247, on dépasse la capacité de 8 bits. En effet, on
obtiendrait 247+10 = 257(10) = 1×28+1×20 = 1 0000 0001(2) ; mais comme seuls les 8 derniers bits sont gardés,
on obtient 0000 0001, c’est-à-dire 1(10).

9

CHAPITRE 2 : La représentation des nombres. 2.2 Représentation d’un nombre entier relatif.

? En hexadécimal : la base 16 : On utilise un codage alphanumérique, qui fait correspondre à chaque
nombre décimal compris entre 0 et 15 (donc codé sur 4 bits en base 2), un chiffre ou une lettre, suivant la
table de correspondance ci-dessous.

N(10) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N(16) 0 1 2 3 4 5 6 7 8 9 A B C D E F
N(2) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Exemple 2.3 Ecriture d’un nombre naturel en base 16

F7(16) = $F7 = 15×161 +7×160 = 240+7 = 247(10)

Exemple 2.4 Conversion d’un nombre en base 2 en base 16.

111100010111(2) = 1111︸ ︷︷ ︸
F

0001︸ ︷︷ ︸
1

0111︸ ︷︷ ︸
7

= F17(16)

? Le code BCD : Le code BCD ("Binary Coded Decimal" ou "décimal codé binaire") permet de coder des
nombres d’une façon relativement proche de la représentation usuelle (en base 10). Chaque chiffre (compris
entre 0 et 9) du nombre est codé en binaire naturel (donc sur 4 bits). Bien que gourmand en mémoire, le code
BCD est encore utilisé pour coder l’heure et la date dans le BIOS des PC par exemple. Ce code est plus fréquent
en électronique, pour représenter les nombres sur des afficheurs (montres, calculatrices...)

Exemple 2.5 Codage BCD.

2089(10) =
(
0010 0000 1000 1001

)
(BC D)

Coder maintenant 2089(10) en base 2 et comparer.

2.2 Représentation d’un nombre entier relatif.

Représentation signée : un entier relatif est un entier pouvant être négatif. Il faut donc coder le nombre de
telle façon que l’on puisse savoir s’il s’agit d’un nombre positif ou d’un nombre négatif, et il faut de plus que
les règles d’addition soient conservées. On utilise pour cela la méthode dite du complément à 2 pour obtenir
l’opposé d’un nombre positif ou nombre négatif CPL2.

Exemple 2.6

FIGURE 2.1 – Méthode du complément à 2

- 10 -

2.2 Représentation d’un nombre entier relatif. CHAPITRE 2 : La représentation des nombres.

En effet, si

N = 0×27 +1×26 +0×25 +0×24 +1×23 +0×22 +0×21 +1×20

on note M le complément à 1, alors

M = 1×27 +0×26 +1×25 +1×24 +0×23 +1×22 +1×21 +0×20

ainsi

N +M = 27 +26 +25 +24 +23 +22 +21 +20 = 28 −1 = 256−1

et le complément à 2 est alors M +1 = 28 −N = 256−N ; sur 8 bits, il représente donc bien −N .

FIGURE 2.2 – Représentation d’un entier relatif en binaire signé

Sur 8 bits : On pourra coder un nombre de −128 à 127.

Valeur en entier naturel 0 à 127 128 à 255
Valeur en entier relatif 0 à 127 −128 à −1

Sur 16 bits : On pourra coder un nombre de −32768 à 32767.

Valeur en entier naturel 0 à 32767 32768 à 65535
Valeur en entier relatif 0 à 32767 −32768 à −1

D’une manière générale, sur n bits, les entiers relatifs positifs commence par 0 et le plus grand entier relatif
positif sera 2n−1 −1. Pour coder son opposé :

¦ on représente la valeur en base 2 sur n −1 bits,
¦ on complémente chaque bit (on inverse chaque bit),
¦ on ajoute 1,

Exemple 2.7 Coder en binaire sur 4 bits les nombres 0,1,2, ...7 ; les opposés −1,−2, ...,−7 ; puis −8.

Effectuer les opérations suivantes en binaire : addition de 3 et de 2 ; soustraction de 3 et de 2 ; addition de 55
et 42 ; soustraction de 55 et 42.

- 11 -

CHAPITRE 2 : La représentation des nombres. 2.3 Représentation d’un nombre réel.

2.3 Représentation d’un nombre réel.

2.3.1 Les nombres à virgule fixe.

En décimal, on peut écrire facilement les nombres à virgule, en posant 0,1 = 10−1 ; 0,01 = 10−2... ; ainsi 3,625 =
3×100 +6×10−1 +2×10−2 +5×10−3.

De la même façon, en binaire, 0,1 peut être noté 2−1 ; ainsi

11,101(2) = 1×21 +1×20 +1×2−1 +0×2−2 +1×2−3 = 2+1+ 1

2
+0+ 1

8
= 3,625(10)

Cette notation étant comprise, reste le problème de la conversion des nombres. Si passer de l’écriture bi-
naire à l’écriture décimale est assez simple, il est plus difficile de passer de l’écriture décimale à l’écriture bi-
naire.

Une première possibilité consiste à coder de manière indépendante les parties entière et décimale.
Par convention, on détermine combien de bits représentent la part entière, et la part décimale du nombre.

Par exemple, 8 bits pour la part entière, et 8 bits pour la part décimale.

Exemple 2.8 Le nombre 146,25 peut s’écrire :

Exemple 2.9 Utiliser la méthode de virgule fixe pour coder 9,375.

Ce codage n’est malheureusement pas optimal, car il ne permet pas de coder des parties décimales très
petites, par exemple, avec 8 bits pour la partie décimale, comme 2−8 = 0,00390625 ; on peut donc pas coder
0,00001.

2.3.2 Les nombres à virgule flottante.

Si on veut coder le nombre 1101,1010(2) on peut écrire 1101 1010 et décider de décaler de 4 chiffres pour
avoir la virgule. Mais pour 0,000 000 000 111(2), 8 bits ne suffiraient pas pour coder la partie décimale, car les 8
premières décimales sont des 0.

Pour optimiser le codage, il suffit de supprimer les 0 inutiles et de garder les chiffres caractéristiques, ici 111,
qu’on appelle mantisse, et on nomme exposant le nombre de chiffres avant la mantisse, ici 10 ; on peut écrire
de manière scientifique

0,000 000 000 111 = 1×2−10 +1×2−11 +1×2−12 = 1,11×2−10 ; l’exposant vaut −10 et

1101,1010 = 1,1011 0100×23 ; l’exposant vaut 3

L’exposant doit donc pouvoir être positif (lorsque la virgule se situe après le début de la mantisse) ou négatif
(lorsque la virgule se situe avant le début de la mantisse).

La norme IEEE 754 définit ainsi la façon de coder un nombre réel. Cette norme se propose de coder le
nombre sur 32 bits (simple précision) ou sur 64 bits (double précision) et définit trois composantes :

¦ S qui représente le signe du nombre,
¦ E qui représente l’exposant,
¦ M qui représente la mantisse.

- 12 -

2.3 Représentation d’un nombre réel. CHAPITRE 2 : La représentation des nombres.

Sur 32 bits (simple précision) :
¦ 1 bit pour le signe : S = 0 pour un nombre positif, S = 1 pour un nombre négatif.
¦ Les 8 bits suivants pour l’exposant E.

L’exposant peut être positif ou négatif. La représentation des nombres signés (complément à 2) rendant
la comparaison entre les nombres flottants difficile, on préfère décaler l’exposant, c’est-à-dire lui sous-
traire 127(10). Cet exposant varie donc entre −126 et 127.
255− 127 = 128 est réservé pour coder ±∞ (si la mantisse est nulle) ou un NaN, Not a Number (si la
mantisse est non nulle) ; 0−127 =−127 est réservé pour coder 0 (avec la mantisse nulle).

¦ Les 23 suivants pour la mantisse M.
Cette mantisse est le nombre décimal qui intervient dans l’écriture scientifique d’un nombre; le premier
chiffre n’est jamais nul (sauf pour le nombre 0), donc en binaire le premier chiffre est 1 ; il est implicite,
donc non codé. On rajoute ce 1 devant les 23 bits pour reconstituer la mantisse.

Ainsi le codage se fait sous la forme suivante :

SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM

Le nombre pourra ainsi s’écrire :

(−1)S × (1M)×2E−127

Sur 64 bits (double précision) :
¦ 1 bit pour le signe S, S = 0 pour un nombre positif, S = 1 pour un nombre est négatif,
¦ les 11 bits suivants pour l’exposant E, valeur à laquelle on doit soustraire 102310, l’exposant variant donc

de −1022 à 1023,
¦ les 52 suivants pour la mantisse M (plus 1 bit implicite).

Ainsi le codage se fait sous la forme suivante :
SEEEEEEEEEEEMMM

Le nombre pourra ainsi s’écrire :

(−1)S × (1M)×2E−1023

Exemple 2.10

a) Soit

0100 0000 1011 1000 0000 0000 0000 0000

codé comme un réel à virgule flottante sur 32 bits. On obtient :
¦ S = 0, donc le nombre est positif ;
¦ E = 1000 0001(2), donc 129(10), auquel on soustrait 127, donc E = 2 ;
¦ La mantisse vaut 1011 1000 0000 0000 0000 0000

La représentation du nombre en notation scientifique binaire est donc :

(−1)0 ×1,0111×22

En écriture décimale, cela donne :

(−1)0(1×20 +0×2−1 +1×2−2 +1×2−3 +1×2−4)×22

= (1+0,25+0,125+0,0625)×4

= 4+1+0,5+0,25

= 5,75

b) Encoder en norme IEEE 754 avec simple précision le nombre 16,5.

- 13 -

CHAPITRE 2 : La représentation des nombres. 2.3 Représentation d’un nombre réel.

2.3.3 Limites de la représentation des réels.

Même si on peut choisir une précision de plus en plus forte, la représentation des nombres reste limitée.
Lorsque le nombre de bits utilisés est insuffisant, cela conduit au phénomène d’overflow.

Un manque de précision peut également conduire à un résultat faux.

Exemple 2.11 Peut-on coder exactement le nombre décimal 0,1 ?

Voici un test en python où les nombres sont codés en double précision :

>>> 0.1+0.1+0.1==0.3
False

Exemple 2.12 Considérons l’équation

x2 +1,4x +0,49 = 0

Le discriminant vaut ∆ = 1,42 − 4 × 1 × 0,49 = 0 et on conclut que l’équation possède une unique solution;
cependant, lorsqu’on calcule ce discriminant avec des flottants, on obtient

-2.22044604925e-16

qui est strictement négatif ! ! !

Exemple 2.13 Pour calculer π Archimède utilise des polygones à 2n côtés inscrits dans le cercle unité et dont il
calcule le périmètre. Lorsque n devient très grand le demi-périmètre tend vers π.

Voici un programme Python correspondant ...

import numpy as np

#la bibliothèque numpy contient les fonctions mathématiques usuelles comme racine carrée
(" square root") ; on importe la

bibliothèque sous l’alias np

a=np.sqrt(2)
n=4
while a>0.0000000001:

a=np.sqrt(2-2*np.sqrt(1-a*a/4))
n=n*2
P=(n/2)*a
print(P)

... et le résultat ! ! !

3.06146745892 3.14158772528 3.14159260738 3.14245127249
3.12144515226 3.1415914215 3.14159291094 3.14245127249
3.13654849055 3.14159234561 3.1415941252 3.16227766017
3.14033115695 3.14159257655 3.1415965537 3.16227766017
3.14127725093 3.14159263346 3.1415965537 3.46410161514
3.14151380114 3.14159265481 3.14167426502 4.0
3.14157294037 3.14159264532 3.14182968189 0.0

- 14 -

2.4 Représentation d’un caractère : le code ASCII CHAPITRE 2 : La représentation des nombres.

2.4 Représentation d’un caractère : le code ASCII

La mémoire de l’ordinateur conserve toutes les données sous forme numérique, codées en binaire. Il n’existe
pas de méthode pour stocker directement les caractères. Chaque caractère possède donc son équivalent en
code numérique : c’est le code ASCII (American Standard Code for Information Interchange).

Le code ASCII standard permet de coder des caractères alphanumériques de l’alphabet latin sur 7 bits ; c’est-
à-dire 128 caractères disponibles, de 0 à 127. Par exemple, le caractère "a" est associé à "01100001" et "A" est
associé à "01000001". Les sept bits utiles sont précédés d’un "0" car les ordinateurs travaillent sur des multiples
de huit bits (multiples d’un octet).

La norme ASCII permet ainsi à toutes sortes de machine de stocker, analyser et communiquer de l’informa-
tion textuelle. En particulier, la quasi totalité des ordinateurs personnels utilisent l’encodage ASCII.

Certains caractères n’ont pas vocation à être affichés, mais correspondent à des commandes de contrôle. Par
exemple le code "00001010" permet d’aller à la ligne.

Cependant, le code ASCII standard est limité car il ne peut pas encoder certains caractères, comme les carac-
tères accentués par exemple. Le code a été créé pour encoder des textes en anglais !

Le codage ASCII peut donc être complété par des codes utilisant le huitième bit ; les caractères de 128 à 255
pour les accents, par exemple. Mais ces codes diffèrent d’un pays à l’autre ! Pour permettre une communication
internationales ces normes complémentaires ont été unifiées en un code appelé Unicode.

Le problème de l’Unicode est qu’il peut comporter un million de caractères, couvrant 100 écritures. Généra-
lement, en Unicode, un caractère prend 2 octets ; autrement dit, un texte prend deux fois plus de place qu’en
ASCII ! De plus, si on prend un texte en français, la grande majorité des caractères utilisent seulement le code
ASCII.

Dans la pratique, le codage le plus couramment utilisé est l’UTF-8. Cette norme est une extension du code
ASCII, utilisant le huitième bit : chaque caractère est codé par une séquence d’octets.

Le principe est simple : tout caractère ASCII se code de la même manière en UTF-8 ; et dès qu’on a besoin
d’un caractère UNICODE (non ASCII), on utilise un caractère spécial signalant "attention, le caractère suivant
est en Unicode". Par exemple, pour le texte "polynôme du second degré", seuls le "ô" et le "é" ne sont pas dans
la table ASCII. On écrit en UTF-8 :

polynÃ´me du second degré

- 15 -

CHAPITRE 2 : La représentation des nombres. 2.4 Représentation d’un caractère : le code ASCII

ANNEXE - TABLE ASCII.

FIGURE 2.3 – Table ASCII

- 16 -

CHAPITRE 3

ALGORITHMIQUE ET PROGRAMMATION

3.1 Introduction.

Un algorithme est une suite finie d’opérations élémentaires permettant d’effectuer un calcul ou de résoudre
un problème donné de manière automatique. En mathématiques, nous connaissons, par exemple, l’algorithme
de résolution d’une équation du second degré ou l’algorithme du pivot de Gauss ; on peut retrouver le principe
dans d’autres domaines, par exemple, la réalisation d’une recette de cuisine peut être considérée comme un
algorithme.

L’algorithmique désigne l’ensemble des règles et des techniques qui sont impliquées dans la définition et
la conception d’algorithme.

Un programme est une suites d’instructions pouvant être exécutées par un ordinateur. Le programme est
donc la traduction en langage compréhensible par la machine d’un algorithme.

Pour rédiger un algorithme, il existe deux modes de représentations :
¦ l’organigramme ou algorithme graphique :

L’organigramme ci-contre représente une
structure alternative. Si la condition 1 est vé-
rifiée, alors on effectue le traitement 1 ; si-
non, on effectue le traitement 2.

¦ le pseudo-code ou algorithme textuel.
Le peudo-code est une façon de décrire un algorithme sans référence à un langage de programmation
particulier. Il ressemble cependant à un langage de programmation, mais sans les problèmes de syntaxe.
C’est la représentation que nous allons choisir.

Exemple 3.1 On considère l’algorithme de Syracuse qui consiste à demander un nombre entier non nul ;
si celui-ci est pair, on le divise par deux, s’il est impair, on le multiplie par 3 et on ajoute 1. En répétant
ainsi l’opération on obtient une suite de nombres, appelée suite de Syracuse.
La conjecture de Syracuse est l’hypothèse mathématique selon laquelle la suite se termine toujours par
4, 2 et 1.

17

CHAPITRE 3 : Algorithmique et Programmation 3.2 Affectation des variables.

En pseudo-code, on peut écrire :

Variable n un Entier
Début
Ecrire (’Entrez la valeur de n’)
Lire n
Tant que n > 1
Si n est pair
n ←− n/2
Sinon
n ←− 3×n +1
Ecrire n
Fin

En langage Python cela se traduit par :

n=input(’Entrer une valeur entière : ’)
n=int(n)
while n>1:

if n%2==0:
n=n/2

else:
n=3*n+1

print(n)

On remarque que Python interprète dynamiquement le type de variables ; c’est-à-dire qu’il peut recon-
naître le type de variable et donner l’information à l’ordinateur.

