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CHAPITRE 1

INTRODUCTION

1.1 Les peres de I'informatique.

Durant la deuxiéme guerre mondiale le mathématicien anglais Alan TURING intégra les services secrets bri-
tanniques avec pour mission de déchiffrer les messages codés utilisés par les allemands. En effet, la marine
allemande gagnait la bataille de I'atlantique grace a sa flotte de sous-marins U-Boot et aux renseignements qui
leur étaient envoyés.

Les allemands utilisaient une machine, dénommée Enigma, pour coder leurs messages. Alan TURING, en
opposition a de nombreux scientifiques de I’époque, pensait que seule une machine pouvait comprendre une
autre machine. Il inventa donc sa propre machine et réussit!

Le décryptage des messages allemands envoyés a leurs sous-marins est considéré par les historiens comme
un élément clé de la victoire des alliés.

Alan TURING voulut aller plus loin et créer une machine capable de résoudre tous les problemes, et surtout
capable d’imiter la pensée humaine, selon un "algorithme", qu’on nommera ensuite machine de Turing. Consi-
dérons I'expérience qui consiste a poser une série de questions a une personne qui ne doit répondre que par
"oui" ou par "non". On peut imaginer connaitre parfaitement cette personne a 'aide d'une séquence finie de
questions. Cette personne serait donc représentée par une série d’'instructions accompagnées de leurs réponses
binaires!

Ce concept de programmation initié par la machine de Turing est alors utilisé par les premiers concepteurs
d’ordinateurs.

Dans le méme temps, le mathématicien americano-hongrois John voN NEUMANN, qui participa au projet
Manhattan et travailla ainsi a la découverte de la bombe atomique, rapporta un certain nombre de travaux de
I’époque sur I'informatique. Sa publication conduit a la création d’'un modele de calculateur, qu’il attribuait
lui-méme a Alan TURING, portant le nom d’architecture de von Neumann et utilisé dans la quasi totalité des
ordinateurs aujourd’hui.
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Mémoire
Unité
Unité de —»| arithmétique
controle | et logique
b

| Entrée | | Sortie

FIGURE 1.1 — Schéma de I'architecture de von Neumann

1.2 Lamémoire

Une mémoire est caractérisée par sa capacité, son temps d’accés aux données et son débit.

Les données sont enregistrées dans une mémoire sous forme binaire, 'information élémentaire est appelée
bit (Binary Digit). Le nombre de bits que peut contenir une mémoire définit sa capacité. Toutefois, les capacités
ne sont pas données en nombre de bits, mais en nombre d’octets, c’est-a-dire en groupement de huit bits. On
définit ensuite les multiples suivants :

1 kilooctet (ko) = 1000 octets = 103 octets
1 mégaoctet (Mo) = 1000 ko = 10% octets
1 gigaoctet (Go) = 1000 Mo = 10° octets
1 téraoctets (To) = 1000 Go = 10! octets

Remarque. Dans les débuts de I'informatique, les préfixes "kilo", "méga", ... ont été utilisés de maniére er-
ronée pour désigner des puissances de 2. Plus précisément, comme 1024 = 1000, le kilooctet était utilisé pour
désigner 1024 soit 2!° octets; le mégaoctet pour 220 octets... Il faut se méfier de cet usage qui perdure méme s'il
va al'’encontre de la norme.

Le temps d’acces est le temps mis par la machine entre I'instant de lancement de la commande d’écriture
et 'instant ou elle est réalisée.

Le débit est le nombre de bits écrits ou lus en une seconde.
Il s’exprime en bit/s. Parfois, lors de la transmission de données, le débit est donné en bauds, ce qui repré-
sente le nombre d’'unité de signal par unité de temps. On a la formule :

débit binaire = débit en bauds x nombre de bits par baud

Lorsque chaque bit est codé par un signal électrique, le débit binaire est égal au débit en bauds.
On peut classer les mémoires en deux catégories : les mémoires vives et les mémoires de masse.

Les mémoires vives ou RAM pour Random Access Memory sont usuellement plus rapides et de plus faible
capacité (4 a 8 Go) que les mémoires de masse et surtout volatiles car elles perdent leur contenu des qu’elles
sont hors tension. Une RAM est constituée de composants électroniques.

Les mémoires de masse ou ROM pour Read Only Memory sont plus lentes mais de plus grande capacité
(jusqu’a plusieurs To) et surtout n’ont pas besoin de courant pour garder 'information. Un disque dur classique
(HDD) est composé de plateaux tournants et de tétes de lecture.

La rapidité d’'un ordinateur dépend de la rapidité en lecture et en écriture des mémoires. Or, les mémoires
les plus rapides sont aussi les plus cheres et ne conservent pas les données apres extinction de 'alimentation.
C’est pour cela qu'un ordinateur utilise toujours les deux types de mémoires précédents : I'un pour stocker
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les informations a long terme, ’autre pour réaliser des opérations sur les données. Ainsi ces deux mémoires
échangent en permanence des informations.

Le disque dur SSD ((Solid State Drive) est un nouveau type de disque dur qui n’utilise pas la méme techno-
logie que le disque dur classique. Ce disque dur utilise une mémoire flash, il est muni de composants électro-
niques pour stocker les données, sauf qu’a la différence de la RAM, les données restent inscrites sur le disque
dur méme si on éteint 'ordinateur; comme les clés USB ou les cartes SD. Cette mémoire flash allie donc rapidité
des mémoires vives au stockage des données hors tension des mémoires mortes.

1.3 Lesniveaux de langages de programmation

Pour communiquer avec un ordinateur, il existe plusieurs niveaux de langages. Le langage de plus haut
niveau est le langage de I'homme, et donc incompréhensible pour la machine. Le langage de plus bas niveau
est celui qui peut étre interprété par le processeur, mais incompréhensible pour I'homme.

Pour illustrer ces niveaux de langage, utilisons I'algorithme de Syracuse, qui crée une suite de nombres se
terminant toujours par 4, 2 et 1. Nous écrirons cet algorithme a I'aide de différents langages, du plus haut niveau
jusqu’au plus bas.

1.3.1 Lelangage humain.

C’est le langage courant, du plus haut niveau possible. Lorsqu'un algorithme est écrit dans ce langage, on
parle de pseudo code.

«Je prends un nombre entier,

tant qu’il est supérieur a un,

s’il est pair je le divise par deux,

s’il est impair je le multiplie par trois et j’ajoute un. »

FIGURE 1.2 - Le langage humain ou pseudo code

1.3.2 Leslangages de haut niveau.

Un langage évolué de programmation est une notation conventionnelle destinée a formuler des algorithmes
et produire des programmes informatiques qui les appliquent. D’'une maniere similaire a une langue naturelle,
un langage évolué de programmation est fait d'un alphabet, un vocabulaire, des regles de grammaire, et des
significations. Il existe de nombreux langages de programmation, voici deux exemples :

int main()
{ .
\‘/{\Ihlle (N > 1) def syracuse(n):
if (N % 2 == @) Whlle Il>°1:
{ if n%2==0:
N=N/2; n=n/2
} else { print (n)
N=3x_N+1; else:
} ’ n=3%n+1
mainendloop: goto mainendloop; print (n)
¥ return n

FIGURE 1.3 — Langage C et langage python
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1.3.3 Lassembleur.

Un langage d’assemblage ou langage assembleur est un langage de bas niveau qui représente le langage ma-
chine sous une forme lisible par un humain. Les combinaisons de bits du langage machine sont représentées
par des symboles dits mnémoniques, faciles a retenir. Le programme assembleur convertit ces mnémoniques
en langage machine en vue de créer par exemple un fichier objet ou un fichier exécutable.

000002a2 <main>:

2a2: 14 be out 0x34, rl; 52

2a4: le c@ rjmp .+60 ; 0x2e2
<main+0x40>

2a6: 80 91 00 01 lds r24, 0x0100

2aa: 90 91 01 01 lds r25, 0x0101

2ae: 80 fd sbrc r24, o

2b0: Qa c0 rjmp .+20 ; 0x2c6
<main+0x24>

2b2: 80 91 00 01 lds r24, 0x0100

2b6: 90 91 01 01 lds r25, 0x0101

2ba: 62 €0 di r22, 0xe2 ;2
2bc: 70 €0 ldi r23, 0xe0 H)
2be: Qe 94 78 01 call 0x2f0 ; 0x2f0 <__divmodhi4d>
2c2: cb 01 movw r24, r22

2c4: 0a c0 rjmp .+20 ; 0x2da
<main+0@x38>

2¢6: 20 91 00 01 lds rig, 0x0100

2ca: 30 91 01 01 lds r19, 0xe101

2ce: c9 01 movw r24, ril8

2d0: 88 of add r24, r24

2d2: 99 1f adc r25, r25

2d4: 82 of add r24, ri8

2d6: 93 1f adc r25, ri9

2d8: 01 96 adiw r24, 0xel Ha
2da: 90 93 01 01 sts 0x0101, r25

2de: 80 93 00 01 sts 0x0100, r24

2e2: 80 91 00 01 lds r24, 0x0100

2e6: 90 91 01 01 ds r25, 0x0101

2ea: 02 97 sbiw r24, 0xe2 ;2
2ec: e4 6 brge =72 ; 0x2a6
<main+0x4>

2ee: ff cf rjmp =2 ; 0x2ee
<main+@x4c>

FIGURE 1.4 — Un extrait de ’algorithme de Syracuse en assembleur

1.3.4 Le code machine.

Le langage machine, ou code machine, est la suite de bits qui est interprétée par le processeur d'un ordinateur
exécutant un programme informatique. C’est le langage natif d'un processeur, c’est-a-dire le seul qu'’il puisse
traiter. Il est composé d’instructions et de données a traiter codées en binaire.

64656620
0A202020
20202020
303A0A20
3D6E2F32
20707269
2020656C
20202020
20202020
0A202020

73797261
20776869
20202020
20202020
DAZ02020
6E74286E
73653A0A
6E3D332A
20202020
20726574

63757365
6C65206E
6966206E
20202020
20202020
290A2020
20202020
6E2B310A
7072696E
75726E20

286E293A
3E313A0A
25323D3D
2020206E
20202020
20202020
20202020
20202020
74286E29

6]

FIGURE 1.5 — Exemple de fichier HEX, contenant du code machine

Chaque processeur posséde son propre langage machine, dont un code machine qui ne peut s’exécuter
que sur la machine pour laquelle il a été préparé. Le code machine est aujourd’hui généré automatiquement,
généralement par le compilateur d'un langage de programmation.

-6 -
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1.3.5 Un historique des langages de programmation.

—

C—

R-E

ADA
PERL

Premier langage informatique /
écrit pour la machine E 4
analytique de Charles Babbage :' -

FORTRAN

Formufa Translation

Congu pour le traitement
de I'information textuelle
Puissant et polyvalent

PYTHON ¢

Ada Lovelace

Sert principalement
pour le calcul scientifique
Toujours trés utilisé

Orienté objet
et multiplateformes
Windows, Unix, Linux,

Mac 0s... Guido van Rossum
@ pHP | Utilisé pour produire
des pages Web dynamiques
via un serveur HTTP

PASCAL | Cencu pour 'enseignement = Orient_é o_bjet JAVA ‘_d:
sert & I'écriture de Photoshop Pnrtabllltle des applications =>
i < i temes =
¢ - et du systéme Macintosh sur plusieurs sys
oLl lames Gos[ingﬁ_‘:‘

THE

LANGAGEC

Utilisé pour les scripts
des pages Web interactives,
Propriété de prototypage

PR AMIG
EANGU ALY

JAVASCRIPT

Brendan Eich

Sert au développement
d'UNIX
Toujours trés utilisé

Dennis Ritchie

FIGURE 1.6 — Historique des langages de programmation

1.4 Le code compilé ou interprété.

Le langage de programmation est mis en ceuvre par un traducteur automatique, soit par un compilateur
comme pour le langage C, soit par un interpréteur comme pour le langage Python. Un compilateur est un pro-
gramme informatique qui transforme dans un premier temps un code source écrit dans un langage de program-
mation donné en un code cible qui pourra étre directement exécuté par un ordinateur, a savoir un programme
en langage machine ou en code intermédiaire, tandis que I'interpréteur réalise cette traduction "a la volée".
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CHAPITRE 2

LA REPRESENTATION DES NOMBRES.

2.1 Représentation d'un nombre entier naturel

On peut donner I'écriture générale d'un nombre dans une base quelconque :

n-1
Np) = Z dkBk = Cln_an_l +-t akBk +--t alBl + aoBO
k=0
ou:
o nestle nombre de chiffres composant N
o ay estle chiffre de rang k
o Bestlabase

On trouve des bases B de type décimale (Base 10), octale (Base 8), binaire (Base 2) et hexadécimale (Base
16).

Exemple 2.1 Ecriture d'un nombre naturel en base 10 :

24710) =2 x 10 +4 x 10" +7 x 10°

ol 2 est appelé "digit de poids fort" ou "Most Significant Digit" (MSD) et 7 "digit de poids faible" ou "Least
Significant Digit" (LSD).

* En binaire : la base 2 : Chaque bit prend une valeur 0 ou 1, le mot de 8 bits est I'octet, le mot de 4 bits est
le quartet.

Exemple 2.2 Ecriture d'un nombre naturel en base 2 :

11110111 = 1x27+1x20+1x2°+1x2%+0x23+1x22+1x21+1x2°
1 1 = 128+64+32+16+0+4+2+1
MSB LSB = 247(10)

Remarque. Phénomene d’overflow : Si on ajoute 10 a 247, on dépasse la capacité de 8 bits. En effet, on
obtiendrait 247 + 10 = 257(1) = 1 x 28 + 1 x 20 = 1 0000 0001 () ; mais comme seuls les 8 derniers bits sont gardés,
on obtient 0000 0001, c’est-a-dire 1(;0).
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* En hexadécimal : la base 16 : On utilise un codage alphanumérique, qui fait correspondre a chaque
nombre décimal compris entre 0 et 15 (donc codé sur 4 bits en base 2), un chiffre ou une lettre, suivant la
table de correspondance ci-dessous.