3.2 Affectation des variables.

Dans un programme informatique, on va avoir en permanence besoin de stocker provisoirement des valeurs.
Il peut s’agir de données issues du disque dur, fournies par l’utilisateur (frappées au clavier) ; il peut aussi s’agir
de résultats obtenus par le programme, intermédiaires ou définitifs. Ces données peuvent être de plusieurs
types : des nombres (entiers de type int, réels ou flottants de type float, complexes de type complex), du texte
ou chaîne de caractères (string de type str), des booléens (de type bool), des listes (de type list)... Toujours
est-il que dès que l’on a besoin de stocker une information au cours d’un programme, on utilise une variable.
Une variable est en quelque sorte une boîte, que le programme (l’ordinateur) va repérer par une étiquette. Pour
avoir accès au contenu de la boîte, il suffit de la désigner par son étiquette. Dans l’ordinateur, physiquement, il
y a un emplacement de mémoire dédié à chaque variable, repéré par une adresse binaire.

Exercice 3.1 Ecrire un algorithme permettant d’échanger les contenus de deux variables A et B

Exercice 3.2 Ecrire un algorithme permettant de transférer à B la valeur de A, à C la valeur de B et à A la valeur
initiale de C .

Incrémentations. Dans un programme, on a souvent besoin d’incrémenter une variable a, c’est-à-dire rem-
placer a par a+1 par exemple. L’instruction a=a+1 peut être remplacer par a+=1. Voici un tableau de correspon-
dances :

a+=b a=a+b incrémentation de b unités
a-=b a=a-b décrémentation de b unités
a*=b a=a*b multiplication de a par b
a/=b a=a/b division de a par b
a//=2 a=a//2 division entière de a par 2
a%=2 a=a%2 reste de la division de a par 2

- 18 -

3.3 Fonctions. CHAPITRE 3 : Algorithmique et Programmation

3.3 Fonctions.

Un programme peut être écrit sous forme de script, il s’agit alors d’une suite d’instructions et commandes
destinées à effectuer des opérations conduisant au résultat souhaité. On peut également définir une fonction
(au sens informatique) dont le but est d’appeler un certain nombre d’arguments pour fournir en sortie le ré-
sultat.

Par exemple, voici une fonction qui permet le calcul du discriminant d’un polynôme du second degré :

def delta(a,b,c):
return b** 2-4*a*c

Le nom de la fonction est delta, les arguments a, b et c sont entre parenthèses, les instructions nécessaires
à cette fonction sont indentées après le " : ".
L’instruction return donne et garde en mémoire le résultat de la fonction.
L’instruction print permet uniquement l’affichage du résultat, et alors, la fonction delta ne peut pas interve-
nir dans un autre programme.
Il est fortement conseillé d’ajouter des commentaires à sa fonction pour qu’elle soit compréhensible par tout
utilisateur :

def delta(a,b,c):
’’’
* entrée : float ; a, b et c sont des réels
* sortie : float ; la fonction renvoie le discriminant
’’’

return b** 2-4*a*c

On peut également utiliser des annotations pour préciser le type des paramètres attendus et type de la
variable retournée :

def delta(a:float ,b:float ,c:float)->float:
return b** 2-4*a*c

La signature de la fonction regroupe le nom de la fonction, le type de ses arguments et le type de la variable
renvoyée. Pour la fonction delta, la signature est :

delta(float,float,float) -> float

Les variables a, b et c qui interviennent dans la définition de la fonction sont locales.
Par exemple :

>>> a=2
>>> delta(1,2,1)
0
>>> print(a)
2

On peut décider de rendre une variable globale en le spécifiant :

def f():
global y
y=12*x
return y

Voici le résultat de l’exécution de ce programme :

>>> x=7
>>> y=1
>>> f()
84
>>> y
84

- 19 -

CHAPITRE 3 : Algorithmique et Programmation 3.4 Instructions conditionnelles.

! Dans la mesure du possible on évitera l’utilisation de variables globales !

La portée d’une variable provient directement de l’endroit où elle a été créée. Une variable locale créée dans
une fonction n’aura plus de visibilité lorsqu’on aura quitté l’espace de cette fonction. Il existe trois portées :

¦ L : la portée locale, qui est explorée en premier. Cet espace de nom est effacé dès qu’on quitte le fonction.
¦ G : la portée globale, explorée ensuite. Cet espace contient les nom globaux du module courant.
¦ I : la portée interne, explorée en dernier. Cet espace contient les noms, variables et fonctions intégrés à

Python comme : sqrt, abs, len...

3.4 Instructions conditionnelles.

Il existe des instructions pour permettre à la machine de suivre une liste d’instructions ou une autre. Une telle
procédure s’appelle test ou une structure alternative ou encore structure conditionnelle.

Il existe essentiellement deux formes d’instructions conditionnelles :

Si booléen Alors
Instructions

FinSi

Si booléen Alors
Instructions 1

Sinon
Instructions 2

FinSi

On rappelle qu’un booléen est une expression qui ne prend que deux valeurs : VRAI ou FAUX.

Exemple 3.2

Si x Ê 0 Alors
Ecrire

p
x

FinSi

Exemple 3.3

Si x > 0 Alors
Ecrire (’le nombre’,x,’est strictement positif’)

Sinon
Ecrire (’le nombre’,x,’est négatif’)

FinSi

En langage Python, en utilisant une fonction, cela se traduit par :

def signe(x):
if x>0:

return ’le nombre ’,x,’est strictement positif ’
else:

return ’le nombre ’,x,’est negatif ’

Exercice 3.3 Ecrire un algorithme qui demande deux nombres et les redonne dans l’ordre croissant.

Exercice 3.4 Ecrire un algorithme qui demande deux nombres et qui donne le signe (au sens large) de leur pro-
duit ; sans calculer le produit des deux nombres.

- 20 -

3.4 Instructions conditionnelles. CHAPITRE 3 : Algorithmique et Programmation

Une instruction conditionnelle peut graphiquement se représenter comme un arbre de probabilités à deux
branches. Lorsque deux branches ne suffisent pas à faire l’inventaire de tous les résultats possibles, on a recours
aux tests imbriqués.

Exemple 3.4 Voici un algorithme qui donne l’état de l’eau en fonction de la température de celle-ci :

Variable Temp en Entier
Début
Écrire "Entrez la température de l’eau :"
Lire Temp
Si Temp <= 0 Alors

Écrire " C’est de la glace"
Sinon

Si Temp < 100 Alors
Écrire " C’est du liquide"

Sinon
Écrire " C’est de la vapeur"

FinSi
FinSi
Fin

Exercice 3.5 Etant donnés trois nombres a, b et c ; écrire une fonction python qui retourne leur minimum.

Lors de l’utilisation de tests imbriqués on peut fusionner le Sinon suivi du Si en un seul SinonSi.

Exemple 3.5 Suivant les valeurs de x, on souhaite déterminer l’expression de la fonction

f : x 7→ |x|−2|x −1|+ |x −2|
Définition de la fonction f (x)
Si x < 0 Alors

y = 0
SinonSi (x Ê 0) et (x < 1) Alors

y = 2x
FinSi

SinonSi (x Ê 1) et (x < 2) Alors
y =−2x +4

FinSi
Sinon

y = 0
FinSi
Ecrire y
Fin

def f(x):
if x<0:

y=0
elif (x>=0) and (x<1):

y=2*x
elif (x>=1) and (x<2):

y=-2*x+4
else:

y=0
return y

- 21 -

CHAPITRE 3 : Algorithmique et Programmation 3.5 Instructions itératives.

3.5 Instructions itératives.

Lorsqu’une séquence d’instructions doit être répétée "en boucle", on a recours à une structure itérative. Il
existe deux sortes de telles structures :

¦ la boucle inconditionnelle, ou boucle Pour en pseudo-code, ou encore boucle for en langage Python ;
cette boucle suppose que l’on connaisse le nombre d’itérations au départ ;

¦ la boucle conditionnelle, ou boucle TantQue en pseudo-code, ou encore boucle while en langage Py-
thon ; TantQue est suivi d’un booléen : si celui-ci est VRAI alors le programme "entre" dans la boucle et
suit les instructions jusqu’au FinTantQue et il retourne ensuite sur la ligne TantQue ; la boucle s’arrête
lorsque le booléen prend la valeur FAUX.

Comparons l’utilisation de ces deux structures sur l’exemple suivant :

Exemple 3.6 On souhaite calculer la somme des entiers naturels jusqu’à N , où N est une valeur entrée par
l’utilisateur.

Variables N , k et somme en Numérique
Début
Ecrire (’Entrez la valeur de N : ’)
Lire N
somme ← 0
Pour k de 1 à N

somme ← somme +k
Suivant
Ecrire (’La somme des N entiers naturels est’,somme)
Fin

Variables N , k et somme en Numérique
Début
Ecrire (’Entrez la valeur de N : ’)
Lire N
somme ← 0
k ← 0
TantQue k É N

somme ← somme +k
k ← k +1

FinTantQue
Ecrire (’La somme des N entiers naturels est’,somme)
Fin

’’’somme des entiers naturels
boucle for et boucle while ’’’
def somme_entiers(n):

somme=0
for k in range(1,n+1):

somme=somme+k
return somme

def somme_entiers(n):
somme=0
k=0
while k<=n:

somme=somme+k
k=k+1

return somme

Remarques.
¦ Les boucles for et while peuvent donc être utilisées indifféremment dans la plupart des situations ité-

ratives.
¦ La boucle for nécessite de connaître le nombre d’itérations, mais elle a l’avantage d’éviter de program-

mer la progression de la variable.

¦ ! Avec une boucle while il faut s’assurer que le booléen puisse être VRAI, car dans le cas contraire
le programme n’entrera jamais dans la boucle ! Il faut également s’assurer que le booléen puisse être
FAUX, car sinon le programme ne sort jamais de la boucle ! ! ! On parle de boucle infinie.

¦ Dans l’instruction for k in range(1,n) la variable k va prendre toutes les valeurs comprises entre 1 et

n −1 ! avec un pas de 1. Pour changer le pas on peut utiliser une boucle while ou range(1,n,2)
pour un pas de 2, range(1,n,3) pour un pas de 3... Mais dans une boucle for il est interdit de changer la
valeur de la variable qui sert de compteur à l’intérieur de la boucle !

Exercice 3.6 Adapter l’un des algorithmes précédents pour calculer la somme des n premiers carrés d’entiers, la
somme des n premiers inverses de carrés d’entier, la factorielle de n.

- 22 -

3.5 Instructions itératives. CHAPITRE 3 : Algorithmique et Programmation

Exercice 3.7 Ecrire une fonction python somme_liste qui prend en argument une liste de nombres et qui re-
tourne la somme des termes de cette liste.

Exercice 3.8 Ecrire une fonction python maxi_liste qui prend en argument une liste de nombres et qui retourne
le maximum de cette liste.

Exercice 3.9 Donner le résultat à l’issue des programmes suivants :

resultat = ""
for c in "Bonsoir" :

resultat = resultat + c
print (resultat)

resultat = ""
for c in "Bonsoir" :

resultat = resultat + c
print (resultat)

Un même programme peut utiliser plusieurs boucles ; celles-ci peuvent être imbriquées ou successives ; le
résultat ne sera évidemment pas le même.

Exercice 3.10 Donner le résultat à l’issue des deux boucles suivantes :

for i in range (1,5):
print(’il est passe par ici’)
for j in range (1,3):

print(’il repassera par la’)

for i in range (1,5):
print(’il est passe par ici’)

for j in range (1,3):
print(’il repassera par la’)

Exercice 3.11 Ecrire un programme capable de donner la table de multiplication.

- 23 -

CHAPITRE 3 : Algorithmique et Programmation 3.6 Types de variables.

3.6 Types de variables.

3.6.1. Types numériques

En mathématiques, les nombres appartiennent à des ensembles tels que N, Z, Q, R ou C. En Python
(comme dans beaucoup de langages informatiques) les nombres seront du type :

int (integer) correspond à un entier (deN ou Z) stocké sur une partie limitée de la mémoire de l’ordina-
teur. Il ne peut donc pas être aussi petit (négatif) ou aussi grand que l’on veut. Pour une machine
(dépend du microprocesseur et du système d’exploitation) de 32 bits (4 octets), un entier sera com-
pris entre −231 et 231 −1 (soit entre −2 147 483 648 et 2 147 483 647). Pour une machine de 64 bits,
un entier sera compris entre −263 et 263 −1

long (long integer) le type entier long est équivalent au type entier sauf qu’il n’est pas limité à nombre
d’octets (ou de bits prédéterminé). Á l’extrême, un nombre peut prendre la quasi totalité de la mé-
moire de l’ordinateur. Il est clair alors que ce nombre peut être considérable.

float le type flottant permet de représenter des nombres à virgule. Il est codé en mémoire sur 32 bits
(simple précision) ou sur 64 bits (double précision). Il est représenté sous la forme

nombre = (−1)S1mantisse×2exposant

Sur 64 bits la mantisse est écrite avec 52 chiffres binaires (51 plus le 1 implicite), et l’exposant avec
11 chiffres ; il y a 1 bit de signe. La précision maximale est donc de 2−52, soit environ 2×10−16. Des
valeurs spéciales permettent de représenter−∞,+∞ et Nan, not a number, souvent issu d’une forme
indéterminée.

complex le type complexe correspond à une structure naturellement composée de deux flottants (partie
réelle et imaginaire) sur 2×8 = 16 octets. Par exemple, le nombre complexe z = 2+3i s’écrit en Python
sous la forme 2+3j, ou complex(2,3).

bool le type booléen correspond à l’algèbre booléenne et ne prend que deux valeurs : True/False. Il est
codé sur un bit.

3.6.2. Listes, chaînes, tuples et dictionnaires

Il est souvent utile de collecter plusieurs données sous un même nom, et d’y accéder à travers un indice
numérique. Sous Python on dispose de telles structures appelées liste (dans d’autres langages on dira
tableau), au format list ; ou chaîne de caractères, au format str.

! Si n est la longueur (len) de la liste ou la chaîne, alors les indices des éléments sont compris
entre 0 et n −1.

Ainsi, L= [
1,a,′Bob′

]
est une liste contenant trois valeurs : celle d’indice 0 est le nombre 1 (L[0]=1), celle

d’indice 1 est la valeur de la variable a (L[1]=a) et celle d’indice 2 est la chaîne de caractères (ou mot)
’Bob’ (L[2]=’Bob’).
L’appel L[3] renvoie le message : list index out of range.
Pour récupérer la dernière valeur d’une liste, on peut utiliser l’instruction L[len(L)-1], ou plus simple-
ment L[-1].

De la même façon, s=’code123’ est une chaîne de caractères contenant 7 valeurs :

s[0]=’c’, s[6]=s[-1]=’3’, sont au format str ; et int(s[5])=2 est un nombre entier.

La liste vide s’écrit
[]

et la chaîne vide s’écrit ”, ou "".

- 24 -

3.6 Types de variables. CHAPITRE 3 : Algorithmique et Programmation

Opérations sur les listes :

Liste Opération Chaîne
len(L) donne la longueur len(s)
L[i] renvoie le i +1 ième élément s[i]
a in L vérifie si l’élément se trouve dans L ou dans s ’a’ in s
L+M concatène (juxtapose) les listes ou les chaînes s+t
L.append(a) ajoute a à la fin de la liste ou de la chaîne s=s+’a’
L.insert(i,a) ajoute l’élément a à la position d’indice i Ø
del L[i] supprime l’élément d’indice i Ø
L.reverse() remplace la liste par celle d’ordre inverse Ø
L.index(a) retourne l’indice du premier a de la liste ou de la chaîne s.index(’a’)
list.sort(L) retourne la liste triée Ø

! L’exemple suivant montre une exception dans l’affectation des variables concernant les listes
(mais pas les chaînes !) :

>>> L=[1,2,3]
M=L
>>> M.append(4)
>>> print(M)
[1, 2, 3, 4]
>>> print(L)
[1, 2, 3, 4]

>>> s=’abc’
t=s
>>> t=t+’d’
>>> print(t)
abcd
>>> print(s)
abc

Création rapide d’une liste. Copie d’une liste.

Il est possible de créer rapidement une liste dont on connaît la progression des éléments. Par exemple la
commande T= [k for k in range(5)] renvoie la liste [0,1,2,3,4].

Dans le script suivant, quelle est la différence entre les variables U et V?

T=[k for k in range(5)]
U=T
V=[k for k in T]

Exercice 3.12 Ecrire une fonction Python addition_listes(L,T) qui prend en arguments deux listes L et
T de la même taille et qui retourne la liste constituée de la somme des termes de L et T.

De même écrire une fonction multiplication_listes(L,T) qui retourne la liste constituée du produit des
termes de L et T.