Nag| 0 [ 1 [ 23] af5]6 789 [1w|[11[12]13]14]15
Nog | 0 | 1 | 2 | 3| 4|5 6| 7|89 | A|B|[C|DJ|]E]TF
N(z) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Exemple 2.3 Ecriture d'un nombre naturel en base 16

F7(16) = $F7=15x 16" +7 x 16° = 240 + 7 = 2471

Exemple 2.4 Conversion d'un nombre en base 2 en base 16.

1111000101112y =1111 0001 0111 =F17(y¢)
F 1 7

* Le code BCD : Le code BCD ("Binary Coded Decimal" ou "décimal codé binaire") permet de coder des
nombres d'une facon relativement proche de la représentation usuelle (en base 10). Chaque chiffre (compris
entre 0 et 9) du nombre est codé en binaire naturel (donc sur 4 bits). Bien que gourmand en mémoire, le code
BCD est encore utilisé pour coder I'heure et la date dans le BIOS des PC par exemple. Ce code est plus fréquent
en électronique, pour représenter les nombres sur des afficheurs (montres, calculatrices...)

Exemple 2.5 Codage BCD.

2089(109) = (0010 0000 1000 1001) (BCD)

Coder maintenant 2089;¢y en base 2 et comparer.

2.2 Représentation d'un nombre entier relatif.

Représentation signée : un entier relatif est un entier pouvant étre négatif. Il faut donc coder le nombre de
telle facon que I'on puisse savoir s’il s’agit d'un nombre positif ou d'un nombre négatif, et il faut de plus que
les régles d’addition soient conservées. On utilise pour cela la méthode dite du complément a 2 pour obtenir
I'opposé d'un nombre positif ou nombre négatif CPL2.

Exemple 2.6

6 5 4 3 2 1 0
222222272 Complément a 1

7 > [([OD[[o[] = [[[[o[+]]"]
Nombre signé sur 8 bits

On ajoute1 + Iﬂ

T35 € \110\1|1‘0‘ﬂ1‘1}

FIGURE 2.1 — Méthode du complément a 2

-10 -
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En effet, si

N=0x2"+1x25+0x2°+0x2'+1x28+0x22+0x2! +1x2°
on note M le complément a 1, alors
M=1x2"4+0x20+1x2°+1x2+0x23+1x22+1x2L +0x2°
ainsi
N+M=2"+2542%424 423422421 42008 _1=0256-1

et le complément 4 2 est alors M + 1 = 28 — N =256 — N; sur 8 bits, il représente donc bien —N.

deee] [ 1 [ ] [
I

; Nombre positif sur 7 bits donc
Bitde compris 0 et 27 -1=127
signe

?

Lo [ [ [ [ [

Nombre négatif CPL2
compris entre -1 et - 128

FIGURE 2.2 — Représentation d'un entier relatif en binaire signé

Sur 8 bits : On pourra coder un nombre de —128 & 127.

Valeur en entier naturel | 0a 127 | 128 a 255
Valeur en entier relatif 0al27 | —128a-1

Sur 16 bits : On pourra coder un nombre de —32768 a 32767.

Valeur en entier naturel | 0432767 | 32768 a 65535
Valeur en entier relatif 0a32767 | —-32768a-—1

D’une maniere générale, sur n bits, les entiers relatifs positifs commence par 0 et le plus grand entier relatif
positif sera 2*~! — 1. Pour coder son opposé :

o onreprésente la valeur en base 2 sur n — 1 bits,
o on complémente chaque bit (on inverse chaque bit),
© on ajoute 1,

Exemple 2.7 Coder en binaire sur 4 bits les nombres 0,1,2,...7; les opposés —1,-2,...,—7; puis —8.

Effectuer les opérations suivantes en binaire : addition de 3 et de 2; soustraction de 3 et de 2; addition de 55
et 42; soustraction de 55 et 42.

- 11 -



CHAPITRE 2 : La représentation des nombres. 2.3 Représentation d’'un nombre réel.

2.3 Représentation d’'un nombre réel.

2.3.1 Les nombres a virgule fixe.

En décimal, on peut écrire facilement les nombres a virgule, en posant 0, 1 = 1071; 0,01 =1072...; ainsi 3,625 =
3x10°+6x1071+2x1072+5x%x 1073,
De la méme fagon, en binaire, 0,1 peut étre noté 2~ 1. ainsi

1 1
11,101(2):1x21+1><20+1><2_1+0x2_2+1x2_3:2+1+§+0+§=3,625(10)

Cette notation étant comprise, reste le probleme de la conversion des nombres. Si passer de I'écriture bi-
naire a 'écriture décimale est assez simple, il est plus difficile de passer de I'écriture décimale a I'écriture bi-
naire.

Une premiere possibilité consiste a coder de maniére indépendante les parties entiére et décimale.

Par convention, on détermine combien de bits représentent la part entiére, et la part décimale du nombre.
Par exemple, 8 bits pour la part entiére, et 8 bits pour la part décimale.

Exemple 2.8 Le nombre 146,25 peut s’écrire :

27 [28 [ 25 [ 28 [ 28 [22 [2l [20 | 27M |22 |23 2 |2 % |26 [ 277278
1/ofof1jofo[1]Jo]of[1]o0ofo0of[o0o]o0o|[o0o]oO

Partie entiére = 146 Partie décimale = 0,25

Exemple 2.9 Utiliser la méthode de virgule fixe pour coder 9,375.

Ce codage n’est malheureusement pas optimal, car il ne permet pas de coder des parties décimales tres
petites, par exemple, avec 8 bits pour la partie décimale, comme 278 = 0,00390625; on peut donc pas coder
0,00001.

2.3.2 Les nombres a virgule flottante.

Si on veut coder le nombre 1101,1010¢) on peut écrire 1101 1010 et décider de décaler de 4 chiffres pour
avoir la virgule. Mais pour 0,000 000 000 111 ), 8 bits ne suffiraient pas pour coder la partie décimale, car les 8
premieres décimales sont des 0.

Pour optimiser le codage, il suffit de supprimer les 0 inutiles et de garder les chiffres caractéristiques, ici 111,
qu’on appelle mantisse, et on nomme exposant le nombre de chiffres avant la mantisse, ici 10; on peut écrire
de maniére scientifique

0,000 000000111 =1x2""0+1x2" 1M +1x2712 =111 x271; exposant vaut — 10 et

1101,1010 = 1,1011 0100 x 23; 'exposant vaut 3

Lexposant doit donc pouvoir étre positif (lorsque la virgule se situe apres le début de la mantisse) ou négatif
(lorsque la virgule se situe avant le début de la mantisse).
La norme IEEE 754 définit ainsi la facon de coder un nombre réel. Cette norme se propose de coder le
nombre sur 32 bits (simple précision) ou sur 64 bits (double précision) et définit trois composantes :
o S qui représente le signe du nombre,
o E quireprésente 'exposant,
o M qui représente la mantisse.

12 -
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Sur 32 bits (simple précision) :

o 1 bit pour le signe : S = 0 pour un nombre positif, S = 1 pour un nombre négatif.

o Les 8 bits suivants pour I'exposant E.
L'exposant peut étre positif ou négatif. La représentation des nombres signés (complément a 2) rendant
la comparaison entre les nombres flottants difficile, on préfere décaler I’exposant, c’est-a-dire lui sous-
traire 127(1¢). Cet exposant varie donc entre —126 et 127.
255 — 127 = 128 est réservé pour coder +oo (si la mantisse est nulle) ou un NaN, Not a Number (si la
mantisse est non nulle); 0 — 127 = —127 est réservé pour coder 0 (avec la mantisse nulle).

o Les 23 suivants pour la mantisse M.
Cette mantisse est le nombre décimal qui intervient dans |’écriture scientifique d'un nombre; le premier
chiffre n’est jamais nul (sauf pour le nombre 0), donc en binaire le premier chiffre est 1; il est implicite,
donc non codé. On rajoute ce 1 devant les 23 bits pour reconstituer la mantisse.

Ainsi le codage se fait sous la forme suivante :

SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM

Le nombre pourra ainsi s’écrire :

(-=1)S x (1IM) x 2E-127

Sur 64 bits (double précision) :
o 1Dbit pour le signe S, S = 0 pour un nombre positif, S = 1 pour un nombre est négatif,
o les 11 bits suivants pour 'exposant E, valeur a laquelle on doit soustraire 1023, I’exposant variant donc
de —1022 21023,
o les 52 suivants pour la mantisse M (plus 1 bit implicite).
Ainsi le codage se fait sous la forme suivante :
SEEEEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

Le nombre pourra ainsi s’écrire :

Exemple 2.10
a) Soit
0100 0000 1011 1000 0000 0000 0000 0000

codé comme un réel a virgule flottante sur 32 bits. On obtient :
¢ S =0, donc le nombre est positif;
o E=1000 0001, donc 12919y, auquel on soustrait 127, donc E = 2;
¢ La mantisse vaut 1011 1000 0000 0000 0000 0000
La représentation du nombre en notation scientifique binaire est donc:

(-1)°x1,0111 x 22
En écriture décimale, cela donne :
D01 x2°4+0x27 +1x272 4 1x 273 41 x274) x 22

=(1+0,25+0,125+0,0625) x4
=4+1+0,5+0,25
=5,75

b) Encoder en norme IEEE 754 avec simple précision le nombre 16,5.
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CHAPITRE 2 : La représentation des nombres. 2.3 Représentation d’'un nombre réel.

2.3.3 Limites de la représentation des réels.

Méme si on peut choisir une précision de plus en plus forte, la représentation des nombres reste limitée.
Lorsque le nombre de bits utilisés est insuffisant, cela conduit au phénomene d’overflow.
Un manque de précision peut également conduire a un résultat faux.

Exemple2.11 Peut-on coder exactement le nombre décimal 0,12

Voici un test en python ol1 les nombres sont codés en double précision :

>>> 0.1+0.1+0.1==0.3
False

Exemple2.12 Considérons I'équation

x°+1,4x+0,49=0

Le discriminant vaut A = 1,42 —4 x 1 x 0,49 = 0 et on conclut que 1'équation posséde une unique solution;
cependant, lorsqu’on calcule ce discriminant avec des flottants, on obtient

-2.22044604925e-16

qui est strictement négatif!!!

Exemple 2.13 Pour calculer n Archimede utilise des polygones a 2" c6tés inscrits dans le cercle unité et dont il
calcule le périmeétre. Lorsque n devient trés grand le demi-périmetre tend vers 7.

Voici un programme Python correspondant ...

import numpy as np

#la bibliothéque numpy contient les fonctions mathématiques usuelles comme racine carrée
("square root") ; on importe la
bibliothéque sous l’alias np

a=np.sqrt(2)

n=4

while a>0.0000000001:
a=np.sqrt(2-2*np.sqrt(l-a*a/4))
n=nx*2
P=(n/2)*a
print (P)

... etle résultat!!!

3.06146745892
3.12144515226
3.13654849055
3.14033115695
3.14127725093
3.14151380114
3.14157294037

3.14158772528
3.1415914215

3.14159234561
3.14159257655
3.14159263346
3.14159265481
3.14159264532

3.14159260738
3.14159291094
3.1415941252
3.1415965537
3.1415965537
3.14167426502
3.14182968189

3.14245127249
3.14245127249
3.16227766017
3.16227766017
3.46410161514
4.0

0.0
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2.4 Représentation d’'un caractere : le code ASCII

La mémoire de I’ordinateur conserve toutes les données sous forme numérique, codées en binaire. Il n’existe
pas de méthode pour stocker directement les caracteres. Chaque caractere possede donc son équivalent en
code numérique : c’est le code ASCII (American Standard Code for Information Interchange).

Le code ASCII standard permet de coder des caracteres alphanumériques de I’alphabet latin sur 7 bits; c’est-
a-dire 128 caracteéres disponibles, de 0 a 127. Par exemple, le caractére "a" est associé a "01100001" et "A" est
associé a "01000001". Les sept bits utiles sont précédés d’'un "0" car les ordinateurs travaillent sur des multiples
de huit bits (multiples d’'un octet).

La norme ASCII permet ainsi a toutes sortes de machine de stocker, analyser et communiquer de I'informa-
tion textuelle. En particulier, la quasi totalité des ordinateurs personnels utilisent I’encodage ASCII.

Certains caracteres n’ont pas vocation a étre affichés, mais correspondent a des commandes de controle. Par
exemple le code "00001010" permet d’aller a la ligne.

Cependant, le code ASCII standard est limité car il ne peut pas encoder certains caracteres, comme les carac-
téres accentués par exemple. Le code a été créé pour encoder des textes en anglais!

Le codage ASCII peut donc étre complété par des codes utilisant le huitiéme bit; les caractéres de 128 a 255
pour les accents, par exemple. Mais ces codes different d'un pays a 'autre! Pour permettre une communication
internationales ces normes complémentaires ont été unifiées en un code appelé Unicode.

Le probleme de I'Unicode est qu’il peut comporter un million de caracteres, couvrant 100 écritures. Généra-
lement, en Unicode, un caractere prend 2 octets; autrement dit, un texte prend deux fois plus de place qu'en
ASCII! De plus, si on prend un texte en francais, la grande majorité des caracteres utilisent seulement le code
ASCIL.

Dans la pratique, le codage le plus couramment utilisé est 'UTF-8. Cette norme est une extension du code
ASCI], utilisant le huitiéme bit : chaque caractére est codé par une séquence d’octets.

Le principe est simple : tout caractere ASCII se code de la méme maniére en UTF-8; et dés qu’'on a besoin
d’un caractere UNICODE (non ASCII), on utilise un caractere spécial signalant "attention, le caractére suivant
est en Unicode". Par exemple, pour le texte "polyndme du second degré", seuls le "6" et le "é" ne sont pas dans

la table ASCII. On écrit en UTF-8:

polynA me du second degré
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CHAPITRE 2 : La représentation des nombres. 2.4 Représentation d’un caractere : le code ASCII

ANNEXE - TABLE ASCII.

Code décimal Caractére ASCII  Description Décimal  Caracteére || Décimal Caractére || Décimal Caractére
0 NUL Null 32 Space 64 @ 96 '
1 SOH Start of heading 33 ! 65 A 97 a
2 STX Start of text 34 " 66 B 98 b
3 ETX End of text 35 i 67 C 99 [
4 EOT End of transmission 36 $ 68 D 100 d
5 ENQ Enquiry g7 T 69 E 101 e
6 ACQ Acknowledge 18 & 70 F 102 i
T BEL Bell 39 ! 71 G 103 g
8 BS Backsapce 10 72 H 104 h
9 TAB horizontal tab 11 73 I 105 i
10 LF New line feed, new line 42 . 74 ] 106 j
11 VT Vertical tab 43 + 75 K 107 k
12 FF NP form feed, new page 14 ! 76 L 108 1
13 CR Carriage return 15 - 77 M 109 m
14 SO Shift out 46 " 78 N 110 n
15 S1 Shiftin 47 ! 79 0 111 0
16 DLE Data link espace 18 0 80 P 12 P
17 DC1 Device control 1 19 1 81 Q 113 q
18 DC2 Device control 2 50 2 82 R 114 r
19 DC3 Device control 3 51 3 83 5 115 5

20 DC4 Device control 4 52 4 84 T 116 t
21 NAK Negative acknowled ge 53 5 85 u 117 u
22 SYN Synchronous idle 54 6 86 v 118 v
23 ETB End of trans. block 55 7 a7 w 119 w
24 CAN Cancel 56 8 an X 120 X
25 EM End of medium 57 ] 89 s 121 y
26 SUB Substitute 58 ; a0 Z 122 Z
27 ESC Escape 59 : 91 [ 123 [
28 FS File separator 6O < 92 \ 124 [
29 GS Group separator 61 = 93 ] 125 ]
30 RS Record separator 62 > 94 = 126 3
31 s Unit separator b3 ? 95 - 127 DEL

FIGURE 2.3 — Table ASCII
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CHAPITRE 3

ALGORITHMIQUE ET PROGRAMMATION

3.1 Introduction.

Un algorithme est une suite finie d’'opérations élémentaires permettant d’effectuer un calcul ou de résoudre
un probléme donné de maniere automatique. En mathématiques, nous connaissons, par exemple, I'algorithme
de résolution d'une équation du second degré ou I'algorithme du pivot de Gauss; on peut retrouver le principe
dans d’autres domaines, par exemple, la réalisation d’'une recette de cuisine peut étre considérée comme un
algorithme.

Lalgorithmique désigne 'ensemble des regles et des techniques qui sont impliquées dans la définition et
la conception d’algorithme.

Un programme est une suites d’instructions pouvant étre exécutées par un ordinateur. Le programme est
donc la traduction en langage compréhensible par la machine d’un algorithme.

Pour rédiger un algorithme, il existe deux modes de représentations :
o 'organigramme ou algorithme graphique :

L'organigramme ci-contre représente une
structure alternative. Sila condition 1 est vé-
rifiée, alors on effectue le traitement 1; si-
non, on effectue le traitement 2.

Traitement 1 Traitement 2

}—1
o le pseudo-code ou algorithme textuel.
Le peudo-code est une facon de décrire un algorithme sans référence a un langage de programmation
particulier. Il ressemble cependant a un langage de programmation, mais sans les problemes de syntaxe.
C’est la représentation que nous allons choisir.

Exemple 3.1 On considerel’algorithme de Syracuse qui consiste a demander un nombre entier non nul;
si celui-ci est pair, on le divise par deux, s’il est impair, on le multiplie par 3 et on ajoute 1. En répétant
ainsi 'opération on obtient une suite de nombres, appelée suite de Syracuse.

La conjecture de Syracuse est I'hypothése mathématique selon laquelle la suite se termine toujours par
4,2etl.
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CHAPITRE 3 : Algorithmique et Programmation 3.2 Affectation des variables.

En pseudo-code, on peut écrire :

Variable n un Entier
Début

Ecrire ('Entrez la valeur de n’)
Lire n

Tant que 1 > 1

Si n est pair
n~—n/2

Sinon

n—3xn+1
Ecrire n

Fin

En langage Python cela se traduit par :

n=input (’Entrer une valeur entiére : )
n=int (n)
while n>1:
if n%2==0:
n=n/2
else:
n=3*n+1
print (n)

On remarque que Python interpréte dynamiquement le type de variables; c’est-a-dire qu'il peut recon-
naitre le type de variable et donner I'information a I’ordinateur.

3.2 Affectation des variables.

Dans un programme informatique, on va avoir en permanence besoin de stocker provisoirement des valeurs.
Il peut s’agir de données issues du disque dur, fournies par I'utilisateur (frappées au clavier); il peut aussi s’agir
de résultats obtenus par le programme, intermédiaires ou définitifs. Ces données peuvent étre de plusieurs
types : des nombres (entiers de type int, réels ou flottants de type f1oat, complexes de type complex), du texte
ou chaine de caracteéres (string de type str), des booléens (de type bool), des listes (de type 1ist)... Toujours
est-il que dés que I'on a besoin de stocker une information au cours d’'un programme, on utilise une variable.
Une variable est en quelque sorte une boite, que le programme (’ordinateur) va repérer par une étiquette. Pour
avoir acces au contenu de la boite, il suffit de la désigner par son étiquette. Dans |’ordinateur, physiquement, il
y aun emplacement de mémoire dédié a chaque variable, repéré par une adresse binaire.

Exercice 3.1 Ecrire un algorithme permettant d’échanger les contenus de deux variables A et B

Exercice 3.2 Ecrire un algorithme permettant de transférer a B la valeur de A, a C la valeur de B et a A la valeur
initiale de C.

Incrémentations. Dans un programme, on a souvent besoin d’incrémenter une variable a, c’est-a-dire rem-
placer a par a+1 par exemple. Linstruction a=a+1 peut étre remplacer par a+=1. Voici un tableau de correspon-
dances :

at+=b a=atb incrémentation de b unités

a-=b a=a-b décrémentation de b unités

a*x=b a=a*b | multiplication de a par b

a/=b | a=a/b | division de a par b

a//=2 | a=a//2 | division entiére de a par 2

a%=2 | a=a%2 | reste de la division de a par 2
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3.3 Fonctions. CHAPITRE 3 : Algorithmique et Programmation

3.3 Fonctions.

Un programme peut étre écrit sous forme de script, il s’agit alors d'une suite d’instructions et commandes
destinées a effectuer des opérations conduisant au résultat souhaité. On peut également définir une fonction
(au sens informatique) dont le but est d’appeler un certain nombre d’arguments pour fournir en sortie le ré-
sultat.

Par exemple, voici une fonction qui permet le calcul du discriminant d’'un polynéme du second degré :

def delta(a,b,c):
return b**x2-4*kax*xc

Le nom de la fonction est delta, les arguments a, b et c sont entre parentheses, les instructions nécessaires
a cette fonction sont indentées apresle " : ".
Linstruction return donne et garde en mémoire le résultat de la fonction.
Linstruction print permet uniquement I'affichage du résultat, et alors, la fonction delta ne peut pas interve-
nir dans un autre programime.
Il est fortement conseillé d’ajouter des commentaires a sa fonction pour qu’elle soit compréhensible par tout
utilisateur :
def delta(a,b,c):

* entrée : float ; a, b et ¢ sont des réels

* sortie : float ; la fonction renvoie le discriminant
PP

return b**x2-4*ax*xc

On peut également utiliser des annotations pour préciser le type des parameétres attendus et type de la
variable retournée :

def delta(a:float,b:float,c:float)->float:
return b**x2-4xa*xc

La signature de la fonction regroupe le nom de la fonction, le type de ses arguments et le type de la variable
renvoyée. Pour la fonction delta, la signature est :

delta(float,float,float) -> float

Les variables a, b et c qui interviennent dans la définition de la fonction sont locales.
Par exemple :

>>> a=2

>>> delta(1,2,1)
0

>>> print (a)

2

On peut décider de rendre une variable globale en le spécifiant :

def £():
global y
y=12%x
return y

Voici le résultat de I'exécution de ce programme :

>>>
>>>
>>>
84
>>>
84

=7
1
)

g W
~ |

<
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CHAPITRE 3 : Algorithmique et Programmation 3.4 Instructions conditionnelles.

A Dans la mesure du possible on évitera 'utilisation de variables globales!

La portée d'une variable provient directement de I’endroit ot elle a été créée. Une variable locale créée dans
une fonction n'aura plus de visibilité lorsqu’on aura quitté I'espace de cette fonction. Il existe trois portées :
o L:laportéelocale, qui est explorée en premier. Cet espace de nom est effacé des qu’on quitte le fonction.
o G :laportée globale, explorée ensuite. Cet espace contient les nom globaux du module courant.
o | :1a portée interne, explorée en dernier. Cet espace contient les noms, variables et fonctions intégrés a
Python comme : sqrt, abs, len...

3.4 Instructions conditionnelles.

Il existe des instructions pour permettre a la machine de suivre une liste d’instructions ou une autre. Une telle
procédure s’appelle test ou une structure alternative ou encore structure conditionnelle.

1l existe essentiellement deux formes d’instructions conditionnelles :

Si booléen Alors
Instructions
FinSi

Si booléen Alors
Instructions 1
Sinon
Instructions 2
FinSi

On rappelle qu'un booléen est une expression qui ne prend que deux valeurs : VRAI ou FAUX.

Exemple 3.2

Si x =0 Alors
Ecrire \/x
FinSi

Exemple 3.3

Si x>0 Alors

Ecrire ('le nombre’, x, est strictement positif’)
Sinon

Ecrire ('le nombre’,x,’ est négatif’)
FinSi

En langage Python, en utilisant une fonction, cela se traduit par :

def signe(x):
if x>0:
return ’le nombre’,x,’est strictement positif’
else:
return ’le nombre’,x,’est negatif’

Exercice 3.3 Ecrire un algorithme qui demande deux nombres et les redonne dans l'ordre croissant.

Exercice 3.4 Ecrire un algorithme qui demande deux nombres et qui donne le signe (au sens large) de leur pro-
duit; sans calculer le produit des deux nombres.

-20-



3.4 Instructions conditionnelles. CHAPITRE 3 : Algorithmique et Programmation

Une instruction conditionnelle peut graphiquement se représenter comme un arbre de probabilités a deux
branches. Lorsque deux branches ne suffisent pas a faire I'inventaire de tous les résultats possibles, on a recours
aux tests imbriqués.

Exemple 3.4 Voici un algorithme qui donne I'état de 'eau en fonction de la température de celle-ci :

Variable Temp en Entier
Début
Ecrire "Entrez la température de 'eau :"
Lire Temp
Si Temp <=0 Alors
Ecrire " C’est de la glace"
Sinon
Si Temp < 100 Alors
Ecrire " C’est du liquide"
Sinon
Ecrire " C’est de la vapeur"
FinSi
FinSi
Fin

Exercice 3.5 Etant donnés trois nombres a, b et c; écrire une fonction python qui retourne leur minimum.

Lors de I'utilisation de tests imbriqués on peut fusionner le Sinon suivi du Si en un seul SinonSi.

Exemple 3.5 Suivant les valeurs de x, on souhaite déterminer I'expression de la fonction

fix—|x|-2|x-1|+|x-2|

Définition de la fonction f(x)
Si x < 0 Alors
y=0
SinonSi (x = 0) et (x < 1) Alors
y=2x
FinSi
SinonSi (x = 1) et (x < 2) Alors
y=-2x+4
FinSi
Sinon
y=0
FinSi
Ecrire y
Fin

def f(x):

if x<0:
y=0

elif (x>=0) and (x<1):
y=2%x

elif (x>=1) and (x<2):
y=-2%x+4

else:
y=0

return y
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3.5 Instructions itératives.

3.5 Instructions itératives.

Lorsqu’une séquence d’instructions doit étre répétée "en boucle", on a recours a une structure itérative. Il

existe deux sortes de telles structures :

¢ la boucle inconditionnelle, ou boucle Pour en pseudo-code, ou encore boucle for en langage Python;
cette boucle suppose que I'on connaisse le nombre d’itérations au départ;

¢ la boucle conditionnelle, ou boucle TantQue en pseudo-code, ou encore boucle while en langage Py-
thon; TantQue est suivi d'un booléen : si celui-ci est VRAI alors le programme "entre" dans la boucle et
suit les instructions jusqu’au FinTantQue et il retourne ensuite sur la ligne TantQue; la boucle s’arréte

lorsque le booléen prend la valeur FAUX.

Comparons 'utilisation de ces deux structures sur I’exemple suivant :

Exemple 3.6 On souhaite calculer la somme des entiers naturels jusqu'a N, ou N est une valeur entrée par

I'utilisateur.

Variables N, k et somme en Numérique
Début
Ecrire (Entrez la valeur de N :’)
Lire N
somme — 0
Pour kdela N
somme — somme+k
Suivant
Ecrire ('La somme des N entiers naturels est’,somme)
Fin

Variables N, k et somme en Numérique
Début
Ecrire ('Entrez la valeur de N :’)
Lire N
somme — 0
k<0
TantQue k< N
somme — somme+k
k—k+1
FinTantQue
Ecrire ((La somme des N entiers naturels est’, somme)
Fin

naturels
while?’’’