Exercice 3.13 Une liste V contient des valeurs dont les poids sont contenus dans une liste P. Ecrire une
fonction Python moyenne_pondérée(V,P) qui retourne la moyenne des valeurs de la série V pondérées par
les poids de P.

Modifier la fonction précédente pour créer une fonction variance(V,P).

- 25 -

CHAPITRE 3 : Algorithmique et Programmation 3.6 Types de variables.

Extraction des éléments d’une liste ou d’une chaîne.

Il est possible d’extraire une partie d’une liste, ou d’une chaîne en indiquant les indices des éléments à
conserver.

>>> L=[1,2,3,4,5,6]
>>> L[1:4]
[2, 3, 4]
>>> L[3:]
[4, 5, 6]
>>> L[:2]
[1, 2]

>>> s=’code123 ’
>>> s[4:]
’123’
>>> s[:4]
’code’

Si la liste L contient des caractères ASCII, il est possible de retourner la valeur décimale de chaque
caractère par la commande ord(′string′) et la commande réciproque est chr(int) :

>>> L=[’a’,’&’,’%’,’0’]
>>> ord(L[0])
97
>>> ord(’&’)
38
>>> chr(98)
’b’
>>> chr(37)
’%’

Exercice 3.14 Boucle for et boucle while : extraction des admis à un concours admis(L,b)...

Exercice 3.15 Avec les nombres binaires, une opération possible est le Ou Exclusif. Cette opération consiste
à additionner les nombres bit à bit avec la table de vérité suivante :

0+0 = 0 ; 1+0 = 1 ; 0+1 = 1 ; 0+1 = 1 ; 1+1 = 0

Par exemple, si A=10101010 et B=11001100 alors : A OuEx B = 01100110.

En python cette opération est codée : A
∧
b
B.

Ecrire une fonction OuEx(A:list,B:list)-> list qui réalise cette opération.

Par exemple : OuEx([1,0,1,0,1,0,1,0],[1,1,0,0,1,1,0,0]) → [0,1,1,0,0,1,1,0]

Tuple. Un tuple (uplet) est une liste immuable ; on écrit un tuple avec des parenthèses, par exemple
a= (1,2,3) est un tuple.

Quand il y a un seul élément, il est suivi d’une virgule : a= (1,) est un tuple, mais a= (1) est un entier.

Un tuple ne peut pas être modifié, mais on peut concaténer car cela revient à créer un nouveau tuple.

Par exemple :

>>> a=(1,2,3)
>>> b=(2,2,1)
>>> a+b
(1,2,3,2,2,1)

- 26 -

3.6 Types de variables. CHAPITRE 3 : Algorithmique et Programmation

Dictionnaires. Un dictionnaire, au format dict, est un structure complexe de données, modifiable comme
une liste, mais dans laquelle on accède à un objet donné, non par pas un index (qui est forcément un
nombre entier), mais par une clé (qui peut être aussi une chaîne de caractères ou tout autre objet). Le
dictionnaire est défini comme un ensemble non ordonné de couples (clé, valeur), sous la forme

{clé_1 : valeur_1,...,clé_n : valeur_n}

Voici, par exemple, un dictionnaire ecoles qui recense les écoles intégrées par les étudiants :

ecoles={’Baptiste’:’Centrale Nantes’}

On peut ensuite ajouter des étudiants :

ecoles[’Chloé’]=’EIVP’, ecoles[’Emilien’]=’ENTPE’, ecoles[’Raphaël’]=’UTC’

On accède ensuite aux données en se servant de la clé et non plus d’un index :

ecoles[’Chloé’] renvoie ’EIVP’

Comme les listes et les chaînes, les dictionnaires sont des objets itérables ; l’itération se faisant sur les clés.

Ainsi l’appel

∣∣∣∣ for a in ecoles :
print(a)

renvoie la liste des clés.

L’année suivante, deux autres étudiants, Colyne et Alexandre ont intégré l’UTC.

Exercice 3.16 Ecrire une fonction python etudiants(ecole:str)->list qui prend une chaîne de ca-
ractères correspondant à une école en argument et qui renvoie la liste des étudiants qui ont intégré cette
école.

Par exemple, etudiants(’UTC’) −→ [’Raphaël’,’Colyne’,’Alexandre’]

Ecrire ensuite une fonction max_ecole qui renvoie le nom de l’école ayant accueilli le plus d’étudiants de
Chaptal.

3.6.3. La bibliothèque Numpy.

Il est impossible de donner une liste exhaustive de toutes les bibliothèques relatives à Python. Toutefois,
pour les applications scientifiques, la bibliothèque Numpy apparaît incontournable.

L’importation d’une bibliothèque se fait grâce à la commande import. Pour accéder à une fonction par-
ticulière de la bibliothèque, on peut taper

nom_de_la_bibliothèque.nom_de_la_fonction().

Par exemple pour la fonction sin() :

import numpy
numpy.sin(3.141592654)
-4.1020685703470686e-10

Pour éviter de retaper le nom complet de la bibliothèque (qui dans certain peut être assez long), on peut
modifier le nom de la bibliothèque en utilisant le terme as. Par exemple, ici on renomme numpy par np :

import numpy as np
np.sqrt(1024)
32.0

On peut se passer complètement du rappel du nom de la bibliothèque, en spécifiant directement les
fonctions qu’on désire importer avec le terme from :

from numpy import log
log(1)
0.0
log(0)
-inf

- 27 -

CHAPITRE 3 : Algorithmique et Programmation 3.7 Conception d’un algorithme.

On peut même importer directement toutes les fonctions d’une bibliothèque avec le symbole * :

from numpy import *
cos(pi)
-1.0

A priori, la dernière solution semble la plus simple car elle évite des écritures répétitives.

La listes des fonctions numériques définies dans numpy est extrêmement importante.

On peut retrouver les fonctions les plus classiques : exp(),log() (pour le logarithme népérien),

cos(),sin(),tan(),arccos(),arcsin(),arctan().

On peut également programmer une fonction non usuelle, mais dont connaît l’expression.

On considère la fonction f définie par f (x) = 1

1+x2 ; on souhaite affecter cette fonction à la variable f.

Voici deux solutions :

f=lambda x:1/(1+x **2)
>>> f(1)
0.5

def f(x):
return 1/(1+x** 2)

>>> f(1)
0.5

3.7 Conception d’un algorithme.

Pour résoudre un problème non élémentaire, la démarche algorithmique consiste à décomposer le problème
en sous-problèmes plus simples, jusqu’à l’obtention de sous-problèmes élémentaires.

Exemple 3.7 On dispose d’une planche, d’un marteau et d’un clou. Objectif : le clou est planté complètement
dans la planche.

Ce problème peut se décomposer en deux sous-problèmes; (1) : programmer la machine pour qu’elle se saisisse
du marteau et du clou et (2) : programmer la machine pour qu’elle enfonce le clou. Là encore, le sous-problème
(2) peut se décomposer en plusieurs sous-problèmes (2.1), (2.2)... : à chaque (2.k), taper un coup de marteau
sur le clou, jusqu’à ce qu’il soit complètement enfoncé.

Pour s’assurer que l’algorithme créé fonctionne correctement, il est indispensable de respecter trois étapes
de conception avec les éléments suivants :

¦ Invariant de boucle : Un invariant de boucle est une propriété qui :

? est vérifiée avant d’entrer dans la boucle ;
? si elle est vérifiée avant une itération, alors elle est aussi vérifiée après celle-ci ;
? est vérifiée à la sortie de la boucle, ce qui garantit que l’algorithme résout bien le problème.

Dans notre exemple l’invariant de boucle est : "le clou est planté dans la planche". En effet, on com-
mence à utiliser les coups de marteau que si le clou est déjà positionné (légèrement planté) et, le clou
doit rester planté après chaque coup de marteau, pour que le suivant fasse progresser la situation.

¦ Terminaison : Lorsque l’algorithme utilise une boucle, il est essentiel de définir une condition d’arrêt
pour éviter que la boucle se répète infiniment. La terminaison de la boucle assure alors que le problème
sera résolu au bout d’un nombre fini d’itérations.
Dans notre exemple la condition d’arrêt est "la tête touche la planche". La terminaison est la distance

- 28 -

3.7 Conception d’un algorithme. CHAPITRE 3 : Algorithmique et Programmation

entre la tête du clou et la planche ; elle assure que le problème sera résolu en un nombre fini de coups
car la longueur du clou, donc la distance entre la tête et la planche, est finie et celle-ci décroît à chaque
coup de marteau, donc converge vers 0.

¦ Initialisation. Elle doit instaurer l’invariant. Dans notre exemple, l’initialisation est "planter légèrement
le cou à la main".

Exemple 3.8 Revenons au problème du calcul de la somme des n premiers entiers naturels. Voici un pro-
gramme possible :

def somme_entiers(n):
somme=0
k=0
while k<=n:

somme+=k
k+=1

return somme

¦ L’invariant de boucle est la propriété Sk =
k∑

i=0
i ; en effet, initialement : S0 =

0∑
i=0

i = 0 ; pour k donné si

Sk =
k∑

i=0
i , alors, après la k + 1 ième itération, on obtient Sk+1 =

k∑
i=0

i +k + 1 =
k+1∑
i=0

i ; et, à la sortie de la

boucle, on obtient Sn =
n∑

i=0
i .

¦ La condition d’arrêt est k É n et la terminaison est n − k ce qui assure que la boucle s’arrête après n
itérations.

¦ L’initialisation est S0 = 0.

Exercice 3.17 L’algorithme ci-dessous, dit "algorithme d’Euclide" permet d’effectuer la division entière de A par
B. Prouver ce résultat.

A=input(’Entrez la valeur de A :’)
B=input(’Entrez la valeur de B :’)
a=int(A)
b=int(B)
r=a
q=0
while r>=b:

r=r-b
q=q+1

print (’Le quotient est’,q,’et le reste est ’,r)

- 29 -

CHAPITRE 3 : Algorithmique et Programmation 3.8 Complexité d’un algorithme.

3.8 Complexité d’un algorithme.

Il existe souvent plusieurs algorithmes capables de traiter le même problème. On choisira donc celui qui est
le plus efficace, c’est-à-dire celui qui a une exécution rapide et qui mobilise le moins de ressources mémoire. La
rapidité d’exécution est évidemment liée au nombre de données traitées, mais aussi au nombre d’opérations
effectuées avec ces données. La relation entre le nombre n de données et le nombre d’opérations s’appelle la
complexité de l’algorithme.

Voici un tableau qui récapitule les complexités les plus fréquentes :

Complexité Nom courant Description

O (1) temps constant le temps d’exécution ne dépend pas du nombre de données à traiter

O (lnn) logarithmique l’exécution est quasi instantanée

O (n) linéaire le nombre d’opérations est proportionnel au nombre de données ;
l’exécution est rapide jusqu’à des données de taille comparable à la
mémoire vive

O (n lnn) semi-linéaire complexité un peu moins bonne que la précédente mais qui reste très
intéressante

O (n2) quadratique complexité acceptable pour des données de taille raisonnable

O (nk) polynomiale il n’est pas rare de rencontrer des complexité en O (n3) ou O (n4)

O (2n) exponentielle un algorithme d’une telle complexité est impraticable sauf pour de
très petites données

Exemple 3.9 Soit P un polynôme de degré n et a ∈R : P = a0 +a1x +a2x2 +·· ·an xn

On souhaite calculer P (a) ; pour cela on va utiliser deux algorithmes et évaluer leur complexité pour com-
parer leur efficacité.

On suppose que les cœfficients du polynôme sont enregistrés dans une liste P= [a0,a1, ...,an]

def Eval1(P,a):
somme=P[0]
for k in range(1,len(P)):

somme=somme+P[k]*a **k
return somme

def Eval2(P,a):
somme=P[0]
b=1
for k in range(1,len(P)):

b=b*a
somme+=b*P[k]

return somme

- 30 -

3.9 Les piles CHAPITRE 3 : Algorithmique et Programmation

3.9 Les piles

Nous avons déjà rencontré plusieurs types de données structurées : les chaînes de caractères (string), les
listes (list), les dictionnaires (dict) et les matrices (array).

Nous allons ici étudier un nouveau type de données structurées, les piles, que nous implémenterons en
Python à l’aide de listes.

Par définition, une pile peut être considérée comme une liste dont a limité les accès : on ne peut insérer
("empiler", fonction push) un élément qu’à une seule extrémité, appelée le sommet de la pile ; on ne peut
retirer ("dépiler", fonction pop) un élément que s’il est au sommet et on ne peut voir un élément que s’il est au
sommet.

Si on a besoin d’accéder à un élément qui n’est pas au sommet, on doit retirer un par un les éléments qui au
dessus, en partant du sommet.

Exemple 3.10

Dans la pile suivante

3
2
1
0

¨

©

ª

«

seul l’élément ¨ (d’indice 3) peut être vu (fonction top(p)) ; seul l’élément ¨

peut être retiré (fonction pop(p)), ce qui donnerait :
2
1
0

©

ª

«

On peut ajouter l’élément J au sommet de la pile par une fonction push(J,p) pour obtenir :

3
2
1
0

J

©

ª

«

Pour manipuler les piles, nous allons introduire la programmation modulaire. Ainsi toutes les fonctions
utiles à la manipulation des piles seront enregistrées dans un fichier (module), que nous nommerons pilepy.
Pour pouvoir les utiliser, il suffira d’importer ce module par l’instruction : import pilepy as pp. Chaque
fonction pourra alors être appelée sous le nom pp.nomDeLaFonction.

Exercice 3.18 Construire les fonctions suivantes, permettant les opérations élémentaires sur les piles. Ces fonc-
tions seront enregistrées dans un fichier nommé pilepy

newStack() sans argument, crée une pile sous la forme d’une liste vide
isEmpty(p) prend en argument une pile et renvoie True ou False suivant que la pile est vide ou non
top(p) prend en argument une pile non vide et renvoie l’élément au sommet de la pile
pop(p) prend en argument une pile non vide; renvoie et supprime l’élément au sommet
push(x,p) prend en arguments un élément et une pile, et insère l’élément au sommet de la pile

- 31 -

CHAPITRE 3 : Algorithmique et Programmation 3.10 La récursivité

Exercice 3.19 File d’attente

Il existe une autre structure de données, qui peut également considérée comme une liste dont on a limité
l’accès : la file.

Dans une file, on ne peut insérer ("enfiler") un élément qu’à une extrémité, appelée queue ; on ne peut voir
et retirer ("défiler") un élément que s’il est situé à l’autre extrémité appelé tête.

Ce type de structure correspond par exemple à des situations où on a besoin de mémoriser temporairement
des actions en attente d’être traitées dans l’ordre.

Construire les fonctions suivantes, permettant les opérations élémentaires sur les files :

creer_file() sans argument, crée une file sous la forme d’une liste vide
voir(f) prend en argument une file non vide et renvoie l’élément en tête de file
defiler(f) prend en argument une file non vide; renvoie et supprime l’élément en tête de file
enfiler(x,f) prend en arguments un élément et une file, et insère l’élément en queue file

Exercice 3.20 Expressions bien parenthésées
On veut construire à l’aide d’une pile un vérificateur de parenthésage.
Ecrire une fonction qui prend en argument une chaîne de caractères contenant une expression parenthésée,

la parcourt de gauche à droite de la façon suivante : lorsqu’elle rencontre une parenthèse ouvrante, elle empile la
parenthèse fermante correspondante ; lorsqu’elle arrive à une fermeture, lorsque c’est possible, elle dépile.

Cette fonction doit renvoyer True si l’expression est bien parenthésée et False dans le cas contraire.

3.10 La récursivité

La récursivité est un moyen de répéter un bloc d’instructions sans utiliser les instructions while et for. Pour
cela, on programme une fonction qui va s’appeler elle-même.

3.10.1. Un exemple de fonction récursive

Exemple 3.11 La fonction récursive suivante crée une suite de nombres. Reconnaître cette suite :

def suite(n): #n est un entier naturel
if n==0:

return 1
elif n==1:

return 1
return suite(n-1)+suite(n-2)

Remarque. ! comme pour la boucle while, il ne faut pas oublier de prévoir une condition d’arrêt.
Cependant, le nombre maximal d’appels récursifs est de l’ordre de 1000 par défaut, donc contrairement
à la boucle while, même sans condition d’arrêt, un programme récursif s’arrête avec comme message
d’erreur :

Runtime Error : maximum recursion depth exeeded in comparison

- 32 -

3.10 La récursivité CHAPITRE 3 : Algorithmique et Programmation

3.10.2. Pile d’exécution et récursivité terminale

Lors de l’exécution d’un algorithme récursif, les appels récursifs successifs sont stockés dans une pile,
c’est la pile d’exécution.

La pile d’exécution est un emplacement mémoire destiné à stocker les paramètres, les variables locales
ainsi que les adresses mémoires de retour des fonctions en cours d’exécution. On peut différencier deux
types de fonctions récursives : celles pour lesquelles il n’y a pas de traitement entre l’appel récursif et le
retour de la fonction, et celles pour lesquelles il y a des opérations entre l’appel et le retour.