’’J2somme des entiers
boucle for et boucle
def somme_entiers(n):
somme =0
for k in range(1l,n+1):
somme=somme +k
return somme

Remarques.

def somme_entiers(n):
somme =0
k=0
while k<=n:
somme =somme +k
k=k+1
return somme

o Les boucles for et while peuvent donc étre utilisées indifféremment dans la plupart des situations ité-

ratives.

o Laboucle for nécessite de connaitre le nombre d’itérations, mais elle a 'avantage d’éviter de program-

mer la progression de la variable.

o Avec une boucle while il faut s’assurer que le booléen puisse étre VRAI, car dans le cas contraire
le programme n’entrera jamais dans la boucle! Il faut également s’assurer que le booléen puisse étre
FAUX, car sinon le programme ne sort jamais de la boucle!!! On parle de boucle infinie.

o Dans l'instruction for k in range(1,n) la variable k va prendre toutes les valeurs comprises entre 1 et

n-1 A avec un pas de 1. Pour changer le pas on peut utiliser une boucle while ou range(1,n,2)
pour un pas de 2, range(1,n,3) pour un pas de 3... Mais dans une boucle for il est interdit de changer la
valeur de la variable qui sert de compteur a l'intérieur de la boucle!

Exercice 3.6 Adapter l'un des algorithmes précédents pour calculer la somme des n premiers carrés d’entiers, la
somme des n premiers inverses de carrés d'entier, la factorielle de n.
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Exercice 3.7 Ecrire une fonction python somme_liste qui prend en argument une liste de nombres et qui re-
tourne la somme des termes de cette liste.

Exercice 3.8 Ecrire une fonction pythonmaxi_liste qui prend en argument une liste de nombres et qui retourne
le maximum de cette liste.

Exercice 3.9 Donner le résultat a l'issue des programmes suivants :

resultat = "" resultat = ""

for ¢ in "Bomnsoir" : for ¢ in "Bonsoir"
resultat = resultat + ¢ resultat = resultat + c¢
print (resultat) print (resultat)

Un méme programme peut utiliser plusieurs boucles; celles-ci peuvent étre imbriquées ou successives; le
résultat ne sera évidemment pas le méme.

Exercice 3.10 Donner le résultat a lissue des deux boucles suivantes :

for i in range (1,5): for i in range (1,5):
print (’il est passe par ici’) print (’il est passe par ici’)
for j in range (1,3): for j in range (1,3):
print (?’il repassera par la’) print (?’il repassera par la’)

Exercice 3.11 Ecrire un programme capable de donner la table de multiplication.
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3.6

3.6.1.

3.6.2.

Types de variables.

Types numériques

En mathématiques, les nombres appartiennent a des ensembles tels que N, Z, @, R ou C. En Python
(comme dans beaucoup de langages informatiques) les nombres seront du type :

int (integer) correspond a un entier (de N ou Z) stocké sur une partie limitée de la mémoire de |'ordina-
teur. Il ne peut donc pas étre aussi petit (négatif) ou aussi grand que I'on veut. Pour une machine
(dépend du microprocesseur et du systeme d’exploitation) de 32 bits (4 octets), un entier sera com-
pris entre —231 et 231 1 (soit entre —2 147 483 648 et 2 147 483 647). Pour une machine de 64 bits,
un entier sera compris entre —253 et 263 — 1

long (long integer) le type entier long est équivalent au type entier sauf qu’il n’est pas limité & nombre
d’octets (ou de bits prédéterminé). A I'extréme, un nombre peut prendre la quasi totalité de la mé-
moire de I'ordinateur. Il est clair alors que ce nombre peut étre considérable.

float le type flottant permet de représenter des nombres a virgule. Il est codé en mémoire sur 32 bits
(simple précision) ou sur 64 bits (double précision). Il est représenté sous la forme

nombre = (~1)% Imantisse x 22P0san

Sur 64 bits la mantisse est écrite avec 52 chiffres binaires (51 plus le 1 implicite), et I'exposant avec
11 chiffres; il y a 1 bit de signe. La précision maximale est donc de 2752 it environ 2 x 10716, Des
valeurs spéciales permettent de représenter —oo, +oo et Nan, not a number, souvent issu d’'une forme
indéterminée.

complex le type complexe correspond a une structure naturellement composée de deux flottants (partie
réelle et imaginaire) sur 2 x8 = 16 octets. Par exemple, le nombre complexe z = 2+3i s’écrit en Python
sous la forme 2 + 3j, ou complex(2, 3).

bool le type booléen correspond a I'algébre booléenne et ne prend que deux valeurs : True/False. Il est
codé sur un bit.

Listes, chaines, tuples et dictionnaires

Il est souvent utile de collecter plusieurs données sous un méme nom, et d’'y accéder a travers un indice
numeérique. Sous Python on dispose de telles structures appelées liste (dans d’autres langages on dira
tableau), au format 1ist; ou chaine de caracteres, au format str.

A Si n est la longueur (len) de la liste ou la chaine, alors les indices des éléments sont compris
entre0etn—1.

Ainsi, L = [1,a,Bob’] est une liste contenant trois valeurs : celle d'indice 0 est le nombre 1 (L[0]=1), celle
d’indice 1 est la valeur de la variable a (L[1]=a) et celle d’indice 2 est la chaine de caractéres (ou mot)
’Bob’ (L[2]=’Bob’).

L'appel L [3] renvoie le message : 1ist index out of range.

Pour récupérer la derniére valeur d'une liste, on peut utiliser I'instruction L [1en (L) -1], ou plus simple-
mentL[-1].

De la méme fagon, s=’code123’ est une chaine de caracteres contenant 7 valeurs :
s[0]=’c’,s[6]=s[-1]1=37, sont au format str; et int (s [5] ) =2 est un nombre entier.

La liste vide s'écrit [ | et la chaine vide s’écrit*’, ou "".
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Opérations sur les listes :

Liste Opération Chaine
len(L) donne la longueur len(s)
L[i] renvoie le i + 1 ieme élément s[i]

a in L vérifie si 'élément se trouve dans L ou dans s ’a’ in s
L+M concatene (juxtapose) les listes ou les chaines s+t
L.append(a) ajoute a a la fin de la liste ou de la chaine s=s+’a’
L.insert(i,a) | ajoutel’élément a ala position d’'indice i 0

del LI[il supprime I'élément d’indice i 0]
L.reverse() remplace la liste par celle d’ordre inverse 0]
L.index(a) retourne I'indice du premier a de la liste ou de la chaine | s.index(’a’)
list.sort(L) | retourne la liste triée 0]

A Lexemple suivant montre une exception dans I'affectation des variables concernant les listes
(mais pas les chaines!) :
>>> L=[1,2,3]
M=L
>>> M.append (4)
>>> print (M)
[1, 2, 3, 4]
>>> print (L)
[1, 2, 3, 4]

>>> s=’abc’
t=s

>>> t=t+’d’

>>> print (t)
abcd

>>> print(s)
abc

Création rapide d'une liste. Copie d'une liste.

Il est possible de créer rapidement une liste dont on connait la progression des éléments. Par exemple la
commande T = [k for k in range(5)] renvoie la liste [0, 1,2, 3,4].

Dans le script suivant, quelle est la différence entre les variables U et V?

T=[k for k in range(5)]
U=T
V=[k for k in T]

Exercice 3.12 Ecrire une fonction Python addition_listes(L,T) qui prend en arguments deux listes L et
T de la méme taille et qui retourne la liste constituée de la somme des termes deL et T.

De méme écrire une fonctionmultiplication_listes(L,T) quiretourne la liste constituée du produit des
termesdeL etT.

Exercice 3.13 Une liste V contient des valeurs dont les poids sont contenus dans une liste P. Ecrire une
fonction Python moyenne_pondérée(V,P) qui retourne la moyenne des valeurs de la série V pondérées par
les poids deP.

Modifier la fonction précédente pour créer une fonction variance(V,P).
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Extraction des éléments d’une liste ou d'une chaine.

Il est possible d’extraire une partie d'une liste, ou d'une chaine en indiquant les indices des éléments a
conserver.

>>>L=[1,2,3,4,5,6]
>>>L[1:4]

[2, 3, 4]

>>>L[3:]

[4, 5, 6]

>>>L[:2]

[1, 2]

>>> s=’codel23’

>>>g[4:]
71237
>>>s[:4]
’code’

Si la liste L contient des caractéres ASCII, il est possible de retourner la valeur décimale de chaque
caractere par la commande ord('string’) et la commande réciproque est chr(int) :

>>>L=[’a’,%&?,7%7,°0°]
>>>ord (L[0])

97

>>>ord (&)

38

>>>chr (98)

’b’

>>>chr (37)

7%7

Exercice 3.14 Boucle for et boucle while : extraction des admis a un concours admis (L,b)...

Exercice 3.15 Avec les nombres binaires, une opération possible est le Ou Exclusif. Cette opération consiste
a additionner les nombres bit a bit avec la table de vérité suivante :

0+0=0 ; 1+0=1 ; 0+1=1 ; O+1=1 ; 1+1=0
Par exemple, siA=10101010 et B=11001100 alors:A OuEx B = 01100110.
En python cette opération est codée : A " B.

Ecrire une fonction OuEx (A:1ist,B:1ist)-> list qui réalise cette opération.
Par exemple : 0uEx([1,0,1,0,1,0,1,0],[1,1,0,0,1,1,0,0]) — [0,1,1,0,0,1,1,0]

Tuple. Un tuple (uplet) est une liste immuable; on écrit un tuple avec des parenthéses, par exemple
a=(1,2,3) estun tuple.

Quand il y a un seul élément, il est suivi d'une virgule : a = (1,) est un tuple, mais a = (1) est un entier.

Un tuple ne peut pas étre modifié, mais on peut concaténer car cela revient a créer un nouveau tuple.
Par exemple :

>>>a=(1,2,3)

>>>b=(2,2,1)

>>>a+b
(1,2,3,2,2,1)
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3.6.3.

Dictionnaires. Un dictionnaire, au format dict, est un structure complexe de données, modifiable comme
une liste, mais dans laquelle on accede a un objet donné, non par pas un index (qui est forcément un
nombre entier), mais par une clé (qui peut étre aussi une chaine de caracteres ou tout autre objet). Le
dictionnaire est défini comme un ensemble non ordonné de couples (clé, valeur), sous la forme

{clé_1 : valeur_1,...,clé_n : valeur_n}
Voici, par exemple, un dictionnaire ecoles qui recense les écoles intégrées par les étudiants :
ecoles={’Baptiste’:’Centrale Nantes’}
On peut ensuite ajouter des étudiants :
ecoles[’Chloé&’]="EIVP’, ecoles[’Emilien’]="ENTPE’, ecoles[’Rapha&l’]="UTC’
On accede ensuite aux données en se servant de la clé et non plus d’'un index :
ecoles[’Chloé’] renvoie *EIVP’
Comme les listes et les chaines, les dictionnaires sont des objets itérables; I'itération se faisant sur les clés.
forainecoles:

Ainsi I'appel ) renvoie la liste des clés.
print(a)

Lannée suivante, deux autres étudiants, Colyne et Alexandre ont intégré 'UTC.

Exercice 3.16 Ecrire une fonction python etudiants(ecole:str)->list qui prend une chaine de ca-
racteres correspondant a une école en argument et qui renvoie la liste des étudiants qui ont intégré cette
école.

Par exemple, etudiants (°UTC’) — [’Raphaél’,’Colyne’,’Alexandre’]

Ecrire ensuite une fonction max_ecole qui renvoie le nom de I'école ayant accueilli le plus d'étudiants de
Chaptal.

La bibliotheque Numpy.

Il estimpossible de donner une liste exhaustive de toutes les bibliotheques relatives a Python. Toutefois,
pour les applications scientifiques, la bibliotheque Numpy apparait incontournable.
Limportation d’une bibliothéque se fait grace a la commande import. Pour accéder a une fonction par-
ticuliére de la bibliotheque, on peut taper
nom_de_la_bibliothéque.nom_de_la_fonction().
Par exemple pour la fonction sin() :
import numpy

numpy.sin(3.141592654)
-4.1020685703470686e-10

Pour éviter de retaper le nom complet de la bibliotheque (qui dans certain peut étre assez long), on peut
modifier le nom de la bibliothéque en utilisant le terme as. Par exemple, ici on renomme numpy par np :
import numpy as np

np.sqrt(1024)
32.0

On peut se passer completement du rappel du nom de la bibliothéque, en spécifiant directement les
fonctions qu’on désire importer avec le terme from:

from numpy import log
log (1)

0.0

log(0)

-inf
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On peut méme importer directement toutes les fonctions d'une bibliothéque avec le symbole * :

from numpy import *
cos (pi)
-1.0

A priori, la derniére solution semble la plus simple car elle évite des écritures répétitives.

La listes des fonctions numériques définies dans numpy est extrémement importante.
On peut retrouver les fonctions les plus classiques : exp(), log() (pour le logarithme népérien),

cos(),sin(),tan(),arccos(),arcsin(),arctan().

On peut également programmer une fonction non usuelle, mais dont connait I'expression.

On considere la fonction f définie par f(x) = m; on souhaite affecter cette fonction a la variable f.
X
Voici deux solutions :

def f(x):
f=lambda x:1/(1+x*%2) return 1/(1+x**2)
>>> f£(1) >>> f(1)
0.5 0.5

3.7 Conception d’'un algorithme.

Pour résoudre un probléme non élémentaire, la démarche algorithmique consiste a décomposer le probléme
en sous-problémes plus simples, jusqu’a 'obtention de sous-probléemes élémentaires.

Exemple 3.7 On dispose d'une planche, d’'un marteau et d’'un clou. Objectif : le clou est planté complétement
dans la planche.

Ce probléeme peut se décomposer en deux sous-problemes; (1) : programmer la machine pour qu’elle se saisisse
du marteau et du clou et (2) : programmer la machine pour qu’elle enfonce le clou. La encore, le sous-probléme
(2) peut se décomposer en plusieurs sous-problémes (2.1), (2.2)... : a chaque (2.k), taper un coup de marteau
sur le clou, jusqu’a ce qu’il soit complétement enfoncé.

Pour s’assurer que 'algorithme créé fonctionne correctement, il est indispensable de respecter trois étapes
de conception avec les éléments suivants :

o Invariant de boucle : Un invariant de boucle est une propriété qui :

* est vérifiée avant d’entrer dans la boucle;
* si elle est vérifiée avant une itération, alors elle est aussi vérifiée apres celle-ci;
* est vérifiée a la sortie de la boucle, ce qui garantit que I'algorithme résout bien le probleme.

Dans notre exemple I'invariant de boucle est : "le clou est planté dans la planche". En effet, on com-
mence a utiliser les coups de marteau que si le clou est déja positionné (légerement planté) et, le clou
doit rester planté aprés chaque coup de marteau, pour que le suivant fasse progresser la situation.

o Terminaison : Lorsque 'algorithme utilise une boucle, il est essentiel de définir une condition d’arrét
pour éviter que la boucle se répéte infiniment. La terminaison de la boucle assure alors que le probleme
sera résolu au bout d'un nombre fini d’itérations.

Dans notre exemple la condition d’arrét est "la téte touche la planche". La terminaison est la distance
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entre la téte du clou et la planche; elle assure que le probleme sera résolu en un nombre fini de coups
car la longueur du clou, donc la distance entre la téte et la planche, est finie et celle-ci décroit a chaque
coup de marteau, donc converge vers 0.

o Initialisation. Elle doit instaurer I'invariant. Dans notre exemple, I'initialisation est "planter 1égerement
le cou a la main".

Exemple 3.8 Revenons au probleme du calcul de la somme des n premiers entiers naturels. Voici un pro-
gramme possible :

def somme_entiers(n):
somme =0
k=0
while k<=n:
somme +=k
k+=1
return somme

k 0
o Linvariant de boucle est la propriété Sy = Z i; en effet, initialement : Sy = Z i =0; pour k donné si
i=0 i=0
k k k+1
Sk = Z i, alors, apres la k + 1 iéme itération, on obtient Sy, = Z i+k+1= Z i; et, a la sortie de la
i=0 i=0 i=0

n
boucle, on obtient S, = ) _ i.
i=0
o La condition d’arrét est k < n et la terminaison est n — k ce qui assure que la boucle s’arréte apres n

itérations.
¢ Linitialisation est Sy = 0.

Exercice 3.17 Lalgorithme ci-dessous, dit "algorithme d’Euclide" permet d’effectuer la division entiere de A par
B. Prouver ce résultat.

A=input (’Entrez la valeur de A :’)
B=input (’Entrez la valeur de B :7)
a=int (A)
b=int (B)
r=a
q=0
while r>=b:
r=r-b
q=9q+1
print (’Le quotient est’,q,’et le reste est ’,r)
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3.8 Complexité d’'un algorithme.

Il existe souvent plusieurs algorithmes capables de traiter le méme probléme. On choisira donc celui qui est
le plus efficace, c’est-a-dire celui qui a une exécution rapide et qui mobilise le moins de ressources mémoire. La
rapidité d’exécution est évidemment liée au nombre de données traitées, mais aussi au nombre d’opérations
effectuées avec ces données. La relation entre le nombre n de données et le nombre d’opérations s’appelle la
complexité de I'algorithme.

Voici un tableau qui récapitule les complexités les plus fréquentes :

Complexité | Nom courant | Description

o) temps constant | le temps d’exécution ne dépend pas du nombre de données a traiter
O(lnn) logarithmique | I'exécution est quasi instantanée
O(n) linéaire le nombre d’opérations est proportionnel au nombre de données;

I'exécution est rapide jusqu’a des données de taille comparable a la
mémoire vive

O(nlnn) semi-linéaire | complexité un peu moins bonne que la précédente mais qui reste tres
intéressante
0O (n?) quadratique complexité acceptable pour des données de taille raisonnable
G (n*) polynomiale | il n’est pas rare de rencontrer des complexité en @ (n3) ou G (n*)
oM exponentielle | un algorithme d’'une telle complexité est impraticable sauf pour de

trés petites données

Exemple 3.9 Soit P un polynéme de degré neta€R: P = ay+ ajx+ ax x> +--- a,x"

On souhaite calculer P(a); pour cela on va utiliser deux algorithmes et évaluer leur complexité pour com-
parer leur efficacité.
On suppose que les ccefficients du polyndme sont enregistrés dans une liste P = [ag, a1, ..., ap]

def Evall(P,a):
somme=P [0]
for k in range(1l,len(P)):
somme=somme+P [k] xa*xxk
return somme

def Eval2(P,a):
somme=P[0]
b=1
for k in range(1,len(P)):
b=b*a
somme+=b*P [k]
return somme
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3.9 Lespiles

Nous avons déja rencontré plusieurs types de données structurées : les chaines de caracteres (string), les
listes (1ist), les dictionnaires (dict) et les matrices (array).

Nous allons ici étudier un nouveau type de données structurées, les piles, que nous implémenterons en
Python a l'aide de listes.

Par définition, une pile peut étre considérée comme une liste dont a limité les acces : on ne peut insérer
("empiler", fonction push) un élément qu'a une seule extrémité, appelée le sommet de la pile; on ne peut
retirer ("dépiler", fonction pop) un élément que s’il est au sommet et on ne peut voir un élément que s’il est au
sommet.

Sion a besoin d’accéder a un élément qui n’est pas au sommet, on doit retirer un par un les éléments qui au
dessus, en partant du sommet.

“\
Empiler Y [/ Dépiler

Exemple 3.10
3|
Dans la pile suivante 1w seul I'élément % (d’indice 3) peut étre vu (fonction top(p)); seul I'élément %
0| &
¢
peut étre retiré (fonction pop(p)), ce qui donnerait: 1 | ¥
L3

On peut ajouter I'élément & au sommet de la pile par une fonction push (&, p) pour obtenir :

O~ N W
> € e D

Pour manipuler les piles, nous allons introduire la programmation modulaire. Ainsi toutes les fonctions
utiles a la manipulation des piles seront enregistrées dans un fichier (module), que nous nommerons pilepy.
Pour pouvoir les utiliser, il suffira d'importer ce module par l'instruction : import pilepy as pp. Chaque
fonction pourra alors étre appelée sous le nom pp .nomDeLaFonction.

Exercice 3.18 Construire les fonctions suivantes, permettant les opérations élémentaires sur les piles. Ces fonc-
tions seront enregistrées dans un fichier nommé pilepy

newStack() | sans argument, crée une pile sous la forme d'une liste vide
isEmpty(p) | prend en argument une pile et renvoie True ou False suivant que la pile est vide ou non

top(p) prend en argument une pile non vide et renvoie I'élément au sommet de la pile
pop(p) prend en argument une pile non vide; renvoie et supprime I'élément au sommet
push(x,p) prend en arguments un élément et une pile, et insere 'élément au sommet de la pile

_31-



CHAPITRE 3 : Algorithmique et Programmation 3.10 Larécursivité

Exercice 3.19 File d’attente

Il existe une autre structure de données, qui peut également considérée comme une liste dont on a limité
l'acces : lafile.

Dans une file, on ne peut insérer ("enfiler") un élément qu’a une extrémité, appelée queue; on ne peut voir
et retirer ("défiler") un élément que s’il est situé a I’autre extrémité appelé téte.

Ce type de structure correspond par exemple a des situations ot on a besoin de mémoriser temporairement
des actions en attente d’étre traitées dans 'ordre.

Construire les fonctions suivantes, permettant les opérations élémentaires sur les files :

creer_file() | sans argument, crée une file sous la forme d’une liste vide

voir(f) prend en argument une file non vide et renvoie I'élément en téte de file
defiler(f) prend en argument une file non vide; renvoie et supprime 1'élément en téte de file
enfiler(x,f) | prend en arguments un élément et une file, et insere I'élément en queue file

Exercice 3.20 Expressions bien parenthésées

On veut construire a l'aide d’'une pile un vérificateur de parenthésage.

Ecrire une fonction qui prend en argument une chaine de caractéres contenant une expression parenthésée,
la parcourt de gauche a droite de la fagon suivante : lorsqu’elle rencontre une parenthése ouvrante, elle empile la
parenthese fermante correspondante; lorsqu’elle arrive a une fermeture, lorsque c'est possible, elle dépile.

Cette fonction doit renvoyer True si l'expression est bien parenthésée et False dans le cas contraire.

3.10 Larécursivité

La récursivité est un moyen de répéter un bloc d’instructions sans utiliser les instructions while et for. Pour
cela, on programme une fonction qui va s’appeler elle-méme.

3.10.1. Un exemple de fonction récursive

Exemple3.11 La fonction récursive suivante crée une suite de nombres. Reconnaitre cette suite :

def suite(n): #n est un entier naturel
if n==0:
return 1
elif n==1:
return 1
return suite(n-1)+suite(n-2)

Remarque. A comme pour la boucle while, il ne faut pas oublier de prévoir une condition d’arrét.
Cependant, le nombre maximal d’appels récursifs est de 'ordre de 1000 par défaut, donc contrairement
ala boucle while, méme sans condition d’arrét, un programme récursif s’arréte avec comme message
d’erreur :

Runtime Error :maximum recursion depth exeeded in comparison
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3.10.2. Pile d’exécution et récursivité terminale

Lors de 'exécution d’un algorithme récursif, les appels récursifs successifs sont stockés dans une pile,
c’est la pile d’exécution.

La pile d’exécution est un emplacement mémoire destiné a stocker les parametres, les variables locales
ainsi que les adresses mémoires de retour des fonctions en cours d’exécution. On peut différencier deux
types de fonctions récursives : celles pour lesquelles il n'y a pas de traitement entre I'appel récursif et le
retour de la fonction, et celles pour lesquelles il y a des opérations entre 'appel et le retour.

Dans le deuxiéme cas, 'ordinateur empile dans la pile d’exécution les appels récursifs sans traiter les
opérations, puis, lorsque la condition d’arrét est vérifiée, la pile est dépilée, les opérations étant exécutées
successivement.

Pour illustrer cette différence, utilisons I’exemple du calcul de la factorielle de 4 :
Voici deux fonctions, une de chaque type; et les schémas d’exécutions associés lors des appels
factoriellel(4) etfactorielle2(4):

def factoriellel(n): def factorielle2(n,f=1):
if n==0: if n==
return f
return factorielle2(n-1,f*n)
#il n’y a pas d’opération entre 1’appel
et le retour

return 1

n*factoriellel(n-1)

#il y a 1 opération entre 1’appel et
le retour

return

F(4)=4xF(3)
F(3)=3%F(2)
F(2)=2xF(1)
F(1)=1%F(0)
F(0O)=1
F(1)=1
F(2)=2
F(3)=6
F(4)=24

F(4,1)=F(3,4)
F(3,4) =F(2,12)

F(2,12) =F(1,24)
F(1,24) =F(0,24)
24

Dans le deuxiéme cas I'opération emplilage/dépilage est plus performant. Ce type de fonction récursive
avec retour direct de I'appel récursif s’appelle récursivité terminale.

Exercice 3.21 Ecrire une fonction récursive non terminalepuissance(a,n), prenant en argument un nombre

a et un entier natureln, et qui calcule a”.

Transformer la fonction précédente en une fonction récursive terminale.

Exercice 3.22 Calculer le n'®™ terme des suites (u,) et (v;,) définieparug=1,v9=—-1etVneN:

{

Un+1 =2Up+ Un
Up+1=Up—2VUy

Exercice 3.23 Programmer une fonction récursive terminale donnant les termes de la suite de Fibonacci.
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3.10.3. Preuve de terminaison et complexité

Comme pour les instructions itératives, la terminaison est assurée par une condition d’arrét. Ainsi on
prouvera la terminaison en exhibant une suite d’entiers naturels strictement décroissante.

Par exemple, pour la fonction factorielle(n), si on note (uy) la suite des arguments la fonction, on a
up = n, u; = n—1, et de maniere générale, 1., = 1, —1; doncla suite (u,) est bien une suite d’entiers na-
turels strictement décroissante. Elle prend donc un nombre fini de valeurs ce qui prouve que la fonction
factorielle(n) se termine.

Pour simplifier, on considere le nombre d’appels a la fonction récursive pour estimer la complexité en
temps. Lorsqu’il s’agit d'une récursivité simple et que la complexité d’'une étape est constante, la com-
plexité est estimée a &' (n).

Exercice 3.24 Dans sa version terminale, la fonction récursive donnant les termes de la suite de Fibonacci
appelle n fois la fonction; sa complexité est donc en O (n).

Estimer la complexité de la fonction présentée dans l'exemple 3.11. Comparer les résultats.

3.11 Les algorithmes de tri

Dans ce paragraphe nous nous intéressons a des algorithmes capables de trier une liste, ou un tableau a une
dimension, contenant des nombres, ou tout type d’objets dont I'ensemble est muni d'une relation d’ordre. Par
exemple, on peut trier une liste contenant des chaines de caractéres a I’aide de I'ordre lexicographique.

1l existe des méthodes de tri déja implémentées en langage Python, comme la méthode sort :

In[1]: T=[’Ile et Vilaine’,’Cdtes d Armor’,

In [1]: L=[35,22,56,29] ’Morbihan’,’Finistére’]
In [2]: L.sort() In[2]: T.sort ()
In[3]: T
In[3]: L Out[6]: [’Cdtes d Armor’, ’Finistére’,
Qut[3]: [22, 29, 35, 56] ’Ile et Vilaine’, ’Morbihan?]

Nous pouvons remarquer que cette méthode est une fonction qui modifie la liste prise en argument et qui
ne renvoie rien.

Notre objectif étant de comprendre et d'implémenter quelques algorithmes de tri, nous nous interdisons
donc d’utiliser les méthodes de tri Python.