Dans le deuxième cas, l’ordinateur empile dans la pile d’exécution les appels récursifs sans traiter les
opérations, puis, lorsque la condition d’arrêt est vérifiée, la pile est dépilée, les opérations étant exécutées
successivement.

Pour illustrer cette différence, utilisons l’exemple du calcul de la factorielle de 4 :

Voici deux fonctions, une de chaque type ; et les schémas d’exécutions associés lors des appels

factorielle1(4) et factorielle2(4) :

def factorielle1(n):
if n==0:

return 1
return n*factorielle1(n-1)

#il y a 1 opération entre l’appel et
le retour

def factorielle2(n,f=1):
if n==0:

return f
return factorielle2(n-1,f*n)

#il n’y a pas d’opération entre l’appel
et le retour

F(4) = 4∗F(3) F(4,1) = F(3,4)
F(3) = 3∗F(2) F(3,4) = F(2,12)
F(2) = 2∗F(1) F(2,12) = F(1,24)
F(1) = 1∗F(0) F(1,24) = F(0,24)
F(0) = 1 24

F(1) = 1

F(2) = 2

F(3) = 6

F(4) = 24

Dans le deuxième cas l’opération emplilage/dépilage est plus performant. Ce type de fonction récursive
avec retour direct de l’appel récursif s’appelle récursivité terminale.

Exercice 3.21 Ecrire une fonction récursive non terminalepuissance(a,n), prenant en argument un nombre
a et un entier naturel n, et qui calcule an .

Transformer la fonction précédente en une fonction récursive terminale.

Exercice 3.22 Calculer le nième terme des suites (un) et (vn) définie par u0 = 1, v0 =−1 et ∀n ∈N :{
un+1 = 2un + vn

vn+1 = un −2vn

Exercice 3.23 Programmer une fonction récursive terminale donnant les termes de la suite de Fibonacci.

- 33 -

CHAPITRE 3 : Algorithmique et Programmation 3.11 Les algorithmes de tri

3.10.3. Preuve de terminaison et complexité

Comme pour les instructions itératives, la terminaison est assurée par une condition d’arrêt. Ainsi on
prouvera la terminaison en exhibant une suite d’entiers naturels strictement décroissante.

Par exemple, pour la fonction factorielle(n), si on note (up) la suite des arguments la fonction, on a
u0 = n, u1 = n−1, et de manière générale, up+1 = up −1 ; donc la suite (up) est bien une suite d’entiers na-
turels strictement décroissante. Elle prend donc un nombre fini de valeurs ce qui prouve que la fonction
factorielle(n) se termine.

Pour simplifier, on considère le nombre d’appels à la fonction récursive pour estimer la complexité en
temps. Lorsqu’il s’agit d’une récursivité simple et que la complexité d’une étape est constante, la com-
plexité est estimée à O (n).

Exercice 3.24 Dans sa version terminale, la fonction récursive donnant les termes de la suite de Fibonacci
appelle n fois la fonction ; sa complexité est donc en O (n).

Estimer la complexité de la fonction présentée dans l’exemple 3.11. Comparer les résultats.

3.11 Les algorithmes de tri

Dans ce paragraphe nous nous intéressons à des algorithmes capables de trier une liste, ou un tableau à une
dimension, contenant des nombres, ou tout type d’objets dont l’ensemble est muni d’une relation d’ordre. Par
exemple, on peut trier une liste contenant des chaînes de caractères à l’aide de l’ordre lexicographique.

Il existe des méthodes de tri déjà implémentées en langage Python, comme la méthode sort :

In [1]: L=[35 ,22 ,56,29]
In [2]: L.sort()

In[3]: L
Out[3]: [22, 29 , 35 , 56]

In[1]: T=[’Ile et Vilaine ’,’Côtes d Armor’,
’Morbihan ’,’Finistère ’]

In[2]: T.sort()
In[3]: T
Out[6]: [’Côtes d Armor ’, ’Finistère ’,

’Ile et Vilaine ’, ’Morbihan ’]

Nous pouvons remarquer que cette méthode est une fonction qui modifie la liste prise en argument et qui
ne renvoie rien.

Notre objectif étant de comprendre et d’implémenter quelques algorithmes de tri, nous nous interdisons
donc d’utiliser les méthodes de tri Python.

Il est également possible d’écrire une fonction qui ne modifie pas la liste de départ et qui retourne la liste
triée. Par exemple

L= [35,22,56,29]

tri(L) retourne [22,29,35,56]

L= [35,22,56,29]

- 34 -

3.11 Les algorithmes de tri CHAPITRE 3 : Algorithmique et Programmation

3.11.1. Tri par sélection

Pour trier une liste L comportant n éléments par sélection, voici la méthode :

En partant de la position i= 0, on recherche le plus petit élément parmi les éléments d’indice i+1 à n−1
et on l’échange avec L[i].

Par exemple, pour trier [12,3,17,9,4,16], on obtient successivement :

[12,3,17,9,4,16] [12, | 3 ,17,9,4,16] [3,12, |17,9, 4 ,16] [3,4,17, | 9 ,12,16]

[3,4,9,17, | 12 ,16] [3,4,9,12, |17, 16] [[3,4,9,12,17, | 16] [3,4,9,12,16,17]

Exercice 3.25 Compléter la fonction suivante pour qu’elle retourne la liste triée par sélection :

def tri_selection(L):
for i in range(len(L)-1):
...

for j in range (i+1,len(L)):
recherche du minimum dans le tableau restant
comparer ce minimum à L[i]

return L

Evaluer la complexité temporelle de cet algorithme.

3.11.2. Tris par insertion

Pour trier une liste L par insertion, voici la méthode :

On prend le premier élément et on le met à l’indice i= 0 ; puis on insère les autres éléments dans la partie
déjà triée en plaçant chaque nouvel élément à la bonne place.

Cela donne :
[12, |3,17,9,4,16] [3,12, |17,9,4,16] [3,12,17, |9,4,16]

[3,9,12,17, |4,16] [3,4,9,12,17, |16] [3,4,9,12,16,17]

Exercice 3.26 Ecrire une fonction python prenant en argument une liste et qui retourne cette liste triée par
insertion en complétant le script suivant.

Evaluer la complexité temporelle de cet algorithme. Comparer à la méthode par sélection.

def tri_insertion(L):
for i in range(1,len(L)):#on traite les éléments restants

... #on mémorise l’élément à traiter

... #variable créée pour trouver la bonne place
while ... #tant que la bonne place n’est pas trouvée

... #on cherche la bonne place
... #on insère l’élément à sa place
... #on supprime le doublons

return L

3.11.3. Tris à bulles

On donne l’algorithme suivant :

def tri_a_bulles(L):
for i in range(len(L)-1):

for j in range(len(L)-1,i,-1):
if L[j]<L[j-1]:

L[j],L[j-1]=L[j-1],L[j]
return L

Exercice 3.27 Prouver que cet algorithme retourne la liste triée.

Evaluer sa complexité temporelle.

- 35 -

CHAPITRE 3 : Algorithmique et Programmation 3.11 Les algorithmes de tri

3.11.4. Le tri rapide

Le tri rapide (ou "quicksort") est un tri récursif dans lequel on divise le problème initial en deux sous-problèmes
suivant le principe de « diviser pour mieux régner ». Concrètement, il s’agit de passer du tri d’une liste compor-
tant n éléments aux tris de deux sous-listes de tailles strictement inférieures à n.

Pour cela on choisit un élément e de la liste qu’on appelle pivot, on le retire de la liste et on crée deux
sous-listes, l’une contenant les éléments strictement inférieurs à e, et l’autre les éléments supérieurs à e.

On trie récursivement les deux sous-listes et on regroupe le tout.
Par exemple, pour trier [12,3,17,9,4,16], on obtient successivement :

[3,9,4] [12] [17,16] choix de 12 comme pivot
[] [3] [9,4] [12] [16] [17] [] choix de 3 comme pivot à gauche et de 17 à droite

[] [3] [] [4] [9] [] [12] [16] [17] [] choix de 9 comme pivot

Exercice 3.28 Ecrire une fonction python prenant en argument une liste et qui retourne une nouvelle liste triée
par la méthode du tri rapide.

Evaluons la complexité de cette méthode de tri. Soit n ∈ N le nombre d’éléments de la liste à triée, notons
cn la complexité temporelle. Par construction, nous avons c0 = 0 et c1 = 0.

¦ Dans le pire des cas :
On suppose ici qu’à chaque exécution de la fonction, tous les éléments se trouvent du même côté du
pivot. (Ce qui est le cas si la liste est déjà triée par exemple !)
Il y n −1 comparaisons et le tri de deux sous-listes, une de longueur 0 et l’autre de longueur n −1. On a
donc cn = cn−1 +n −1 ; ce qui donne

cn = n(n −1)

2
=O

(
n2)

¦ Dans le meilleur des cas :
On suppose maintenant qu’à chaque exécution de la fonction, les éléments se répartissent équitable-
ment de part et d’autre du pivot.
Il y a toujours n−1 comparaisons et le tri de deux sous-listes, une de longueur

⌊n
2

⌋
et l’autre de longueur⌊n−1

2

⌋
. On a donc :

cn = c(n) = c
(⌊n

2

⌋)
+ c

(⌊
n −1

2

⌋)
+n −1

? Calculons c(n) pour n = 2p −1 : en posant up = c
(
2p −1

)
, il vient : up = 2up−1 +2p −2.

On démontre alors, par récurrence, que up = (p −2)2p +2.
? Désormais, soit n ∈N ; il existe un unique p ∈N tel que 2p −1 É n É 2p+1 −1 ; on a donc :

up É cn É up+1 ⇔ (p −2)2p +2 É cn É (p −1)2p+1 +2

pour n au voisinage de +∞, on a (p −2)2p +2 ∼ p2p ∼ n log2(n) ; avec log2(n) = ln(n)
ln(2) ;

ainsi (p −2)2p +2 =O
(
n ln(n)

)
; de même (p −1)2p+1 +2 =O

(
n ln(n)

)
Finalement, on obtient :

cn =O
(
n ln(n)

)

- 36 -

3.11 Les algorithmes de tri CHAPITRE 3 : Algorithmique et Programmation

3.11.5 Le tri fusion

Le tri fusion est également un tri récursif dans lequel on divise le problème initial en deux sous-problèmes.
Partant d’une liste de n éléments, on la divise en deux listes contenant environ n

2 données. La méthode consiste
à trier la première moitié de la liste, puis la deuxième et de fusionner les deux listes triées en une seule liste triée.

Pour programmer cette méthode nous utiliserons une fonction auxiliaire fusion(L1,L2) qui prend en ar-
gument deux listes L1 et L2 déjà triées et qui retourne la liste fusionnée.

Pour comprendre cet algorithme récursif, observons la pile d’exécution :
¦ Empilage :

tri_fusion([12,3,17,9,4,16])

tri_fusion([12,3,17]) tri_fusion([9,4,16])

tri_fusion([12]) tri_fusion([3,17]) tri_fusion([9]) tri_fusion([4,16])

tri_fusion([12])tri_fusion([3])tri_fusion([17])tri_fusion([9])tri_fusion([4])tri_fusion([16])

¦ Dépilage :
[12] [3] [17] [9] [4] [16]

[3,12] [9,17] [4,16]

[3,9,12,17] [4,16]

[3,4,9,12,16,17]

La fonction fusion(L1,L2) utilise une variable L de type liste qui doit contenir la fusion des deux listes
L1 et L2. Pour comprendre le fonctionnement de cette fonction, observons l’évolution de la variable L sur un
exemple : prenons L1= [3,9,12,17] et L2= [4,16].

L= [] L= [3] L= [3,4] L= [3,4,9] L= [3,4,9,12] L= [3,4,9,12,16] L= [3,4,9,12,16,17]

La fonction compare L1[0] avec L2[0] et insère L1[0] dans L ; ensuite elle compare L1[1] avec L2[0] et insère
L2[0] dans L ... jusqu’à avoir parcouru les deux listes. Lorsque tous les éléments d’une listes ont été choisis, il
suffit de compléter L avec les éléments restants de l’autre liste.

Exercice 3.29 1. Proposer une fonction fusion(L1,L2) dont le fonctionnement est décrit ci-dessus.

2. Ecrire alors une fonction tri_fusion(T) qui prend en argument une liste T et qui retourne une liste conte-
nant les éléments de T triés par la méthode de fusion.

3.11.6. Comparaison des différents tris

Nous avons étudié cinq tris différents, trois tris quadratiques (par sélection, par insertion et à bulles) et
deux tris récursifs (rapide et fusion).

Les trois tris itératifs modifient la liste prise en argument pour la retourner triée, alors que les deux tris
récursifs créent une nouvelle liste sans modifier la liste de départ. Une autre différence entre ces tris est
la complexité temporelle ; voici un tableau résumant la situation :

meilleur des cas pire des cas
tri par sélection O

(
n2

)
O

(
n2

)
tri par insertion O

(
n

)
O

(
n2

)
tri à bulles O

(
n2

)
O

(
n2

)
tri rapide O

(
n ln(n)

)
O

(
n2

)
tri fusion O

(
n ln(n)

)
O

(
n ln(n)

)
- 37 -

CHAPITRE 3 : Algorithmique et Programmation 3.12 La méthode d’Euler

La complexité du tri fusion est est en O
(
n ln(n)

)
dans tous les cas, donc semble moins risqué que le tri

rapide. En pratique, c’est cependant le tri rapide qui est le plus utilisé, car son pire des cas est usuellement
rare et on constate expérimentalement qu’il est meilleur que le tri fusion en moyenne. Pour cela il suffit
de calculer les temps moyens d’exécution des algorithmes sur les listes construites aléatoirement et de
les comparer.

3.12 La méthode d’Euler

Pour certaines équations différentielles, nous savons déterminer l’expression de la fonction solution, c’est-à-
dire que nous savons résoudre analytiquement ces équations.

Malheureusement, il existe des équations différentielles pour lesquelles il n’est pas possible de détermi-
ner l’expression de la solution. On a alors recours à des programmes qui recherchent une solution numérique
approchée.

L’objectif de ce paragraphe est d’étudier une méthode numérique : la méthode d’EULER.

Pour illustrer la méthode nous utiliserons l’équation différentielle E :

{
y ′−2t y = 1

y(0) = 0

3.12.1. Les limites de la méthode analytique.

Exercice 3.30 Déterminer l’expression yh(t) de la solution de l’équation homogène : y ′−2t y = 0.

Désormais on recherche une solution particulière par la méthode de variation de la constante, c’est-à-
dire sous la forme yp (t) = k(t)et 2

, où k est une fonction à déterminer.

En utilisant l’équation E , donner une expression de la fonction k. En déduire l’unique solution du problème
de Cauchy. Quel commentaire peut-on faire ?

3.12.2. La méthode d’Euler explicite.

D’une manière générale, une équation différentielle d’ordre 1 s’écrit :

y ′(t)+a(t)y(t) = b(t) ou encore
dy

dt
(t) =−a(t)y(t)+b(t) = f

(
t , y(t)

)
Dans notre exemple, f

(
t , y(t)

)= 2t y(t)+1.

On souhaite résoudre numériquement cette équation sur un intervalle de temps [0,Tmax]. Le temps sera
représenté numériquement par une liste de N instants régulièrement espacés que l’on écrira

T= [t0 = 0,t1, ...,tk,tk+1, ...,tN−1 = Tmax]

On note h = tk+1 − tk le pas de temps, ainsi tk = t0 +kh = kh.

On note y(tk) les valeurs de la fonction exactes pour les instants choisis et yk les valeurs approchées
construites par itération.

- 38 -

3.12 La méthode d’Euler CHAPITRE 3 : Algorithmique et Programmation

On obtient ces valeurs approchées par un dévelop-
pement limité à l’ordre 1 :

y(tk+1) = y(tk +h) = y(tk)+hy ′(tk)+o(h)

' y(tk)+hy ′(tk)

La stratégie itérative mise en œuvre dans la mé-
thode d’Euler explicite consiste, à partir d’une
condition initiale, à rechercher une valeur appro-
chée de la valeur y(tk+1) avec la formule :

yk+1 = yk +hy ′(tk) = yk +h f (tk , yk) tk tk+1

y(tk)

y(tk+1)

yk+1

La condition initiale est y(t0) = y0 ; ensuite, y1 = y0+h f (t0, y0) ; puis, y2 = y1+h f (t1, y1) et ainsi de suite...

Exercice 3.31 Ecrire une fonction init_T(Tmax,N) prenant pour arguments la durée Tmax de l’étude et le
nombre N d’instants et retournant la liste T.

Pour la suite, dans notre exemple, f (t , y) = 2t y +1 et y(0) = y0 = 0.

Ecrire une fonction f(t,y) prenant en arguments les valeurs de t et de y et retournant l’expression de la
fonction f (t , y).

Cette fonction sera modifiée à chaque résolution d’une autre équation différentielle.

Ecrire enfin une fonction solve_euler(T,y0) prenant en argument la liste T des instants tk de la résolution
numérique et la valeur initiale y0, et retournant la liste S des valeurs yk , valeurs approchées de la solution
de l’équation différentielle calculées aux instant, tk par la méthode d’Euler.

D’après les calculs précédents, y(1) = e
∫ 1

0
e−x2

dx. Le calcul de l’intégrale peut également être effectué à

l’aide des sommes de Riemann, par la méthode des trapèzes par exemple.

Comparons les résultats :

In[1]: solve_euler(init_T(1,1000),0)[-1]
Out[1]: 2.026937538968067

In[2]: exp(1)*somme_trapezes(lambda x:exp(-x **2),0,1,1000)
Out[2]: 2.0300783026120328

3.12.3. La méthode d’Euler implicite.

Le principe de la méthode d’Euler implicite est similaire au précédent, sauf que l’on utilise cette fois le
taux d’accroissement pour approcher le nombre dérivé au point tk+1, par la formule :

y ′(tk+1) = dy

dt
(tk+1) ' y(tk+1)− y(tk)

tk+1 − tk
' yk+1 − yk

h

On obtient ainsi, de manière implicite, la valeur de yk+1 par la formule

yk+1 = yk +h f (tk+1, yk+1)

La condition initiale est y(t0) = y0 ; ensuite, y1 = y0+h f (t1, y1) ; puis, y2 = y1+h f (t2, y2) et ainsi de suite...

On constate que yk+1 est solution d’une équation et que sa valeur n’est donc pas obtenue explicitement.
Un calcul supplémentaire est donc souvent nécessaire.

- 39 -

CHAPITRE 3 : Algorithmique et Programmation 3.13 L’algorithme de Dijkstra

Pour comparer ces deux méthodes, utilisons le problème de Cauchy suivant :

{
y ′ = y

y(0) = 1

Par la méthode explicite nous obtenons une suite
(
yk

)
telle que yk+1 = yk +hyk = (1+h)yk .

Par la méthode implicite nous obtenons une suite
(
zk

)
telle que zk+1 = zk +hzk+1 ; dans cette situation,

nous pouvons en déduire l’expression de zk+1 par la formule zk+1 =
1

1−h
zk .

Nous pouvons ensuite obtenir le graphique suivant :

T=linspace(0,1,30)

F=solve_euler_exp(init_T(1,30))
G=solve_euler_imp(init_T(1,30))

plot(T,F,’b*’,label=’méthode explicite ’)
plot(T,G,’k+’,label=’méthode implicite ’)
plot(T,exp(T),’r’,label=’solution exacte

’)

legend ()

3.13 L’algorithme de Dijkstra

La théorie des graphes débute avec les travaux d’EULER au XVIIIe siècle et trouve son origine dans l’étude
de certains problèmes, tels que celui des ponts de Königsberg (actuellement Kaliningrad) : les habitants de
Königsberg se demandaient s’il était possible, en partant d’un quartier quelconque de la ville, de traverser tous
les ponts sans passer deux fois par le même et de revenir à leur point de départ.

Voici une représentation de Königsberg avec ses quatre quartiers et ses sept ponts ; ainsi que sa modélisation
sous la forme d’un graphe :

A

B

C

D

En 1736, Euler démontre qu’une telle promenade n’existe pas en caractérisant les graphes que l’on appelle
aujourd’hui eulériens.

Par théorème, un graphe simple connexe est eulérien si et seulement si pour tout sommet du graphe, son
degré est pair.

Dans le cas des ponts de Königsberg, le sommet A est de degré 5 et les sommets B, C et D sont de degré 3.

- 40 -

3.13 L’algorithme de Dijkstra CHAPITRE 3 : Algorithmique et Programmation

La théorie des graphes s’est alors développée dans diverses disciplines telles que la chimie, la biologie, les
sciences sociales. Depuis le début du XXe siècle, elle constitue une branche à part entière des mathématiques,
grâce aux travaux de König, Menger, Cayley puis de Berge et d’Erdös.

De manière générale, un graphe permet de représenter la structure, les connexions d’un ensemble com-
plexe en exprimant les relations entre ses éléments : réseau de communication, réseaux routiers (recherche du
plus court chemin), interaction de diverses espèces animales, circuits électriques,...

Les graphes constituent donc une méthode de pensée qui permet de modéliser une grande variété de pro-
blèmes en se ramenant à l’étude de sommets et d’arcs. Les derniers travaux en théorie des graphes sont souvent
effectués par des informaticiens, du fait de l’importance qu’y revêt l’aspect algorithmique.

Il existe des graphes pondérés, c’est-à-dire dont les arêtes sont associées à des valeurs numériques. On définit
alors la matrice d’adjacence M = (

mi , j
)

où mi , j est égal à la valeur portée par l’arête reliant les sommets i et j
si ces sommets sont adjacents, ou ∞ sinon. Voici un exemple de graphe pondéré et de sa matrice d’adjacence :

A

B

C
D

E

F

3

1

1

3
4 5

6

1

1

5
M =



0 3 1 ∞ ∞ ∞
3 0 3 4 1 ∞
1 3 0 6 5 ∞
∞ 4 6 0 1 1
∞ 1 5 1 0 5
∞ ∞ ∞ 1 5 0



On peut implémenter cette matrice en Python sous la forme d’une variable de type array :

from numpy import*

M=array([[0,3,1,inf ,inf ,inf],[3,0,3,4,1,inf],[1,3,0,6,5,inf],[inf ,4,6,0,1,1],
[inf ,1,5,1,0,5],[inf ,inf ,inf ,1,5,0]])

Le graphe précédent n’est pas orienté, c’est-à-dire que lorsque deux sommets sont voisins, comme A et B
par exemple, on peut indifféremment aller de A vers B ou de B vers A. La matrice d’adjacence est donc symé-
trique.

Le graphe est simple, car il y a au plus une arête entre deux sommets ; il est connexe car de chaque sommet
il part au moins une arête, autrement dit, aucun sommet n’est isolé.

L’algorithme de Dijkstra sert à résoudre le problème du plus court chemin. Il permet, par exemple, de déter-
miner le plus court chemin pour se rendre d’une ville à une autre connaissant le réseau routier d’une région. Il
s’applique à un graphe connexe, simple et non orienté dont le poids lié aux arêtes est positif ou nul. L’algorithme
porte le nom de son inventeur, l’informaticien néerlandais Edsger DIJKSTRA et a été publié en 1959.

Par exemple, on recherche dans le graphe précédent, le plus court chemin permettant de joindre les som-
mets A et F.

On construit un tableau, dont la première ligne contient les sommets du graphe : on initialise en affectant
la valeur 0 à A et ∞ aux autres sommets :

La ligne suivante donne les voisins de A en précisant les poids associés à la ville d’origine, par exemple 3(A)
dans colonne du sommet B signifie qu’on atteint B avec un chemin de longueur 3 en venant de A; la ville choisie
sera celle de poids minimum, donc C.

Une fois un sommet choisi son poids devient ∞.

Et on continue ainsi, en choisissant toujours la ville de poids minimum. Voici le résultat :

- 41 -

CHAPITRE 3 : Algorithmique et Programmation 3.13 L’algorithme de Dijkstra

distance totale A B C D E F villes visitées
0 ∞ ∞ ∞ ∞ ∞ A

0 ∞ 3(A) 1(A) ∞ ∞ ∞ C
1 ∞ 3(A) ∞ 7(C) 6(C) ∞ B
3 ∞ ∞) ∞ 7(C) 4(B) ∞ E
4 ∞ ∞ ∞ 5(E) ∞ 9(E) D
5 ∞ ∞ ∞ ∞ ∞ 6(D) F

Le plus court chemin mesure donc d(A,F) = 6 avec le parcours suivant : A - B - E - D - F
Ce tableau nous donne même tous les chemins les plus courts en partant de A, à savoir :
d(A,B) = 3 avec A - B; d(A,C) = 1 avec A - C ; d(A,D) = 5 avec A - B - E - D et d(A,E) = 4 avec A - B - E.

Exercice 3.32 Appliquer l’algorithme de Dijsktra pour déterminer le plus court chemin de F à B.

Implémentons l’algorithme de Dijskstra.
Nous allons écrire une fonction dijkstra(villes,depart,arrivee,M) qui prend en arguments une liste

contenant toutes les villes du graphe, la ville de départ et la ville d’arrivée, ainsi que la matrice d’adjacence du
graphe.

¦ Choix des variables
La fonction retourne deux variables : une variable numérique dist_choix contenant la valeur du che-
min le plus court et une variable chemin_choix contenant la liste des villes correspondant aux parcours
le plus court.
En variables auxiliaires, nous utiliserons la variable visit pour stocker la liste des villes visitées au cours
de l’algorithme, la variable dist pour stocker les distances de chaque parcourt (l’évolution de cette
variable correspond à l’évolution des lignes du tableau), la variable choix contenant l’indice de la ville
choisie à chaque étape, et la variable chemins permettant de mémoriser, à chaque étape, la ville visitée,
la ville précédente et la longueur du parcours, ce qui permettra de reconstituer tous les parcours et en
particulier celui qui nous intéresse.
L’algorithme fonctionne suivant deux principes très classiques :

¦ Principe de relâchement :
On note s le sommet de départ. Soit u un sommet quelconque du graphe, on suppose à ce stade que la
distance minimum obtenue pour se rendre de s à u est d(u).
Le principe de relâchement (ou relaxation) consiste à savoir s’il est possible d’améliorer d(u) en passant
par un autre sommet v du graphe. En pseudo-code, celà s’écrit :

Variables : G un graphe, u et v deux sommets de G , d(u) et di st (u, v) deux nombres
Début
Pour v dans G

si d(u) > d(v)+di st (u, v)
d(u) ← d(v)+di st (u, v)

Fin

Il faudra alors garder en mémoire que le sommet précédent u devient v .

¦ Principe de sélection :
A chaque étape de l’algorithme, on choisit le sommet u si : u n’a pas encore été sélectionné et si d(u)
est minimum parmi tous les sommets non encore sélectionnés. Le principe de sélection de la solution
optimale à chaque étape s’appelle l’algorithme glouton.

- 42 -

3.13 L’algorithme de Dijkstra CHAPITRE 3 : Algorithmique et Programmation

Exercice 3.33 Compléter le schéma du programme suivant :

def dijkstra(villes ,depart ,arrivee ,M):
’’’
* villes est la liste contenant les villes ,
* depart est la variable contenant le nom de la ville de départ ,
* arrivee est la variable contenant la ville d’arrivée ,
* M est la matrice d’adjacence du graphe ’’’

’’’tableau des distances initialisé en attribuant un poids infini aux
villes autres que depart , qui reçoit le poids nul ’’’
dist=[inf]*len(villes)
dist[villes.index(depart)]=0

’’’liste des villes visitées ’’’
visit=[]
’’’indice de la ville choisie à chaque étape ’’’
choix=villes.index(depart)
’’’liste de tous les chemins parcourus ’’’
chemins=[]

’’’exploration des sommets jusqu’à la ville d’arrivée ’’’

while ... :
’’’la ville choisie est celle de poids minimum , elle est stockée dans la

variable visit ’’’
dist_choix=
choix=

...

’’’relâchement ’’’
for k in range(len(M)):

’’’si la ville n’est pas déjà visitée ’’’
if ... :

’’’on relâche la ville choisie au tour précédent ’’’
’’’on garde en mémoire le sommet visité , le sommet précédent

et le poids de l’arête ’’’

’’’la ville est déjà visitée , son poids devient infini ’’’
dist[choix]=inf

’’’construction du chemin le plus court ’’’
’’’tous les chemins possibles peuvent être reconstruits à l’aide de la variable

chemin ’’’
’’’on repère la ville d’arrivée , dernière choisie , et on récupère le sommet

précédent ’’’
’’’on recommence avec le sommet que l’on vient de trouver ’’’
v=villes[choix]
chemin_choix=[v]

while v!=depart:
....

chemin_choix.reverse ()

return dist_choix ,chemin_choix

- 43 -

CHAPITRE 3 : Algorithmique et Programmation 3.13 L’algorithme de Dijkstra

- 44 -

TRAVAUX PRATIQUES 1

AUTOUR DES LISTES

Voici les instructions éventuellement utiles dans ce TP :

len(L) donne la longueur de L
L=[] L est la liste vide
L[i] donne la valeur de l’élément de la liste d’indice i
L+M concatène (juxtapose) les listes L et M
L.append(a) ajoute a à la fin de la liste
L.insert(i,a) ajoute l’élément a à la ie position
del L[i] supprime et retourne le ie élément
for k in range(i,j) boucle pour k allant de i à j (exclus)
while boucle tant que

Le tableau unidimensionnel (ou liste) a l’avantage de regrouper un grand nombre de valeurs en une seule
variable. Chaque valeur est alors est alors repérée par un numéro appelé indice.

Par exemple, dans un tableauT comportant 12 valeurs, la première valeur sera désignée parT[0], la deuxième
par T[1],..., la dernière par T[11].

1. Recherches dans une liste

(a) Quel est le rôle de la fonction suivante ?

def fonction1(L): #L est une liste de nombres
a=L[0]
for k in range (len(L)):

if L[k]>=a:
a=L[k]

return a

(b) Modifier la fonction précédente pour obtenir le minimum de la liste L.

(c) Dorénavant on suppose que L est une liste contenant des nombres deux à deux distincts.

Ecrire une fonction MAXmax(L:list)->tuple qui renvoie le maximum et le second maximum de la
liste L. Par exemple : MAXmax([2,6,7,1,9,4]→ (9,7)

2. Calcul de la moyenne arithmétique

(a) Quel est le rôle des programmes suivants ?

45

TRAVAUX PRATIQUES 1 : Autour des listes

def fonction2(n):
’’’
* entrée : int
* sortie : list ’’’
L=[]
for k in range(n):

L.append(k)
return L

def fonction3(n:int)->int:
S=0
for k in range(n):

S=S+k
return S

(b) Soit L une liste contenant des nombres. Ecrire une fonction moyenne(L:list)-> float qui renvoie
la moyenne des valeurs de la liste L.

3. Calcul de la valeur moyenne par la méthode des trapèzes

Méthode des trapèzes

Par définition, l’intégrale d’une fonction continue et positive sur [a,b] est l’aire (grise ci-dessous) de la
surface délimitée par la courbe, l’axe des abscisses et le droites verticales d’équation x = a et x = b. La
méthode des trapèzes consiste à approcher l’aire sous la courbe par la somme des aires de trapèzes.

Pour cela on définit une subdivision à pas constant :
Soit n ∈N∗, on définit le pas : pas = b−a

n et ak = a +k ×pas

O a b O a b
pas = b−a

n

f (a)

f (a +pas)

H h

L’aire du premier trapèze jaune est obtenue par la formule H+h
2 ×pas, où H = f (a) et h = f (a +pas).

La formule qui donne une approximation de l’intégrale par la somme d’aires de trapèzes est donc :

n−1∑
k=0

f (ak)+ f (ak+1)

2
×pas

(a) Ecrire une fonction f(x) qui pour la variable x retourne la valeur 4
1+x2 .

(b) Ecrire une fonction trapezes(f,a,b,n) qui prend en argument une fonction f , deux réels a et b,
et un entier n et qui renvoie la valeur approchée de l’intégrale obtenue par la méthode des trapèzes.

(c) Quelle valeur approchée obtient-on avec l’appel trapezes(f,0,1,1000)?

- 46 -

TRAVAUX PRATIQUES 1 : Autour des listes

Calcul de la valeur moyenne

On effectue une série de mesures sur une certaine quantité Q, durant une période donnée T .

Ces mesures sont stockées dans une liste mesures.

La valeur moyenne de ces mesures est définie par :

Qmoy = 1

T

∫ T

0
Q(t) dt

Définir une fonction valeur_moyenne(mesures,T), prenant en arguments la liste mesures et la période
T et qui calcule la valeur moyenne de ces mesures obtenue par la méthode des trapèzes.

Pour comparer les deux calculs de moyenne, on prend L=[k for k in range(1,101)] ; comparer les
appels moyenne(L) et valeur_moyenne(L,100).

- 47 -

TRAVAUX PRATIQUES 1 : Autour des listes

- 48 -

TRAVAUX PRATIQUES 2

RECHERCHES DANS UNE CHAÎNE

Voici les instructions éventuellement utiles dans ce TP :

len(S) donne la longueur de la chaîne de caractères S
S = ” S est la chaîne vide
S[i] donne le caractère d’indice i dans la chaîne
S[i:j] donne la sous-chaîne des caractères d’indice i inclus à j exclus
S+T concatène (juxtapose) les chaînes S et T
len(L) donne la longueur de L
L=[] L est la liste vide
L[i] donne la valeur de l’élément de la liste d’indice i
L+M concatène (juxtapose) les listes L et M
L.append(a) ajoute a à la fin de la liste
L.insert(i,a) ajoute l’élément a à la ie position
del L[i] supprime et retourne le ie élément
for k in range(i,j) boucle pour k allant de i à j (exclus)
while boucle tant que

1. Rechercher un caractère dans une chaîne.

Ecrire une fonction cherche(c,S) qui prend en arguments un caractère c et une chaîne de caractères S ;
si le caractère est présent dans la chaîne, cette fonction revoie True et la liste des indices de ce caractère ;
sinon la fonction revoie False.