11 est également possible d’écrire une fonction qui ne modifie pas la liste de départ et qui retourne la liste
triée. Par exemple

L =[35,22,56,29]
tri(l) retourne [22,29,35,56]

L =[35,22,56,29]
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3.11.1. Tripar sélection
Pour trier une liste L comportant n éléments par sélection, voici la méthode :
En partant de la position i = 0, on recherche le plus petit élément parmi les éléments d'indicei+1 an—1
et on’échange avec L[i].
Par exemple, pour trier [12,3,17,9,4, 16], on obtient successivement :

[12,3,17,9,4,16] [12,1[3]17,9,4,16] [3,12,117,9,[4]16] [3,4,17,]9]12,16]
(3,4,9,17,[12],16] [3,4,9,12,117,[16] [[3,4,9,12,17,[16]] (3,4,9,12,16,17]

Exercice 3.25 Compléter la fonction suivante pour qu’elle retourne la liste triée par sélection :

def tri_selection(L):
for i in range(len(L)-1):

for j in range (i+1,len(L)):
# recherche du minimum dans le tableau restant
# comparer ce minimum & L[i]
return L

Evaluer la complexité temporelle de cet algorithme.

3.11.2. Tris par insertion
Pour trier une liste L par insertion, voici la méthode :
On prend le premier élément et on le met al'indice i = 0; puis on insere les autres éléments dans la partie
déja triée en placant chaque nouvel élément a la bonne place.
Cela donne :
[12,]3,17,9,4,16] [3,12,]17,9,4,16] [3,12,17,]9,4,16]

(3,9,12,17,14,16] [3,4,9,12,17,]16] [3,4,9,12,16,17]

Exercice 3.26 Ecrire une fonction python prenant en argument une liste et qui retourne cette liste triée par
insertion en complétant le script suivant.

Evaluer la complexité temporelle de cet algorithme. Comparer a la méthode par sélection.

def tri_insertion(L):
for i in range(1l,len(L)):#on traite les éléments restants
#on mémorise 1l’élément a traiter
#variable créée pour trouver la bonne place
while ... #tant que la bonne place n’est pas trouvée
#on cherche la bonne place
#on insére 1’élément a sa place
e #on supprime le doublons
return L

3.11.3. Tris a bulles

On donne I'algorithme suivant :
def tri_a_bulles(L):
for i in range(len(L)-1):
for j in range(len(L)-1,i,-1):
if L[jI<L[j-11:
L[j],L0j-1]=L[j-1]1,L[5]
return L

Exercice 3.27 Prouver que cet algorithme retourne la liste triée.
Evaluer sa complexité temporelle.
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3.11.4. Letrirapide

Le tri rapide (ou "quicksort") est un tri récursif dans lequel on divise le probléeme initial en deux sous-problemes
suivant le principe de « diviser pour mieux régner ». Concretement, il s’agit de passer du tri d'une liste compor-
tant n éléments aux tris de deux sous-listes de tailles strictement inférieures a n.

Pour cela on choisit un élément e de la liste qu’on appelle pivot, on le retire de la liste et on crée deux
sous-listes, 'une contenant les éléments strictement inférieurs a e, et I'autre les éléments supérieurs a e.

On trie récursivement les deux sous-listes et on regroupe le tout.

Par exemple, pour trier [12,3,17,9,4, 16], on obtient successivement :

(3,9,4] [12] [17,16] choix de 12 comme pivot
0 (31 [9,4] [12] [16] [17] I choix de 3 comme pivot a gauche et de 17 a droite
(0 31 [0 [4] [91 [I [12] [16] [17] [I choixde 9 comme pivot

Exercice 3.28 Ecrire une fonction python prenant en argument une liste et qui refourne une nouvelle liste triée
par la méthode du tri rapide.

Evaluons la complexité de cette méthode de tri. Soit n € N le nombre d’éléments de la liste a triée, notons
¢n, 1a complexité temporelle. Par construction, nous avons ¢y =0 et ¢; =0.
o Dans le pire des cas :
On suppose ici qu'a chaque exécution de la fonction, tous les éléments se trouvent du méme codté du
pivot. (Ce qui est le cas si la liste est déja triée par exemple!)
Iy n—1 comparaisons et le tri de deux sous-listes, une de longueur 0 et 'autre de longueur n—1. On a
donc ¢, = cy—1 +n—1; ce qui donne

-1
2
o Dans le meilleur des cas :

On suppose maintenant qu’a chaque exécution de la fonction, les éléments se répartissent équitable-
ment de part et d’autre du pivot.

Ily a toujours n—1 comparaisons et le tri de deux sous-listes, une de longueur [gJ et'autre de longueur

|271]. Onadonc:
cn:c(n)=cugJ)+cun;1J)+n—l

* Calculons c¢(n) pour n=2P —1: en posant up, = ¢(2” - 1), il vient : u,, =2u,_; +2° - 2.
On démontre alors, par récurrence, que up=(p- 2)2P +2.
x Désormais, soit 7 € N; il existe un unique p € Ntel que 2” -1 < n<2P*!' —1;onadonc:

Up<Cp<Upr1 © (p-22P +2<cy < (p-12PH +2

pour 7 au voisinage de +oo, on a (p —2)2” +2 ~ p2P ~ nlog, (n) ; avec log, (n) = %;
ainsi (p—2)2P +2 =0(nln(n)); de méme (p — 1)2P*1 +2 =0(nln(n))
Finalement, on obtient :
cn=0(nln(n))
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3.11.5 Le trifusion

Le tri fusion est également un tri récursif dans lequel on divise le probleme initial en deux sous-problemes.
Partant d’une liste de n éléments, on la divise en deux listes contenant environ 4 données. La méthode consiste
atrier la premiere moitié de la liste, puis la deuxieme et de fusionner les deux listes triées en une seule liste triée.

Pour programmer cette méthode nous utiliserons une fonction auxiliaire fusion(L1,L2) qui prend en ar-
gument deux listes L1 et L2 déja triées et qui retourne la liste fusionnée.
Pour comprendre cet algorithme récursif, observons la pile d’exécution :
o Empilage :
tri_fusion([12,3,17,9,4,16])
tri_fusion([12,3,17]) tri_fusion([9,4,16])
tri fusion([12]) tri_fusion([3,17]) tri_fusion([9]) tri_fusion([4,16])
tri_fusion([12]) tri_fusion([3]) tri_fusion([17]) tri_fusion([9]) tri_fusion([4]) tri_fusion([16])

o Dépilage :
[12] (3] [17] (9] (4] (16]
(3,12] [9,17] (4,16]
(3,9,12,17] (4,16]
[3,4,9,12,16,17]

La fonction fusion(L1,L2) utilise une variable L de type liste qui doit contenir la fusion des deux listes
L1 et L2. Pour comprendre le fonctionnement de cette fonction, observons 1’évolution de la variable L sur un
exemple : prenons L1 =[3,9,12,17] et L2 = [4, 16].

L=[] L=[3] L=[3,4 L=[3,49] L=I[3,4912] L=I[3,4,912,16] L=[3,4,9,12,16,17]

La fonction compare L1[0] avec L2[0] et inseére L1[0] dans L; ensuite elle compare L1[1] avec L2[0] et insere
L2[0] dans L ... jusqu’a avoir parcouru les deux listes. Lorsque tous les éléments d'une listes ont été choisis, il
suffit de compléter L avec les éléments restants de 1’autre liste.

Exercice 3.29 1. Proposer une fonction fusion(L1,L2) dont le fonctionnement est décrit ci-dessus.

2. Ecrire alors une fonction tri_fusion(T) qui prend en argument une liste T et qui retourne une liste conte-
nant les éléments de T triés par la méthode de fusion.

3.11.6. Comparaison des différents tris

Nous avons étudié cinq tris différents, trois tris quadratiques (par sélection, par insertion et a bulles) et
deux tris récursifs (rapide et fusion).
Les trois tris itératifs modifient la liste prise en argument pour la retourner triée, alors que les deux tris
récursifs créent une nouvelle liste sans modifier la liste de départ. Une autre différence entre ces tris est
la complexité temporelle; voici un tableau résumant la situation :

meilleur des cas | pire des cas
tri par sélection 0(n?) 0(n?)
tri par insertion 0(n) 0(n?)
tri a bulles 0(n?) 0(n?)
tri rapide ©(nlIn(n)) 0(n?)
tri fusion ©(nln(n)) ©(nln(n))
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La complexité du tri fusion est est en 0(nln(n)) dans tous les cas, donc semble moins risqué que le tri
rapide. En pratique, c’est cependant le tri rapide qui est le plus utilisé, car son pire des cas est usuellement
rare et on constate expérimentalement qu’il est meilleur que le tri fusion en moyenne. Pour cela il suffit
de calculer les temps moyens d’exécution des algorithmes sur les listes construites aléatoirement et de
les comparer.

3.12 Laméthode d’Euler

Pour certaines équations différentielles, nous savons déterminer I'expression de la fonction solution, c’est-a-
dire que nous savons résoudre analytiquement ces équations.

Malheureusement, il existe des équations différentielles pour lesquelles il n’est pas possible de détermi-
ner I'expression de la solution. On a alors recours a des programmes qui recherchent une solution numérique
approchée.

L objectif de ce paragraphe est d’étudier une méthode numérique : la méthode d’EULER.

Pour illustrer la méthode nous utiliserons I'équation différentielle & :

3.12.1.

3.12.2.

{ y -2ty=1
y(0)=0

Les limites de la méthode analytique.

Exercice 3.30 Déterminer l'expression yy(t) de la solution de l'équation homogeéne : y' —2ty = 0.

Désormais on recherche une solution particuliere par la méthode de variation de la constante, c’est-a-
. 2 L .
dire sous la forme y, (#) = k(t)e”, ot1 k est une fonction a déterminer.

En utilisant U'équation &, donner une expression de la fonction k. En déduire l'unique solution du probléeme
de Cauchy. Quel commentaire peut-on faire?

La méthode d’Euler explicite.

D’une maniére générale, une équation différentielle d’ordre 1 s’écrit :
/ dy
y'(£) + a(t) y(r) = b(t) ou encore E(r) =—a(y)+b) = f(t,y(1))

Dans notre exemple, f(z,y(1)) =2ty(s) + 1.

On souhaite résoudre numériquement cette équation sur un intervalle de temps [0, T};,4x]. Le temps sera
représenté numériquement par une liste de N instants régulierement espacés que I'on écrira

T= [to = O,tl, v Tttty e ty—1 = Tmax]
On note h = t;;1 — tx le pas de temps, ainsi t; = o + kh = kh.
On note y(#x) les valeurs de la fonction exactes pour les instants choisis et yi les valeurs approchées

construites par itération.
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3.12.3.

On obtient ces valeurs approchées par un dévelop-
pement limité a 'ordre 1 :

Y(trs1) = y(tx + h) = y(tp) + hy' (1) + o(h)
= y(tx) + hy' ()

La stratégie itérative mise en ceuvre dans la mé-
thode d’Euler explicite consiste, a partir d'une
condition initiale, a rechercher une valeur appro-
chée de la valeur y(ty.;) avec la formule :

Vi+1 = Vi + hy' (t) = yie+ hf (te, yi)

La condition initiale est y(#y) = yo; ensuite, y; = yo + h f (%, yo); puis, yg = y1+hf(t1,y1) etainsi de suite...

Exercice 3.31 Ecrire une fonction init_T(Tmax,N) prenant pour arguments la durée Tmax de l'étude et le
nombreN d’instants et retournant la liste T.

Pour la suite, dans notre exemple, f(¢,y) =2ty +1et y(0) = yo =0.

Ecrire une fonction £(t,y) prenant en arguments les valeurs de t et de y et retournant l'expression de la
fonction f(t,y).

Cette fonction sera modifiée a chaque résolution d'une autre équation différentielle.

Ecrire enfin une fonction solve_euler(T,y0) prenant en argument la liste T des instants ty de la résolution
numérique et la valeur initiale yy, et retournant la liste S des valeurs yy, valeurs approchées de la solution
de l'équation différentielle calculées aux instant, ty. par la méthode d’Euler.

D’apres les calculs précédents, y(1) =e f : e_x2 dx. Le calcul de I'intégrale peut également étre effectué a
I'aide des sommes de Riemann, par la m%thode des trapézes par exemple.

Comparons les résultats :

In[1]: solve_euler(init_T(1,1000),0)[-1]

Out[1]: 2.026937538968067

In[2]: exp(l)+*somme_trapezes (lambda x:exp(-x*x2),0,1,1000)
Out[2]: 2.0300783026120328

La méthode d’Euler implicite.

Le principe de la méthode d’Euler implicite est similaire au précédent, sauf que 1'on utilise cette fois le
taux d’accroissement pour approcher le nombre dérivé au point #;.1, par la formule :

V(tes1) — () o Y1 = Vk
1 — Bk h

d
Yt = 2 (tes) =
On obtient ainsi, de maniere implicite, la valeur de yy; par la formule
Vir1 = Vi + hf (Tres1, Vier1)

La condition initiale est y(#) = yo; ensuite, y; = yo+ hf(t1, y1); puis, y2 = y1 + hf (2, y2) et ainsi de suite...
On constate que yg; est solution d'une équation et que sa valeur n’est donc pas obtenue explicitement.
Un calcul supplémentaire est donc souvent nécessaire.
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Pour comparer ces deux méthodes, utilisons le probleme de Cauchy suivant :

{ y'=y
y(0)=1

Par la méthode explicite nous obtenons une suite (y) telle que yx.1 = yk + hyr = 1+ h) yi.

Par la méthode implicite nous obtenons une suite (zk) telle que zr.1 = zx + hzg,1; dans cette situation,

nous pouvons en déduire I'’expression de zj,; par la formule zy,; = nzk.

Nous pouvons ensuite obtenir le graphique suivant :

T-linspace(0,1,30) 2754 % méthode explicite +
P + méthode implicite
250 1 — solution exacte
F=solve_euler_exp(init_T(1,30))
G=solve_euler_imp (init_T(1,30)) 225
200
plot(T,F,’b*’,label="méthode explicite’)
plot(T,G, ’k+’,label="méthode implicite?’) 175
plot(T,exp(T),’r’,label=’solution exacte 150
)
125
legend () 100

3.13 Lalgorithme de Dijkstra

La théorie des graphes débute avec les travaux d'EULER au XVIII® siécle et trouve son origine dans I'étude
de certains problemes, tels que celui des ponts de Konigsberg (actuellement Kaliningrad) : les habitants de
Konigsberg se demandaient s’il était possible, en partant d'un quartier quelconque de la ville, de traverser tous
les ponts sans passer deux fois par le méme et de revenir a leur point de départ.