Par exemple, si on considère la chaîne S=’je vois et je comprends’, alors :

chercher(’e’,S)→ (True,[1,8,12,19]) ; chercher(’a’,S)→ (False,[])

2. Rechercher un mot dans un texte.

Soit une chaîne de caractères S=’TGACTGGTCACT’, on appelle sous-chaîne de caractères de S une suite de
caractères incluse dans S. Par exemple, ’TGG’ est une sous-chaîne de S mais ’TAG’ n’est pas une sous-
chaîne de S.

L’objectif est de rechercher une sous-chaîne de caractères M de longueur m appelée motif dans une chaîne
de caractères S de longueur n.

Il s’agit d’une problématique classique en informatique, qui répond aux besoins de nombreuses applica-
tions. On trouve plus de 100 algorithmes différents pour cette même tâche, les plus célèbres datant des
années 1970 ; mais plus de la moitié ont moins de 10 ans.

Principe de l’algorithme naïf : On parcourt la chaîne. À chaque étape, on regarde si on a trouvé le bon
motif. Si ce n’est pas le cas, on recommence avec l’élément suivant de la chaîne de caractères.

49

TRAVAUX PRATIQUES 2 : Recherches dans une chaîne

Cet algorithme a une complexité en O(nm) avec n, la taille de la chaîne de caractère et m, la taille du
motif.

Écrire une fonction rechercher(M,S) qui à une sous-chaîne de caractères M et une chaîne de caractères
S renvoie False si M n’est pas dans S, et True et la position de la première lettre de la chaîne de caractères
M si M est présente dans S. Par exemple :

rechercher(’TGG’,S)→ (True,4) ; rechercher(’TAG’,S)→ False

- 50 -

TRAVAUX PRATIQUES 3

CRYPTOGRAPHIE

Voici les instructions éventuellement utiles dans ce TP :

len(L) ; len(S) donne la longueur de L ; de la chaîne S
L=[] ; S=” L est la liste vide ; S est la chaîne vide
L[i] ; S[i] donne la valeur de l’élément d’indice i dans la liste L ou la chaîne S
M+N concatène (juxtapose) les listes ou les chaînesM et N
L.append(a) ajoute a à la fin de la liste
S+’a’ ajoute a à la fin de la chaîne
M.index(a) donne la première occurrence de a dans la liste ou la chaîne M
chr(i) donne le caractère ASCII d’indice i
ord(’c’) donne l’indice dans la table ASCII du caractère c
n%p donne le reste de la division de n par p
D={clé1:valeur1} D est le dictionnaire contenant une seule valeur1 associé à une clé1
D[clé] donne la valeur de l’élément du dictionnaire D associé à la clé
D[clé2]=valeur2 ajoute la valeur2 associée à la clé2 dans le dictionnaire D

1. Création d’un alphabet

La table ASCII contient les lettres de l’alphabet sous forme de chaînes de caractères.

Utiliser cette table pour définir une fonction alphabet(), sans argument, qui renvoie une liste contenant
les lettres de l’alphabet en minuscule sous la forme de chaînes de caractères. Le premier élément de cette
liste contiendra le caractère Space, à l’indice 32 dans la table ASCII, permettant de créer l’espace entre
deux mots.

2. Codage Jules César

Le principe du codage est mono-alphabétique. On cherche à coder un message. Pour cela un nombre
N est choisi. Chaque lettre du message d’origine est alors remplacée par la lettre de l’alphabet qui est
située N places plus loin dans l’alphabet. Si en faisant cette manipulation, on "sort" de l’alphabet, alors
on reprend l’alphabet au début. Par ailleurs, l’alphabet est complété par une lettre supplémentaire qui
permettra de coder les espaces entre les mots.

Par exemple, si le nombre N choisi au départ est 5, et que le message à coder est :

’je vois et je comprends’
alors le message codé est :

’oje tnxejyeojehtruwjsix’

(a) Ecrire une fonction codage_cesar(message,N), prenant en arguments un message et un nombre et
retournant le message codé en suivant le principe ci-dessus.

51

TRAVAUX PRATIQUES 3 : Cryptographie

Ecrire une fonction decodage_cesar(message_code,N) prenant en arguments un message codé
par la méthode César et un nombre, qui retourne le message décodé. Tester son fonctionnement
sur le message suivant codé avec N = 10 :

′obyzojaobcojsmsjocjbojaozybo′

(b) Trouver, quitte à tester toutes les valeurs de N possibles, le message caché derrière le message
crypté :

′buhhqwuphusguipuipsgneidwgqbbuphdciptuhphncdcnbuxh′

3. Codage Blaise de Vigenère

Le principe du codage est cette fois poly-alphabétique. Un mot, appelé clef, est choisi au départ. Chaque
lettre du message à coder sera remplacée par la lettre de l’alphabet qui est située N places plus loin dans
l’alphabet suivant le principe suivant :
? pour la première lettre à coder, N est le numéro correspondant à la première lettre de la clef,
? pour la deuxième lettre à coder, N est le numéro correspondant à la deuxième lettre de la clef,
? pour la troisième lettre à coder, N est le numéro correspondant à la troisième lettre de la clef...

Dès que l’on arrive à la dernière lettre de la clef, on revient au début de ce mot-clé.

En quelques sortes, tout se passe comme si on "ajoutait" les lettres du mot-clé à celles du message à
coder.

(a) Ecrire une fonction codage_vigenere(message,clef) qui retourne le message codé suivant ce
principe.

Tester le fonctionnement de la fonction avec la clef ′python′ et le message suivant :

’je vois et je comprends’

(b) Ecrire une fonction decodage_vigenere(message_code,clef), prenant en argument un message
codé par la méthode Vigenère et la clef utilisée pour le codage, qui retourne le message décodé.

Tester le fonctionnement de la fonction avec la clef ′informatique′ et le message :

’kwkbmronnqyfwff wmnhwuzemsf rvozxhgfbwwiw’

4. Nombre d’apparition des lettres dans un texte

Pour décoder un message codé avec le codage Vigenère, sans connaître la clé, il est nécessaire de faire
une étude statistique sur le message codé, en comptant le nombre d’apparition de chaque lettre.

Pour réaliser ce comptage, nous allons utiliser un dictionnaire.

(a) On initialise une variable alpha au format dictionnaire par : alpha={’ ’,0}.

La clé est l’espace et son effectif est initialisé à 0. Compléter la variable alpha pour qu’elle contienne
comme clés, les lettres de l’alphabet associés aux valeurs 0 :

(b) Soit S une chaîne de caractères. On suppose, pour simplifier, que S ne contient que des lettres mi-
nuscules et non accentuées.

Ecrire une fonction compte(S:str)->dict qui prend un argument un texte au format d’une chaîne
de caractères et qui renvoie la variable alpha qui donne le nombre d’apparition de chaque lettre
dans le texte. Par exemple :

S=’demain des l aube a l heure ou blanchit la campagne je partirai vois tu je sais que
tu m attends j irai par la foret j irai par la montagne je ne puis demeurer loin de toi
plus longtemps je marcherai les yeux fixes sur mes pensees sans rien voir au dehors sans
entendre aucun bruit seul inconnu le dos courbe les mains croisees triste et le jour pour

- 52 -

TRAVAUX PRATIQUES 3 : Cryptographie

moi sera comme la nuit je ne regarderai ni l or du soir qui tombe ni les voiles au loin
descendant vers harfleur et quand j arriverai je mettrai sur ta tombe un bouquet de houx
vert et de bruyere en fleur’

- 53 -

TRAVAUX PRATIQUES 3 : Cryptographie

- 54 -

TRAVAUX PRATIQUES 4

ALGORITHMES DICHOTOMIQUES

Voici les instructions éventuellement utiles dans ce TP :

len(L) donne la longueur de L
L=[] L est la liste vide
L[i] donne la valeur de l’élément de la liste d’indice i
L+M concatène (juxtapose) les listes L et M
L.append(a) ajoute a à la fin de la liste
L.insert(i,a) ajoute l’élément a à la ie position
del L[i] supprime et retourne le ie élément
for k in range(i,j) boucle pour k allant de i (inclus) à j (exclus)
while boucle tant que
randrange(a,b) renvoie un nombre entier n aléatoire tel que aÉ n< b

randint(a,b) renvoie un nombre entier n aléatoire tel que aÉ nÉ b

L.sort() renvoie la liste L triée dans l’ordre croissant

1. Recherche dichotomique dans une liste triée

(a) Que renvoie les instructions suivantes?

L=[]
n=1000
for k in range(n):

L.append(randint(0,1000))
L.sort()

(b) Expliquer le rôle et le fonctionnement de la fonction suivante :

def fonction(L,x):
for k in range(len(L)):

if L[k]==x:
return True ,k

return False

(c) Si on décide de rechercher un mot dans un dictionnaire qui comporte 40 000 mots avec la méthode
précédente, au pire des cas il faudra 40 000 tours de boucle !

Or, le dictionnaire est trié par ordre alphabétique ; une autre méthode consiste à comparer le mot
à chercher avec celui se trouvant au milieu du dictionnaire. Si le mot à chercher est antérieur dans
l’ordre alphabétique, on sait qu’on devra le chercher dans la première moitié du dictionnaire. Sinon,
on le cherche dans la deuxième moitié.

55

TRAVAUX PRATIQUES 4 : Algorithmes dichotomiques

Et on recommence...

Voici ce que cela donne en terme de nombre d’opérations à effectuer, en choisissant le pire cas :
celui où le mot est absent du dictionnaire.

? Au départ, on cherche le mot parmi 40 000.
? Après le test n°1, on ne le cherche plus que parmi 20 000.
? Après le test n°2, on ne le cherche plus que parmi 10 000.
? Après le test n°3, on ne le cherche plus que parmi 5 000.
? et ainsi de suite ...
? Après le test n°15, on ne le cherche plus que parmi 2.
? Après le test n°16, on ne le cherche plus que parmi 1.

Et là, on sait que le mot n’existe pas : on a obtenu notre réponse en 16 opérations contre 40 000
précédemment.

Pour un tableau comportant n éléments, le programme s’arrête lorsque n
2k = 1, où k est le nombre

d’étapes.

On obtient k = lnn
ln2 ; et la complexité du programme est de l’ordre de lnn. (On écrit log(n) en infor-

matique.)

! la recherche dichotomique ne peut s’effectuer que sur des éléments préalablement triés.

Ecrire une fonction reccherche_dichotomie(L,x) qui prend en argument une liste triée et un
élément à chercher par dichotomie dans la liste. Cette fonction renvoie True et l’indice de x si celui-
ci est dans la liste, et False sinon.

2. Résolution dichotomique de l’équation f (x) = 0

L’objectif de cette question est de programmer une méthodes numériques qui permet la résolution de
l’équation f (x) = 0.

Pour illustrer cette méthode, on considère la fonction f définie sur R par

f (x) = x3 +x −1

(a) Déterminer f ′(x), ∀x ∈R.

(b) Etudier les variations de la fonction f sur R.

(c) Démontrer que l’équation f (x) = 0 admet une unique so-
lution et localiser celle-ci entre deux entiers consécutifs
a et b.

(d) On pose c = a+b
2 .

Calculer f (c) ; que peut-on en déduire ?

a c b

f (c)

f (b)

f (a)

(e) Créer les fonctions python f et fprime.

(f) Ecrire une fonction Dichotomie(f,p,a,b), prenant en argument la fonction f , un entier p et les
bornes a et b de l’intervalle sur lequel on applique la méthode de dichotomie. Cette fonction doit
retourner une valeur approchée à 10−p près de la solution de l’équation f (x) = 0 .

- 56 -

TRAVAUX PRATIQUES 5

TRIS QUADRATIQUES

Voici les instructions éventuellement utiles dans ce TP :

len(L) donne la longueur de L
L=[] L est la liste vide
L[i] donne la valeur de l’élément de la liste d’indice i
L+M concatène (juxtapose) les listes L et M
L.append(a) ajoute a à la fin de la liste
L.insert(i,a) ajoute l’élément a à la ie position
del L[i] supprime et retourne le ie élément
for k in range(i,j) boucle pour k allant de i (inclus) à j (exclus)
while boucle tant que
randrange(a,b) renvoie un nombre entier n aléatoire tel que aÉ n< b

randint(a,b) renvoie un nombre entier n aléatoire tel que aÉ nÉ b

1. Tri par sélection

Pour trier un tableau T comportant n éléments par sélection, voici la méthode :

En partant de la position i= 0, on recherche le plus petit élément parmi les éléments d’indice i+1 à n−1
et on l’échange avec T[i].

Par exemple, pour trier [12,3,17,9,4,16], on obtient successivement :

[12,3,17,9,4,16] [12, | 3 ,17,9,4,16] [3,12, |17,9, 4 ,16] [3,4,17, | 9 ,12,16]

[3,4,9,17, | 12 ,16] [3,4,9,12, |17, 16] [[3,4,9,12,17, | 16] [3,4,9,12,16,17]

Compléter la fonction suivante pour qu’elle retourne le tableau trié par sélection :

def tri_selection(T):
for i in range(len(T)-1):
...

for j in range (i+1,len(T)):
recherche du minimum dans le tableau restant
comparer ce minimum à T[i]

return T

2. Tri par insertion

Pour trier un tableau T par insertion, voici la méthode :

57

TRAVAUX PRATIQUES 5 : Tris quadratiques

On prend le premier élément et on le met à l’indice i= 0 ; puis on insère les autres éléments dans la partie
déjà triée en plaçant chaque nouvel élément à la bonne place.

Cela donne :
[12, |3,17,9,4,16] [3,12, |17,9,4,16] [3,12,17, |9,4,16]

[3,9,12,17, |4,16] [3,4,9,12,17, |16] [3,4,9,12,16,17]

Ecrire une fonction python qui permette de trier le tableau par insertion, en complétant le script suivant :

def tri_insertion(T):
for i in range(1,len(T)):#on traite les éléments restants

... #on mémorise l’élément à traiter

... #variable créée pour trouver la bonne place
while ... #tant que la bonne place n’est pas trouvée

... #on cherche la bonne place
... #on insère l’élément à sa place
... #on supprime le doublons

return T

Evaluer la complexité temporelle des deux algorithmes de tri.

3. Tri à bulles

Soit T un tableau de valeurs, décrire l’évolution de la variable T au cours de l’algorithme suivant :

def tri_a_bulles(T):
for i in range(len(T)-1):

for j in range(len(T)-1,i,-1):
if T[j]<T[j-1]:

T[j],T[j-1]=T[j-1],T[j]
return T

- 58 -

TRAVAUX PRATIQUES 6

GRAPHES

len(L) donne la longueur de L
L=[] L est la liste vide
L[i] donne la valeur de l’élément de la liste d’indice i
L+T concatène (juxtapose) les listes L et T
L.append(a) ajoute a à la fin de la liste
L.insert(i,a) ajoute l’élément a à la ie position
del L[i] supprime le ie élément
for k in range(i,j) boucle pour k allant de i (inclus) à j (exclus)
while boucle tant que
M=array([L1,L2,...]) M est la matrice constituée des lignes L1,L2...
len(M) donne le nombre de lignes de M
M[i][j] donne l’élément situé à la ligne i et à la colonne j

On peut implémenter une matrice en Python par l’instruction array à importer de la bibliothèque numpy :

from numpy import array

On considère la graphe pondéré suivant :

A

B

C

E

D

G

F

H

7

3

7

11

3

4

11

3

7

2

9
10

8

4

12

7

1. Donner une instruction python qui permet de construire la matrice d’adjacence M = (
mi , j

)
où mi , j est

égal à la valeur portée par l’arête reliant les sommets d’indices i et j si ces sommets sont adjacents, ou ∞
sinon.

59

TRAVAUX PRATIQUES 6 : Graphes

Pour cela, on considère la liste des sommets : S=[’A’,’B’,’C’,’D’,’E’,’F’,’G’,’H’] ; les indices des
sommets dans la matrice M doivent correspondre aux indices des sommets dans la liste S.

On importera ∞ de la bibliothèque numpy par : from numpy import inf.

2. Ecrire une fonction python voisins(M : array,S : list,S0 : str)−> list, prenant en arguments la ma-
trice M d’adjacence d’un graphe, la liste S de ses sommets, et un sommet S0 de ce graphe. Cette fonction
renvoie la liste des voisins du sommet S0.