Voici une représentation de Kénigsberg avec ses quatre quartiers et ses sept ponts; ainsi que sa modélisation
sous la forme d’un graphe :

En 1736, Euler démontre qu'une telle promenade n’existe pas en caractérisant les graphes que 'on appelle
aujourd’hui eulériens.

Par théoréme, un graphe simple connexe est eulérien si et seulement si pour tout sommet du graphe, son
degré est pair.

Dans le cas des ponts de Konigsberg, le sommet A est de degré 5 et les sommets B, C et D sont de degré 3.
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La théorie des graphes s’est alors développée dans diverses disciplines telles que la chimie, la biologie, les
sciences sociales. Depuis le début du XX siecle, elle constitue une branche a part entiére des mathématiques,
grace aux travaux de Konig, Menger, Cayley puis de Berge et d'Erdés.

De maniere générale, un graphe permet de représenter la structure, les connexions d'un ensemble com-
plexe en exprimant les relations entre ses éléments : réseau de communication, réseaux routiers (recherche du
plus court chemin), interaction de diverses espéces animales, circuits électriques,...

Les graphes constituent donc une méthode de pensée qui permet de modéliser une grande variété de pro-
blemes en se ramenant aI’étude de sommets et d’arcs. Les derniers travaux en théorie des graphes sont souvent
effectués par des informaticiens, du fait de 'importance qu’y revét I'aspect algorithmique.

Il existe des graphes pondérés, c’est-a-dire dont les arétes sont associées a des valeurs numériques. On définit
alors la matrice d’adjacence M = (m;, j) ou m;,j est égal a la valeur portée par I'aréte reliant les sommets i et j
si ces sommets sont adjacents, ou co sinon. Voici un exemple de graphe pondéré et de sa matrice d’adjacence :

0 3 1 oo oo oo
3 0 3 4 1 oo
1 3 0 6 5 o
M_oo 4 6 0 1 1
co 1 5 1 0 5
co oo oo 1 5 0

On peut implémenter cette matrice en Python sous la forme d’une variable de type array :
from numpy import*

M=array([[0,3,1,inf,inf,inf],[3,0,3,4,1,inf],[1,3,0,6,5,inf],[inf ,4,6,0,1,1],
[inf ,1,5,1,0,5], [inf,inf,inf,1,5,0]1])

Le graphe précédent n’est pas orienté, c’est-a-dire que lorsque deux sommets sont voisins, comme A et B
par exemple, on peut indifféremment aller de A vers B ou de B vers A. La matrice d’adjacence est donc symé-
trique.

Le graphe est simple, car il y a au plus une aréte entre deux sommets; il est connexe car de chaque sommet
il part au moins une aréte, autrement dit, aucun sommet n’est isolé.

Lalgorithme de Dijkstra sert a résoudre le probleme du plus court chemin. Il permet, par exemple, de déter-
miner le plus court chemin pour se rendre d’une ville & une autre connaissant le réseau routier d'une région. Il
s’applique a un graphe connexe, simple et non orienté dont le poids lié aux arétes est positif ou nul. L'algorithme
porte le nom de son inventeur, I'informaticien néerlandais Edsger DIJKSTRA et a été publié en 1959.

Par exemple, on recherche dans le graphe précédent, le plus court chemin permettant de joindre les som-
metsAetE

On construit un tableau, dont la premiére ligne contient les sommets du graphe : on initialise en affectant
la valeur 0 a A et co aux autres sommets :

La ligne suivante donne les voisins de A en précisant les poids associés a la ville d’origine, par exemple 3(A)
dans colonne du sommet B signifie qu’on atteint B avec un chemin de longueur 3 en venant de A; la ville choisie
sera celle de poids minimum, donc C.

Une fois un sommet choisi son poids devient co.

Et on continue ainsi, en choisissant toujours la ville de poids minimum. Voici le résultat :
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distance totale | A B C D E F villes visitées
0 oo 00 oo 00 oo A
0 oo | 3(A) | 1(A) o fe’s) o C
1 oo | 3(A) | oo | 7(C) | 6(C) o) B
3 0o | o0) oo | 7(C) | 4(B) 00 E
4 oo | oo oo | 5(E) | oo | 9(E) D
5 oo | 0o 00 00 oco | 6(D) F

Le plus court chemin mesure donc d(A,F) = 6 avec le parcours suivant:A-B-E-D-F
Ce tableau nous donne méme tous les chemins les plus courts en partant de A, a savoir :
dAB)=3avecA-B;dA,C)=1avecA-C;dAD)=5avecA-B-E-Detd(AE)=4avecA-B-E.

Exercice 3.32 Appliquer l'algorithme de Dijsktra pour déterminer le plus court chemin de F a B.

Implémentons I'algorithme de Dijskstra.

Nous allons écrire une fonction dijkstra(villes,depart,arrivee,M) qui prend en arguments une liste
contenant toutes les villes du graphe, la ville de départ et la ville d’arrivée, ainsi que la matrice d’adjacence du
graphe.

o Choix des variables
La fonction retourne deux variables : une variable numérique dist_choix contenant la valeur du che-
min le plus court et une variable chemin_choix contenant la liste des villes correspondant aux parcours
le plus court.
En variables auxiliaires, nous utiliserons la variable visit pour stocker la liste des villes visitées au cours
de l'algorithme, la variable dist pour stocker les distances de chaque parcourt (I'évolution de cette
variable correspond a I’évolution des lignes du tableau), la variable choix contenant I'indice de la ville
choisie a chaque étape, et la variable chemins permettant de mémoriser, a chaque étape, la ville visitée,
la ville précédente et la longueur du parcours, ce qui permettra de reconstituer tous les parcours et en
particulier celui qui nous intéresse.
Lalgorithme fonctionne suivant deux principes tres classiques :

o Principe de reldchement :
On note s le sommet de départ. Soit ¥ un sommet quelconque du graphe, on suppose a ce stade que la
distance minimum obtenue pour se rendre de s a u est d(u).
Le principe de relachement (ou relaxation) consiste a savoir s’il est possible d’améliorer d(u) en passant
par un autre sommet v du graphe. En pseudo-code, cela s’écrit :

Variables : G un graphe, u et v deux sommets de G, d(u) et dist(u, v) deux nombres
Début

Pour v dans G
si du)>dw) +dist(u,v)
du) — dv)+dist(u,v)
Fin

Il faudra alors garder en mémoire que le sommet précédent u devient v.

o Principe de sélection :
A chaque étape de 'algorithme, on choisit le sommet u si : © n’a pas encore été sélectionné et si d(u)
est minimum parmi tous les sommets non encore sélectionnés. Le principe de sélection de la solution
optimale a chaque étape s’appelle I'algorithme glouton.
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Exercice 3.33 Compléter le schéma du programme suivant :

def

dijkstra(villes ,depart,arrivee ,M):

PAD A

* villes est la liste contenant les villes,

* depart est la variable contenant le nom de la ville de départ,
* arrivee est la variable contenant la ville d’arrivée,

* M est la matrice d’adjacence du graphe’’’

’?’tableau des distances initialisé en attribuant un poids infini aux
villes autres que depart, qui regoit le poids nul’’’
dist=[inf]*len(villes)

dist[villes.index (depart)]=0

’?’]iste des villes visitées’’’

visit=[]

’?’indice de la ville choisie a chaque étape’’’
choix=villes.index (depart)

’?’]liste de tous les chemins parcourus’’’
chemins=1[]

’?’exploration des sommets jusqu’a la ville d’arrivée’’’

while
??7]a ville choisie est celle de poids minimum, elle est stockée dans la
variable visit’’’
dist_choix=
choix=

’?’’relédchement’’’
for k in range(len(M)):
?77si la ville n’est pas déja visitée’’’
if
>?70on relédche la ville choisie au tour précédent’’’
’?’on garde en mémoire le sommet visité, le sommet précédent
et le poids de 1’aréte’’’

’?7]la ville est déja visitée, son poids devient infini’’’
dist [choix]=inf

’?’construction du chemin le plus court’’’

>??tous les chemins possibles peuvent étre reconstruits & 1’aide de la variable
chemin’’’

’>?’on repére la ville d’arrivée, derniére choisie, et on récupére le sommet
précédent ’’’

’?’on recommence avec le sommet que 1l’on vient de trouver’’’

v=villes[choix]

chemin_choix=1[v]

while v!=depart:

chemin_choix.reverse ()

return dist_choix,chemin_choix
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TRAVAUX PRATIQUES 1

AUTOUR DES LISTES

Voici les instructions éventuellement utiles dans ce TP :

len(L) donne la longueur de L

L=[] L est la liste vide

L[i] donne la valeur de I’élément de la liste d’indice i

L+M concatene (juxtapose) les listes L et M

L.append(a) ajoute a a la fin de la liste

L.insert(i,a) ajoute I'élément a a la i® position

del L[il supprime et retourne le 1° élément

for k in range(i,j) | boucle pourk allantde i a j (exclus)

while boucle tant que

Le tableau unidimensionnel (ou liste) a 'avantage de regrouper un grand nombre de valeurs en une seule
variable. Chaque valeur est alors est alors repérée par un numéro appelé indice.

Par exemple, dans un tableau T comportant 12 valeurs, la premiére valeur sera désignée par T[0], la deuxiéme
par T[1],..., la derniere par T[11].

1. Recherches dans une liste

(a) Quel estlerole de la fonction suivante?

def fonctionl1(L): #L est une liste de nombres
a=L[0]
for k in range (len(L)):
if L[k]>=a:
a=L[k]
return a

(b) Modifier la fonction précédente pour obtenir le minimum de la liste L.

(c) Dorénavant on suppose que L est une liste contenant des nombres deux a deux distincts.

Ecrire une fonction MAXmax (L:1ist) ->tuple qui renvoie le maximum et le second maximum de la
liste L. Par exemple : MAXmax ([2,6,7,1,9,4]1— (9,7)

2. Calcul de la moyenne arithmétique

(@) Quel estle role des programmes suivants?
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TRAVAUX PRATIQUES 1 : Autour des listes

def fonction2(n):

200

* entrée : int
* sortie : list 2
L=[]

for k in range(n):
L.append (k)
return L

def fonction3(m:int)->int:
S=0
for k in range(n):
S=S+k
return S

(b) SoitLune liste contenant des nombres. Ecrire une fonctionmoyenne (L:1ist)-> float quirenvoie
la moyenne des valeurs de la liste L.

3. Calcul de la valeur moyenne par la méthode des trapézes

Méthode des trapeézes

Par définition, I'intégrale d'une fonction continue et positive sur [a, b] est I'aire (grise ci-dessous) de la
surface délimitée par la courbe, I’axe des abscisses et le droites verticales d’équation x = a et x = b. La
méthode des trapezes consiste a approcher I'aire sous la courbe par la somme des aires de trapeézes.
Pour cela on définit une subdivision a pas constant :

Soit n € N*, on définit le pas : pas = 2% et ar = a+ k x pas

fla)fF---
fla+pas) ----->-a\:

N

o a b 0} a b
Laire du premier trapéze jaune est obtenue par la formule HT”Z x pas,ou H= f(a)eth= f(a+ pas).

La formule qui donne une approximation de I'intégrale par la somme d’aires de trapezes est donc :

nz_:l flap) + f(ags+1) y

pas
k=0 2

(a) Ecrire une fonction £ (x) qui pour la variable x retourne la valeur 1:17.

(b) Ecrire une fonction trapezes(f,a,b,n) qui prend en argument une fonction f, deux réels a et b,
et un entier n et qui renvoie la valeur approchée de I'intégrale obtenue par la méthode des trapezes.

(¢) Quelle valeur approchée obtient-on avec I'appel trapezes(£,0,1,1000) ?

- 46 -



TRAVAUX PRATIQUES 1 : Autour des listes

Calcul de la valeur moyenne

On effectue une série de mesures sur une certaine quantité Q, durant une période donnée 7.
Ces mesures sont stockées dans une liste mesures.
La valeur moyenne de ces mesures est définie par :

1 T
Qmoy = ?/(; Q1) dr

Définir une fonction valeur_moyenne(mesures,T), prenant en arguments la liste mesures et la période
T et qui calcule la valeur moyenne de ces mesures obtenue par la méthode des trapézes.

Pour comparer les deux calculs de moyenne, on prend L=[k for k in range(1,101)];comparerles
appels moyenne (L) et valeur_moyenne(L,100).
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TRAVAUX PRATIQUES 2

RECHERCHES DANS UNE CHAINE

Voici les instructions éventuellement utiles dans ce TP :

len(S) donne la longueur de la chaine de caracteres S

S = S est la chaine vide

S[i] donne le caractere d’'indice i dans la chaine
S[i:j] donne la sous-chaine des caracteéres d’indice i inclus a j exclus
S+T concatene (juxtapose) les chaines S et T

len(L) donne la longueur de L

L=T] L est la liste vide

L[i] donne la valeur de I'élément de la liste d’indice i
L+M concatene (juxtapose) les listes L et M
L.append(a) ajoute a a la fin de la liste

L.insert(i,a) ajoute I'élément a a la i® position

del L[i] supprime et retourne le 1° élément

for k in range(i,j) | boucle pourk allantde i a j (exclus)

while boucle tant que

1. Rechercher un caractére dans une chaine.
Ecrire une fonction cherche (c,S) qui prend en arguments un caractere c et une chaine de caracteres S;
si le caractere est présent dans la chaine, cette fonction revoie True et la liste des indices de ce caractere;
sinon la fonction revoie False.
Par exemple, si on considere la chaine S=’je vois et je comprends’, alors:

chercher(’e’,S8) — (True,[1,8,12,19]) ; chercher(’a’,S) — (False,[])

2. Rechercher un mot dans un texte.
Soit une chaine de caracteres S=’TGACTGGTCACT’, on appelle sous-chaine de caracteres de S une suite de
caracteres incluse dans S. Par exemple, TGG’ est une sous-chaine de S mais >TAG’ n’est pas une sous-
chaine de S.
Lobjectif est de rechercher une sous-chaine de caracteres M de longueur m appelée motif dans une chaine
de caractéres S de longueur n.
Il s’agit d'une problématique classique en informatique, qui répond aux besoins de nombreuses applica-
tions. On trouve plus de 100 algorithmes différents pour cette méme tache, les plus célebres datant des
années 1970; mais plus de la moitié ont moins de 10 ans.
Principe de l'algorithme naif : On parcourt la chaine. A chaque étape, on regarde si on a trouvé le bon
motif. Si ce n'est pas le cas, on recommence avec I'élément suivant de la chaine de caracteres.
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Cet algorithme a une complexité en O(nm) avec n, la taille de la chaine de caractere et m, la taille du
motif.