Par exemple : voisins(M,S,’A’)−→ [’B’,’C’,’D’].

3. Ecrire une fonctiondegre(M,S,S0), de mêmes arguments que la fonction précédente, qui renvoie le nombre
de voisins du sommet S0 ; c’est-à-dire le nombre d’arêtes issues de S0.

Par exemple, degre(M,S,’A’)−→ 3.

4. Pour optimiser l’étude de certaines situations, il est parfois imoprtant de trier les sommets par ordre
croissant de degré.

Ecrire alors une fonction triSommets(M,S) qui revoie la liste des sommets triée par ordre croissant des
degrés.

Par exemple, triSommets(M,S)−→ [’H’,’A’,’F’,’B’,’C’,’G’,’D’,’E’].

5. Ecrire une fonction longChemin(M,S,L) qui prend un arguments une matrice M , la liste S de ces sommets
et une liste L contenant des sommets (adjacents ou non). Cette fonction renvoie la longueur de ce chemin
s’il est réalisable ou ∞ sinon.

Par exemple, longChemin(M,S,[’A’,’C’,’E’,’F’])−→ 18.

- 60 -

TRAVAUX PRATIQUES 7

ALGORITHME DE GAUSS-JORDAN

On peut implémenter une matrice en Python par l’instruction np.array après avoir importé la biblio-
thèque numpy par l’instruction : import numpy as np. Vous trouverez en annexe des instructions utiles pour
manipuler les matrices.

Pour ce TP, nous allons opter pour une programmation modulaire ; ainsi toutes les fonctions auxiliaires
seront enregistrées dans un fichier que nous appellerons gausspy.

Le fichier principal qui contiendra l’algorithme de Gauss-Jordan sera nommé gauss et nous importerons le
module par l’instruction import gausspy as gp ; ainsi toutes les fonctions contenues dans gausspypourrons
être appelées sous la forme gp.NomDeLaFonction.

Nombreux sont les logiciels permettant de résoudre un système d’équations linéaires.
On se propose ici de programmer l’algorithme de Gauss-Jordan de résolution d’un système linéaire de n

équations à n inconnues.
On considère le système linéaire de n équations à n inconnues suivant :

(Σ)


a11x1 +a12x2 +·· ·+a1n xn = b1 (L1)
a21x1 +a22x2 +·· ·+a2n xn = b2 (L2)

...
...

an1x1 +an2x2 +·· ·+ann xn = bn (Ln)

On note A la matrice des cœfficients associée à (Σ), B la matrice du second membre et X la matrice des
inconnues. Le système (Σ) s’écrit alors : AX = B ou encore :

(A|B) =



a11 · · · a1 j · · · a1n b1
...

...
...

...
ai 1 · · · ai j · · · ai n bi

...
...

...
...

an1 · · · an j · · · ann bn


On appelle cette dernière matrice la matrice augmentée du système (Σ).
Afin de simplifier la mise en œuvre de la méthode de Gauss, nous allons faire l’hypothèse que la matrice A

est inversible, c’est-à-dire que le système est de Cramer.
Il admet ainsi une unique solution donnée par X = A−1B .

1. Création de la matrice augmentée

Ecrire une fonction python Augmente(A,B) qui prend en arguments une matrice A carrée de taille n et une
matrice colonne B à n lignes. Cette fonction retourne la matrice augmentée (A|B) associé au système à
résoudre.

61

TRAVAUX PRATIQUES 7 : Algorithme de Gauss-Jordan

2. Ecrire une fonction EchangeLigne(M,i,j) qui prend en arguments une matrice M et deux entiers i et j .
Cette fonction doit retourner la matrice dans laquelle les lignes i et j ont été échangées.

3. Recherche du pivot

L’hypothèse d’inversibilité de la matrice A assure l’existence d’un pivot non nul sur chaque colonne i . On
se propose d’écrire une fonction Pivot(M,i) qui prend en arguments une matrice M et un entier i . Quitte
à utiliser EchangeLigne(M,i,j), cette fonction devra retourner la matrice dans laquelle le pivot se trouve
au bon endroit.

Il faut donc se poser la question du choix du pivot. Ce choix doit être fait avec l’objectif de minimiser les
erreurs d’arrondis.

Pour illustrer l’incidence du choix du pivot sur les erreurs d’arrondis, étudions l’exemple suivant :{
10−4x1 +x2 = 1

x1 +x2 = 2

? La résolution exacte donne :

x1 = −1

10−4 −1
' 1,00010001... et x2 = 2×10−4 −1

10−4 −1
' 0,99989998...

Si on utilise des flottants à trois chiffres significatifs, on obtient x1 ' 1 et x2 ' 1.

? Résolution avec 10−4 comme pivot : le système devient :

{
10−4x1 +x2 = 1
(1−104)x2 = 2−104

donc x2 = 2−104

1−104 = 9998
9999 = 9,998×103

9,999×103 ; avec 3 chiffres significatifs, cela donne x2 = 1 et, en reportant dans
la première équation, on obtient x1 = 0 ! ! !

? Résolution avec 1 comme pivot : le système devient :

{
x1 +x2 = 2

(1−10−4)x2 = 1−2×10−4

donc x2 = 1−2×10−4

1−10−4 = 0,9998
0,9999 = 9,998×10−3

9,999×10−3 ; avec trois chiffres significatifs, cela donne x2 = 1 et, en repor-
tant dans la première équation, x1 = 1.

Cet exemple montre que le choix de petits pivots peut engendrer des erreurs d’arrondis catastrophiques
(comme obtenir x1 = 0 ici !).

Pour éviter une trop grand instabilité de l’algorithme, nous allons donc choisir comme pivot sur la co-
lonne i le cœfficient ai j ayant la plus grande valeur absolue.

Ecrire alors la fonction Pivot(M,i) qui retourne la matrice dans laquelle le pivot est au bon endroit.

4. Echelonnement de la matrice

Ecrire une fonction ElimineD(M,i,j,l) qui prend en arguments une matrice M , deux entiers i et j et
un réel `. Cette fonction doit retourner une matrice dans laquelle la ligne L j est remplacée par la ligne
L j −`×Li pour j > i . Cette fonction pourra être utilisée pour échelonner la matrice augmentée (A|B).

5. Normalisation de la matrice échelonnée

Une fois la matrice échelonnée, il faut "remonter" pour calculer les xi . Pour commencer on normalise la
matrice en opérant sur les lignes afin que tous les cœfficients diagonaux valent 1.

Ecrire alors une fonction Normalise(M) qui effectue cette opération.

6. Remontée

La dernière ligne donne la valeur de xn . On utilise le pivot valant 1 sur la dernière ligne et la dernière
colonne pour éliminer xn dans les lignes Ln−1,Ln−2, ...,L1.

La ligne Ln−1 donne alors la valeur de xn−1 ; puis on élimine xn−1 dans les lignes Ln−2, ...,L1. Et ainsi de
suite...

Ecrire alors une fonction ElimineM(M,i,j,l) qui prend en arguments une matrice M , deux entiers i et j
et un réel `. Cette fonction doit retourner une matrice dans laquelle la ligne L j est remplacée par la ligne
L j −`×Li pour j < i . Cette fonction doit permettre la remontée dans la matrice augmentée et le calcul
de chaque valeur de xi . On obtiendra ainsi une matrice augmentée (A|B) dans laquelle la matrice A est
diagonale.

- 62 -

TRAVAUX PRATIQUES 7 : Algorithme de Gauss-Jordan

7. Obtention du résultat

La matrice augmentée (A|B) est maintenant telle que la matrice A est diagonale et que tous les cœfficients
sont égaux à 1. Il suffit d’extraire le second membre de cette matrice pour obtenir la solution.

Ecrire alors une fonction SecondMembre(M) qui permette d’extraire, sous la forme d’une liste, la dernière
colonne d’un matrice M .

Toutes les fonctions précédente sont enregistrées dans le module gausspy et pourront donc être utilisées
dans l’algorithme de Gauss.

8. Algorithme de Gauss

En utilisant correctement les fonctions du module gausspy , écrire l’algorithme qui pour une matrice A
carrée de taille n et une matrice colonne B à n lignes donne la solution du système de Cramer correspon-
dant.

9. Application.

Utiliser cet algorithme pour résoudre le système :
x + y + z = 6

−2x − y + z =−1
3x +2y −2z = 1

10. Approfondissement.

Ecrire une fonction Comat(M,i,j) qui prend en argument une matrice carrée sous la forme d’un tableau
(array) et deux entiers i et j. Cette fonction doit retourner la matrice obtenue à partir de M dans laquelle
on a retiré la ligne d’indice i ligne et la colonne d’indice j.

Programmer alors une fonction récursive Det(M) qui prend un argument une matrice carrée sous la forme
d’un tableau et qui retourne le déterminant de cette matrice.

ANNEXE

Une matrice peut être considérée comme un tableau (array) à deux dimensions. La bibliothèque numpy est
spécialisée dans la manipulation de ces tableaux.

1. Création d’une matrice.

Au préalable, il ne faut pas oublier d’importer le module numpy.

import numpy as np
A=np.array([[1,2,3],[4,5,6]])
print (A)
print(type(A)) #type de structure
print(A.shape) #nombre de lignes et

colonnes

[[1. 2. 3.]
[4. 5. 6.]]

<type ’numpy.ndarray ’>
(2, 3)

Il est possible de créer une matrice à partir d’une liste de valeurs ; voici quelques exemples :

A=np.arange(0,10).reshape(2,5)
print (A)

[[0.1. 2. 3. 4.]
[5. 6. 7. 8. 9.]]

B=np.array([1,2,3,4,5,6])
C=B.reshape(3,2)
print (C)

[[1. 2.]
[3. 4.]
[5. 6.]]

- 63 -

TRAVAUX PRATIQUES 7 : Algorithme de Gauss-Jordan

L=[1.2,1.3,1.4,1.5]
D=np.asarray(L).reshape(2,2)
print (D)

[[1.2 1.3]
[1.4 1.5]]

Redimensionnement d’une matrice :

A=np.array([[1,2,3],[4,5,6]])
print (np.resize(A,new_shape=(3,2)))

[[1. 2.]
[3. 4.]
[5. 6.]]

2. Opérations sur les matrices.

On peut additionner deux matrices de mêmes dimensions et multiplier une matrice par un scalaire :

A=np.arange(1,7).reshape(2,3)
B=np.array([[6,5,4],[3,2,1]])
print (A+B)
print (2*A)

[[7. 7. 7.]
[7. 7. 7.]]
[[2. 4. 6.]
[8. 10. 12.]]

On peut accoler un vecteur B en tant que nouvelle ligne (axis = 0) ou en tant que nouvelle colonne
(axis= 1) :

A=array([[1,3],[-2,2]])
B=array([[4,5]])
print (append(A,B,axis=0))

[[1. 3.]
[-2. 2.]
[4. 5.]]

A=np.array([[1,3],[-2,2]])
B=np.array([[4],[5]])
print (np.append(A,B,axis=1))

[[1. 3. 4.]
[-2. 2. 5.]]

Insertion de B en tant que nouvelle ligne (axis= 0) à la position d’indice 1 :

A=np.array([[1,3],[-2,2]])
B=np.array([[4,5]])
print (np.insert(A,1,B,axis=0))

[[1. 3.]
[4. 5.]
[-2. 2.]]

Suppression de la ligne (axis= 0) via son indice (n°1) :

A=np.array([[1,3],[4.,5.],[-2,2]])
print (np.delete(A,1,axis=0))

[[1. 3.]
[-2. 2.]]

3. Extractions des valeurs d’une matrice.

A=np.array([[1,2,3],[4,5,6],[7,8,9]])
print (A)

[[1. 2. 3.]
[4. 5. 6.]
[7. 8. 9.]]

Extraction d’une valeur de la matrice via son indice A[i][j] ou A[i,j] renvoie le terme situé à la ligne
d’indice i et à la colonne d’indicie j.

print (A[0][0])
print (A[2][1])
print (A[len(A)-1][len(A)-1])

1.
8.
9.

Extraction d’une partie de la matrice, de la ligne 0 à la ligne 2 (non incluse) et de la colonne 0 à la colonne
2 (non incluse) :

- 64 -

TRAVAUX PRATIQUES 7 : Algorithme de Gauss-Jordan

print (A[0:2,0:2])
[[1. 2.]
[4. 5.]]

Extraction des valeurs d’une ligne ou d’une colonne et retournées sous la forme d’une matrice ligne :

print (A[2,0:len(A)]) #dernière ligne
#ou plus simplement :
print (A[0]) #première ligne
print (A[0:len(A),2])#dernière colonne

[7. 8. 9.]

[1. 2. 3.]
[3. 6. 9.]

- 65 -

TRAVAUX PRATIQUES 7 : Algorithme de Gauss-Jordan

- 66 -

TRAVAUX PRATIQUES 8

LA RÉCURSIVITÉ

La factorielle

1. Programmer une fonction récursive factorielle(n) non terminale qui prend en argument un entier
naturel n et qui renvoie la factorielle de n. Evaluer la complexité de cette fonction.

2. Modifier la fonction précédente pour qu’elle devienne une fonction récursive terminale. Evaluer la com-
plexité de cette dernière fonction et commenter le résultat.

3. Intérêt de la dichotomie.

Le 31 décembre 2009, Fabrice BELLARD publie un nouveau record avec presque 2 700 milliards de déci-
males du nombre π. Et ceci avec un ordinateur personnel classique !

Pour optimiser la complexité des calculs, il utilise le principe de dichotomie.

Voici le principe : pour calculer le produit de tous les entiers compris entre a et b, on effectue les produits
des entiers entre a et c, puis entre c et b, où c est situé au milieu ; puis on effectue le produit des deux
résultats. Par exemple, prod(6,18) = prod(6,12)×prod(13,18).

Programmer la fonction récursive prod(a,b) qui effectue le produit de tous les entiers compris entre a
et b. La factorielle de n s’obtiendra alors par l’appel prod(1,n).

Motifs

1. Qu’affiche l’algorithme suivant :

def fonc1(n):
if n>0:

print(’*’*n)
fonc1(n-1)

2. Modifier la fonction précédente pour qu’elle affiche :

>>> fonc2(5)
*
**

** **
** ***

3. Utiliser le principe précédent pour afficher les motifs suivants :

67

TRAVAUX PRATIQUES 8 : La récursivité

** ***
** **

**
*
*
**

** **
** ***

** ** ** ** **
** ** ** **
*** ** *
** **
* *
* *
** **
*** ** *
** ** ** **
** ** ** ** **

*

** ***
** ** ***

** ** ** ***
** ** ** ** ***

** ** ** ** ** ** *
** ** ** ** ** ** ** *

** ** ** ** ** ** ** ** *
** ** ** ** ** ** ** ** ** *

- 68 -

TRAVAUX PRATIQUES 9

DYNAMIQUE GRAVITATIONNELLE

Modéliser les interactions physiques entre un grand nombre de constituants mène à l’écriture de systèmes
différentiels pour lesquels, en dehors de quelques situations particulières, il n’existe aucune solution analy-
tique. Les problèmes de dynamique gravitationnelle et de dynamique moléculaire en sont deux exemples. Afin
d’analyser le comportement temporel de tels systèmes, l’informatique peut apporter une aide substantielle en
permettant leur simulation numérique. L’objet de ce TP, inspiré d’un sujet de CENTRALE, est l’étude de solutions
algorithmiques en vue de simuler une dynamique gravitationnelle afin, par exemple, de prédire une éclipse ou
le passage d’une comète.

Soit y une fonction de classe C 2 sur R et tmin et tmax deux réels tels que tmin < tmax.
On note I l’intervalle [tmin, tmax]. On s’intéresse à une équation différentielle du second ordre de la forme :

∀t ∈ T y"(t) = f (y(t)) (1)

où f est une fonction donnée, continue sur R. De nombreux systèmes physiques peuvent être décrits par
une équation de ce type.

On suppose connues les valeurs y0 = y (tmin) et z0 = y ′ (tmin). On suppose également que le système phy-
sique étudié est conservatif. Ce qui entraine l’existence d’une quantité indépendante du temps (énergie, quan-
tité de mouvement,...), notée E , qui vérifie l’équation (2) où g ′ =− f :

∀t ∈ I
1

2
y ′(t)2 + g (y(t)) = E (2)

Mise en forme du problème

Pour résoudre numériquement l’équation différentielle (1), on introduit la fonction z : I → R définie par
∀t ∈ I , z(t) = y ′(t).

1. Montrer que l’équation (1) peut se mettre sous la forme d’un système différentiel du premier ordre en
z(t) et y(t), noté (S).

2. Soit n un entier naturel strictement supérieur à 1 et Jn = �0,n −1�.
On pose h = tmax−tmin

n−1 et ∀i ∈ Jn , ti = tmin + i h. Montrer que, pour tout entier i ∈ �0,n −2�,

y(ti+1) = y(ti)+
∫ ti+1

ti

z(t) dt et z(ti+1) = z(ti)+
∫ ti+1

ti

f (y(t)) dt (3)

La suite du problème exploite les notations introduites dans cette partie et présente deux méthode nu-
mériques dans lesquelles les intégrales précédentes sont remplacées par une valeur approchée.

69

TRAVAUX PRATIQUES 9 : Dynamique gravitationnelle

Schéma d’Euler explicite

Dans le schéma d’Euler explicite, chaque terme sous le signe intégral est remplacé par sa valeur prise en la
borne inférieure.

3. Dans ce schéma, montrer que les équations (3) permettent de définir deux suites
(
yi

)
i∈Jn

et
(
zi

)
i∈Jn

, où
yi et zi sont des valeurs approchées de y(ti) et de z(ti). Donner les relations de récurrence permettant
de déterminer les valeurs de yi et zi connaissant y0 et z0.

4. Pour illustrer cette méthode, on considère l’équation différentielle

∀t ∈ I , y"(t) =−ω2 y(t) (4)

dans laquelle ω est un nombre réel.

Ecrire l’équation de conservation (2) correspondante à l’équation différentielle (4).
En portant les valeurs de yi et zi sur l’axe des abscisses et l’axe des ordonnées respectivement, quelle
serait l’allure du graphe qui respecte la conservation de E ?
La mise en œuvre de la méthode d’Euler explicite génère le résultat graphique donné Figure 1 à gauche.

En quoi ce graphe confirme-t-il que le schéma numérique ne conserve par E ? Pouvez-vous justifier son
allure?

5. Déterminer les suites
(
yi

)
i∈Jn

et
(
zi

)
i∈Jn

obtenues à la question 3. qui correspondent à l’équation diffé-
rentielle (4).
Ecrire alors une fonction euler qui reçoit en arguments les paramètres qui vous semblent pertinents et
qui renvoie deux listes de nombres correspondant aux valeurs associées aux suites

(
yi

)
i∈Jn

et
(
zi

)
i∈Jn

.
Pour illustrer cette méthode, on choisir les valeurs numériques suivantes :

y0 = 3, z0 = 0, tmin = 0, tmax = 3, ω= 2π et n = 100
La courbe pourra être obtenue par :

import matplotlib.pyplot as plt
import numpy as np
plt.close ()
Y=euler(3,0,2*np.pi,0,3,100)[0]
Z=euler(3,0,2*np.pi,0,3,100)[1]
plt.plot(Y,Z,’ko’,linestyle=’-’)
ax = plt.gca()
ax.spines[’right’].set_color(’none’)
ax.spines[’top’].set_color(’none’)
plt.xlim(-15, 20)
plt.ylim(-80,120)
plt.show()

- 70 -

TRAVAUX PRATIQUES 9 : Dynamique gravitationnelle

Schéma de Verlet

Le physicien français Loup Verlet a proposé en 1967 un schéma numérique d’intégration d’une équation de
la forme (5) dans lequel, en notant fi = f (yi) et fi+1 = f (yi+1), les relations de récurrence s’écrivent

yi+1 = yi +hzi + h2

2
fi et zi+1 = zi + h

2

(
fi + fi+1

)
(5)

On reprend l’exemple de l’oscillateur harmonique de la question 4. et on compare les résultats obtenus à
l’aide des schémas d’Euler et de Verlet.

6. Ecrire une fonction verlet qui reçoit en arguments les paramètres qui vous semblent pertinents et qui
renvoie deux listes de nombres correspondant aux valeurs associées aux suites

(
yi

)
i∈Jn

et
(
zi

)
i∈Jn

.
7. La mise en œuvre du schéma de Verlet avec les mêmes paramètres que ceux utilisés au 5. donne le

résultat de la Figure 1 à droite. Interpréter l’allure de ce graphe.
Que peut-on en conclure sur le schéma de Verlet?

- 71 -

TRAVAUX PRATIQUES 9 : Dynamique gravitationnelle

- 72 -

TRAVAUX PRATIQUES 10

GRAPHES BIS

On peut implémenter une matrice en Python par l’instruction array à importer de la bibliothèque numpy :

from numpy import array

On considère la graphe pondéré suivant :

A

B

C

E

D

G

F

H

7

3

7

11

3

4

11

3

7

2

9
10

8

4

12

7

1. Donner une instruction python qui permet de construire la matrice d’adjacence M = (
mi , j

)
où mi , j est

égal à la valeur portée par l’arête reliant les sommets d’indices i et j si ces sommets sont adjacents, ou ∞
sinon.

Pour cela, on considère la liste des sommets : S=[’A’,’B’,’C’,’D’,’E’,’F’,’G’,’H’] ; les indices des
sommets dans la matrice M doivent correspondre aux indices des sommets dans la liste S.

On importera ∞ de la bibliothèque numpy par : from numpy import inf.

2. Ecrire une fonction python voisins(M : array,S : list,S0 : str)−> list, prenant en arguments la ma-
trice M d’adjacence d’un graphe, la liste S de ses sommets, et un sommet S0 de ce graphe. Cette fonction
renvoie la liste des voisins du sommet S0.

Par exemple : voisins(M,S,’A’)−→ [’B’,’C’,’D’].

3. Ecrire une fonctiondegre(M,S,S0), de mêmes arguments que la fonction précédente, qui renvoie le nombre
de voisins du sommet S0 ; c’est-à-dire le nombre d’arêtes issues de S0.

Par exemple, degre(M,S,’A’)−→ 3.

73

TRAVAUX PRATIQUES 10 : Graphes Bis

4. Pour optimiser l’étude de certaines situations, il est parfois imoprtant de trier les sommets par ordre
croissant de degré.

Ecrire alors une fonction triSommets(M,S) qui revoie la liste des sommets triée par ordre croissant des
degrés.

Par exemple, triSommets(M,S)−→ [’H’,’A’,’F’,’B’,’C’,’G’,’D’,’E’].

5. Ecrire une fonction longChemin(M,S,L) qui prend un arguments une matrice M , la liste S de ces sommets
et une liste L contenant des sommets (adjacents ou non). Cette fonction renvoie la longueur de ce chemin
s’il est réalisable ou ∞ sinon.

Par exemple, longChemin(M,S,[’A’,’C’,’E’,’F’])−→ 18.

6. Ecrire une fonction dijkstra(villes,départ,arrivée,matrice) qui prend en argument une liste
(list) de villes, le nom (str) de la ville de départ, le nom (str) de la ville d’arrivée et la matrice (array)
d’adjacence du graphe ; cette fonction renvoie le plus court chemin entre les deux villes choisies.

Par exemple : dijkstra(S,′A′,′H′,M) −→ (23.0, [′A′,′B′,′D′,′G′,′F′,′H′])

- 74 -

TRAVAUX PRATIQUES 11

INTERPOLATION DE LAGRANGE

Opérations sur les polynômes

On considère un polynôme de degré n sous la forme P (X) = an X n +an−1X n−1 +·· ·+a1X +a0.
En Python, un polynôme est implémenté sour la forme d’une liste : P = [a_0,a_1, ...,a_n] ; par exemple, le

polynôme P (X) = X 2 +2X +3 sera implémenté par : P= [3,2,1].

1. Création d’un polynôme

Dans les algorithmes suivants, nous aurons besoin d’initialiser un polynôme d’un degré donné. Pour
cela, nous allons écrire une fonction Creer(n) qui prend en argument un entier naturel n et qui revoie le
polynôme de degré n dont tous les cœfficients sont nuls.

Par exemple : Creer(4) −→ [0,0,0,0].

2. Degré d’un polynôme

En fonction des opérations que nous devons effectuer sur les polynômes, nous devons accéder facile-
ment à son degré. Pour cela nous allons écrire une fonction degre(P) qui prend en argument une liste P
correspondant à un polynôme et qui revoie le degré du polynôme considéré.

Par exemple : degre([3,2,1]) −→ 2.

3. Multiplication par un scalaire

Dans l’espace vectoriel des polynômes, il est fréquent de multiplier un polynôme par un scalaire. Pour
cela nous allons écrire une fonction Scalaire(P,s) qui prend en arguments une liste P et un flottant s
et qui revoie la liste correspondant au produit du polynôme P par le scalaire s.

Par exemple, Scalaire([3,2,1],4) −→ [12,8,4].

4. Addition de deux polynômes

Dans l’espace vectoriel des polynômes, la deuxième opération incontournable est l’addition de deux
polynômes. Il est possible bien sûr d’additionner deux polynômes de degrés différents ; mais pour les
listes il peut être préférable d’additionner terme à terme deux listes de même taille. Par exemple, si
P (X) = X 2 +2X +3 et Q(X) = X −4, alors on pourra créer et utiliser les listes [3,2,1] et [-4,1,0] pour
effectuer l’addition.

Ecrire alors une fonction Additionner(P,Q) qui prend en argument deux listes représentant deux poly-
nôme P et Q et qui renvoie la liste correspondant à la somme de P et de Q.

Par exemple : Additionner([3,2,1], [−4,1]) −→ [−1,3,1].

Ce qui correspond bien à l’addition
(
X 2 +2X +3

)+ (
X −4

)= X 2 +3X −1.

5. Produit de deux polynômes

75

TRAVAUX PRATIQUES 11 : Interpolation de Lagrange

Soient P (X) =
p∑

i=0
ai X i et Q(X) =

q∑
j=0

b j X j deux polynômes de degrés respectifs p et q , alors le produit PQ

est un polynôme de degré p +q et le cœfficients de X k est donné par
k∑

i=0
ai bk−i .

Ecrire alors une fonction Multiplier(P,Q) qui prend en argument deux listes représentant deux poly-
nôme P et Q et qui renvoie la liste correspondant au produit de P et de Q.

Par exemple : Multilpier([3,2,1], [−4,1]) −→ [−12,−5,−2,1].

Ce qui correspond bien à la multiplication :
(
X 2 +2X +3

)(
X −4

)= X 3 −2X 2 −5X −12.

6. Intégrer un polynôme

Soit P (X) =
p∑

i=0
ai X i un polynôme de degré p. A l’instar du polynôme dérivé on peut définir le polynôme

intégré comme
p∑

i=0

ai

i +1
X i+1 ; il s’agit d’un polynôme de degré p+1 qui coïncide avec la primitive de P (x)

qui s’annule en 0.

Ecrire alors une fonction Integrer(P) qui prend en argument une liste représentant un polynôme P et
qui renvoie la liste correspondant au polynôme intégré de P .

Par exemple : Integrer([3,2,1]) −→ [0,3.0,1.0,0.3333333333333333].

Ce qui correspond bien à la l’intégration de X 2 +2X +3 qui donne 1
3 X 3 +X 2 +3X .

7. Evaluer un polynôme

Ecrire une fonction Evaluer(P,x) qui prend en arguments une liste P correspondant à un polynôme P
et un flottant x ; cette fonction renvoie la valeur de P (x). On cherchera à écrire une fonction de complexité
linéaire.

Par exemple : Evaluer([3,2,1],2) −→ 11. Ce qui correspond bien au calcul P (2) = 22 +2×2+3.

Polynômes interpolateurs de Lagrange

On considère une liste A = [
a0, a1, ..., an

]
constituée de n +1 réels deux à deux distincts appelés nœuds. On

définit alors le polynôme de Lagrange d’indice i par :

Li (X) =
n∏

j=0, j 6=i

X −a j

ai −a j
= X −a0

ai −a0
×·· ·× X −ai−1

ai −ai−1
× X −ai+1

ai −ai+1
×·· ·× X −an

ai −an

Il s’agit d’un polynôme de degré n qui vérifie :

{
Li (a j) = 0 si j 6= i
Li (ai) = 1

8. Polynômes de Lagrange

En utilisant les fonctions définies précédemment, écrire une fonction Lagrange(A,i) qui prend en ar-
guments une liste A de nœuds et un entier i ; cette fonction renvoie le polynôme de Lagrange d’indice i .
Par exemple :

Lagrange([1,2,3],0] −→ [3.0,−2.5,0.5]
Lagrange([1,2,3],1] −→ [−3.0,4.0,−1.0]
Lagrange([1,2,3],2] −→ [1.0,−1.5,0.5]

Considérons n +1 points
(
(a0,b0), (a1,b1), ..., (an ,bn)

)
tels que les réels (ai)0ÉiÉn sont deux à deux distincts.

Alors il existe un unique polynôme de degré au plus n qui passe exactement par ces n points ; il s’agit du poly-
nôme interpolateur de Lagrange défini par :

L(X) =
n∑

i=0
bi Li (X) =

n∑
i=0

bi

n∏
j=0, j 6=i

X −a j

ai −a j

- 76 -

TRAVAUX PRATIQUES 11 : Interpolation de Lagrange

9. Polynôme interpolateur de Lagrange

On considère deux listes, la liste A = [
a0, a1, ..., an

]
des abscisses des points (nœuds) et la liste B = [

b0,b1, ...,bn
]

des ordonnées des points.

En utilisant les fonctions définies précédemment, écrire une fonction Interpoler(A,B) qui prend en
arguments deux liste A et B, et qui renvoie le polynôme interpolateur de Lagrange. Par exemple :

Interpoler([1,2,3], [3,4,2] −→ [−1.0,5.5,−1.5]

Pour visualiser le résultat précédent, on peut réaliser le graphique suivant :

import numpy as np
import matplotlib.pyplot as plt

A=[1,2,3]
B=[3,4,2]

plt.close ()
plt.plot(A,B,’o’,label=’points à interpoler ’)
X=np.linspace(0,4,100)
Y=[Evaluer(Interpoler(A,B),x) for x in X]
plt.plot(X,Y,label=’polynôme interpolateur de

Lagrange ’)
plt.legend ()
plt.show()

Application : interpolation polynomiale d’une fonction

Dans cette partie, nous considérons la fonction définie sur R par f (x) = 4

1+x2 .

Dans un premier temps nous allons construire des polynômes interpolateurs de Lagrange qui permettent
d’approcher cette fonction f et constater le phénomène de Runge. Dans un deuxième temps nous utilisons
cette interpolation polynomiale pour calculer une intégrale.

Pour obtenir une interpolation polynomiale de la fonction f sur l’intervalle [−2,2] par exemple, il suffit de
définir un nombre n de nœuds répartis dans cet intervalle et calculer les images de ces nœuds par f .

Par exemple si nous choisissons 5 nœuds équirépartis, nous obtenons A = [−2,−1,0,1,2] et B = [0.8,2,4,2,0.8].

Le polynôme interpolateur de Lagrange correspondant aux listes A et B donnera alors l’approximation ploy-
nomiale de f à 5 nœuds.

On peut alors penser que plus le nombre de nœuds augmentent et plus l’approximation est bonne ; mais en
1901, le mathématicien allemand Carl RUNGE découvrit un résultat contraire à l’intuition : il existe des confi-
gurations où l’écart maximal entre la fonction et son interpolation peut augmenter avec n, comme le montre le
graphique suivant :

- 77 -

TRAVAUX PRATIQUES 11 : Interpolation de Lagrange

10. Donner une séries d’instructions Python qui permettent de réaliser un graphique mettant en évidence le
phénomène de Runge.

11. Calcul d’une intégrale

Dans cette question on s’intéresse à l’intégrale
∫ 1

0
f (x) dx =

∫ 1

0

4

1+x2 dx.

L’objectif est de calculer cette intégrale au moyen de polynômes. En utilisant la technique d’interpolation
polynomiale de f et les fonctions définies dans ce TP, donner une série d’instructions qui permettent ce
calcul.

Donner le script de la fonction qui permet de calculer l’intégrale précédente par la méthode des trapèzes.
Comparer les résultats.

- 78 -

	Introduction
	Les pères de l'informatique.
	La mémoire
	 Les niveaux de langages de programmation
	Le langage humain.
	Les langages de haut niveau.
	L'assembleur.
	Le code machine.
	Un historique des langages de programmation.

	Le code compilé ou interprété.

	 La représentation des nombres.
	Représentation d'un nombre entier naturel
	Représentation d'un nombre entier relatif.
	Représentation d'un nombre réel.
	Les nombres à virgule fixe.
	Les nombres à virgule flottante.
	Limites de la représentation des réels.

	 Représentation d'un caractère : le code ASCII

	Algorithmique et Programmation
	Introduction.
	Affectation des variables.
	Fonctions.
	Instructions conditionnelles.
	Instructions itératives.
	Types de variables.
	Conception d'un algorithme.
	Complexité d'un algorithme.
	Les piles
	La récursivité
	Les algorithmes de tri
	La méthode d'Euler
	L'algorithme de Dijkstra

	Autour des listes
	Recherches dans une chaîne
	Cryptographie
	Algorithmes dichotomiques
	Tris quadratiques
	Graphes
	Algorithme de Gauss-Jordan
	La récursivité
	Dynamique gravitationnelle
	Graphes Bis
	Interpolation de Lagrange