Ecrire une fonction rechercher (M, S) qui a une sous-chaine de caracteres M et une chaine de caracteres
Srenvoie False siMn'est pas dans S, et True et la position de la premiére lettre de la chaine de caracteres
M si M est présente dans S. Par exemple :

rechercher (’TGG’,S) — (True,4) ; rechercher(’TAG’,S) — False
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TRAVAUX PRATIQUES 3

CRYPTOGRAPHIE

Voici les instructions éventuellement utiles dans ce TP :

len(L) ; len(S) donne la longueur de L; de la chaine S

L=[] ; s=» L est la liste vide; S est la chaine vide

L[i] ; S[il donne la valeur de I'’élément d’indice i dans la liste L ou la chaine S

M+N concatene (juxtapose) les listes ou les chainesM et N

L.append(a) ajoute a a la fin de la liste

S+’a’ ajoute a ala fin de la chaine

M.index(a) donne la premiere occurrence de a dans la liste ou la chaine M

chr (i) donne le caractere ASCII d’indice i

ord(’c?) donne l'indice dans la table ASCII du caractere c

n%p donne le reste de la division de n par p

D={clél:valeurl} | Destle dictionnaire contenant une seule valeurl associé a une clé1

D[clé] donne la valeur de I’élément du dictionnaire D associé ala clé

D[clé2]=valeur2 | ajoutelavaleur2 associée ala c1é2 dans le dictionnaire D

1. Création d'un alphabet
La table ASCII contient les lettres de I'alphabet sous forme de chaines de caracteres.
Utiliser cette table pour définir une fonction alphabet (), sans argument, qui renvoie une liste contenant
les lettres de ’alphabet en minuscule sous la forme de chaines de caracteres. Le premier élément de cette
liste contiendra le caractére Space, a I'indice 32 dans la table ASCII, permettant de créer I'espace entre
deux mots.

2. Codage Jules César
Le principe du codage est mono-alphabétique. On cherche a coder un message. Pour cela un nombre
N est choisi. Chaque lettre du message d’origine est alors remplacée par la lettre de ’alphabet qui est
située N places plus loin dans 'alphabet. Si en faisant cette manipulation, on "sort" de I'alphabet, alors
on reprend 'alphabet au début. Par ailleurs, ’alphabet est complété par une lettre supplémentaire qui
permettra de coder les espaces entre les mots.
Par exemple, sile nombre N choisi au départ est 5, et que le message a coder est :

’je vois et je comprends’

alors le message codé est :
’oje tnxejyeojehtruwjsix’

(a) Ecrire une fonction codage_cesar(message,N), prenant en arguments un message et un nombre et
retournant le message codé en suivant le principe ci-dessus.
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TRAVAUX PRATIQUES 3 : Cryptographie

Ecrire une fonction decodage_cesar(message_code,N) prenant en arguments un message codé
par la méthode César et un nombre, qui retourne le message décodé. Tester son fonctionnement
sur le message suivant codé avec N =10:
'obyzojaobcojsmsjocjbojaozybo’

(b) Trouver, quitte a tester toutes les valeurs de N possibles, le message caché derriére le message

crypté:
'buhhqwuphusguipuipsgneidwggbbuphdciptuhphncdcnbuxh’
3. Codage Blaise de Vigenere

Le principe du codage est cette fois poly-alphabétique. Un mot, appelé clef, est choisi au départ. Chaque
lettre du message a coder sera remplacée par la lettre de I'alphabet qui est située N places plus loin dans
I'alphabet suivant le principe suivant :

* pour la premiere lettre a coder, N est le numéro correspondant a la premiere lettre de la clef,

* pour la deuxiéme lettre a coder, N est le numéro correspondant a la deuxieme lettre de la clef,

* pour la troisieme lettre a coder, N est le numéro correspondant a la troisieme lettre de la clef...
Des que I'on arrive a la derniere lettre de la clef, on revient au début de ce mot-clé.

En quelques sortes, tout se passe comme si on "ajoutait” les lettres du mot-clé a celles du message a
coder.

(a) Ecrire une fonction codage_vigenere(message,clef) qui retourne le message codé suivant ce
principe.
Tester le fonctionnement de la fonction avec la clef ‘python’ et le message suivant :
’je vois et je comprends’
(b) Ecrire une fonction decodage_vigenere(message_code,clef), prenant en argument un message
codé par la méthode Vigeneére et la clef utilisée pour le codage, qui retourne le message décodé.
Tester le fonctionnement de la fonction avec la clef 'informatique’ et le message :

’kwkbmronnqyfwff wmnhwuzemsf rvozxhgfbwwiw’

4. Nombre d’apparition des lettres dans un texte

Pour décoder un message codé avec le codage Vigenere, sans connaitre la clé, il est nécessaire de faire
une étude statistique sur le message codé, en comptant le nombre d’apparition de chaque lettre.

Pour réaliser ce comptage, nous allons utiliser un dictionnaire.

(a) On initialise une variable alpha au format dictionnaire par : alpha={’ ’,0}.

La clé est]'espace et son effectif est initialisé a 0. Compléter la variable alpha pour qu’elle contienne
comme clés, les lettres de I'alphabet associés aux valeurs 0 :

>>> alpha

{ '8, 'a': 6, 'b': 0, 'c': 0, 'd': 0, 'e':0, 'f': 0, 'g': 0, 'h': 0, 'i': 0
, 'j'+ 0, 'k': 06, '1': 0, 'm:06, 'n':0, 'o': 0, 'p':0, 'q': 06, 'r': 0, 's':
e, 't': 9, 'u':0, 'v':0, 'w:0, 'xX':0, 'y':0, 'z': 0}

(b) Soit S une chaine de caracteres. On suppose, pour simplifier, que S ne contient que des lettres mi-
nuscules et non accentuées.
Ecrire une fonction compte (S:str)->dict qui prend un argument un texte au format d’'une chaine
de caracteres et qui renvoie la variable alpha qui donne le nombre d’apparition de chaque lettre
dans le texte. Par exemple :
S=’demain des 1 aube a 1 heure ou blanchit la campagne je partirai vois tu je sais que
tu m attends j irai par la foret j irai par la montagne je ne puis demeurer loin de toi
plus longtemps je marcherai les yeux fixes sur mes pensees sans rien voir au dehors sans

entendre aucun bruit seul inconnu le dos courbe les mains croisees triste et le jour pour
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TRAVAUX PRATIQUES 3 : Cryptographie

moi sera comme la nuit je ne regarderai ni 1 or du soir qui tombe ni les voiles au loin

descendant vers harfleur et quand j arriverai je mettrai sur ta tombe un bouquet de houx
vert et de bruyere en fleur’

>>> compte(S)

{" ': 116, 'a': 37, 'b': 8
i': 34, 'j': 10, 'k': '

'¢': 9, 'd': 15, 'e': 69, 'f': 4, 'g':
': 41, 's': 33, 't': 2

1': 21, 'm': 15,
u': 33, 'v': 6

0,
6

r
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TRAVAUX PRATIQUES 4

ALGORITHMES DICHOTOMIQUES

Voici les instructions éventuellement utiles dans ce TP :

len(L) donne la longueur de L

L=[] L est la liste vide

L[i] donne la valeur de I'élément de la liste d’indice i

L+M concatene (juxtapose) les listes L et M

L.append(a) ajoute a a la fin de la liste

L.insert(i,a) ajoute I'élément a a la i® position

del L[i] supprime et retourne le i® élément

for k in range(i,j) | boucle pour k allant de i (inclus) a j (exclus)

while boucle tant que

randrange(a,b) renvoie un nombre entier n aléatoire telquea<n<b
randint (a,b) renvoie un nombre entier n aléatoire telquea<n<b
L.sort() renvoie la liste L triée dans I'ordre croissant

1. Recherche dichotomique dans une liste triée

(a)

(b)

(©

Que renvoie les instructions suivantes ?

L=1[]

n=1000

for k in range(mn):
L.append(randint (0,1000))

L.sort ()

Expliquer le role et le fonctionnement de la fonction suivante :

def fonction(L,x):
for k in range(len(L)):
if L[lk]==x:
return True,bk
return False

Si on décide de rechercher un mot dans un dictionnaire qui comporte 40 000 mots avec la méthode
précédente, au pire des cas il faudra 40 000 tours de boucle!

Or, le dictionnaire est trié par ordre alphabétique; une autre méthode consiste a comparer le mot
a chercher avec celui se trouvant au milieu du dictionnaire. Si le mot a chercher est antérieur dans
I'ordre alphabétique, on sait qu’on devra le chercher dans la premiére moitié du dictionnaire. Sinon,
on le cherche dans la deuxieme moitié.
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TRAVAUX PRATIQUES 4 : Algorithmes dichotomiques

Et on recommence...

Voici ce que cela donne en terme de nombre d’opérations a effectuer, en choisissant le pire cas :
celui ot le mot est absent du dictionnaire.
* Au départ, on cherche le mot parmi 40 000.
Apres le test n°1, on ne le cherche plus que parmi 20 000.
Apres le test n°2, on ne le cherche plus que parmi 10 000.
Apres le test n°3, on ne le cherche plus que parmi 5 000.
et ainsi de suite ...
Apres le test n°15, on ne le cherche plus que parmi 2.
* Apres le test n°16, on ne le cherche plus que parmi 1.

* % % % %

Et 13, on sait que le mot n’existe pas : on a obtenu notre réponse en 16 opérations contre 40 000
précédemment.

Pour un tableau comportant n éléments, le programme s’arréte lorsque 2—’2 =1, ol k est le nombre
d’étapes.

On obtient k = 11?1—’21; et la complexité du programme est de 'ordre de In . (On écrit log(n) en infor-
matique.)

A la recherche dichotomique ne peut s’effectuer que sur des éléments préalablement triés.

Ecrire une fonction reccherche_dichotomie(L,x) qui prend en argument une liste triée et un
élément a chercher par dichotomie dans la liste. Cette fonction renvoie True et I'indice de x si celui-
ci est dans la liste, et False sinon.

2. Résolution dichotomique de I'équation f(x) =0

Lobjectif de cette question est de programmer une méthodes numériques qui permet la résolution de
I'équation f(x) =0.

Pour illustrer cette méthode, on considere la fonction f définie sur R par

(@)
(b)
(c)

(d)

(e)
®

fx)=x3+x-1

fla)

Déterminer f’(x), Vx € R.

Etudier les variations de la fonction f sur R.

Démontrer que I’équation f(x) = 0 admet une unique so-
lution et localiser celle-ci entre deux entiers consécutifs
aetb.

On pose ¢ = %b.

Calculer f(c); que peut-on en déduire?

f(o)

fb)
Créer les fonctions python f et fprime.

Ecrire une fonction Dichotomie(f,p,a,b), prenant en argument la fonction f, un entier p et les
bornes a et b de I'intervalle sur lequel on applique la méthode de dichotomie. Cette fonction doit
retourner une valeur approchée a 1077 pres de la solution de 'équation f(x) =0.
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TRAVAUX PRATIQUES 5

TRIS QUADRATIQUES

Voici les instructions éventuellement utiles dans ce TP :

len(L) donne la longueur de L

L=[] L est la liste vide

L[i] donne la valeur de I'élément de la liste d’indice i

L+M concatene (juxtapose) les listes L et M

L.append(a) ajoute a ala fin de la liste

L.insert(i,a) ajoute 'élément a a la i® position

del L[i] supprime et retourne le i® élément

for k in range(i,j) | boucle pour k allant de i (inclus) a j (exclus)

while boucle tant que

randrange(a,b) renvoie un nombre entier n aléatoire telquea<n<b

randint(a,b) renvoie un nombre entier n aléatoire tel queas<n<b

1. Tri par sélection
Pour trier un tableau T comportant n éléments par sélection, voici la méthode :

En partant de la position i = 0, on recherche le plus petit élément parmi les éléments d'indicei +1an—1
et on I'échange avec T[i].

Par exemple, pour trier [12,3,17,9,4, 16], on obtient successivement :

[12,3,17,9,4,16] [12,1[3]17,9,4,16] [3,12,117,9,[4]16] [3,4,17,[9]12,16]

3,4,9,17,12],16] (3,4,9,12,117,[16]] [(3,4,9,12,17,[16]] [3,4,9,12,16,17]

Compléter la fonction suivante pour qu’elle retourne le tableau trié par sélection :
def tri_selection(T):

for i in range(len(T)-1):

for j in range (i+1,len(T)):
# recherche du minimum dans le tableau restant
# comparer ce minimum & T[i]
return T

2. Tripar insertion
Pour trier un tableau T par insertion, voici la méthode :
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On prend le premier élément et on le met al'indice i = 0; puis on insere les autres éléments dans la partie
déja triée en plagant chaque nouvel élément a la bonne place.

Cela donne:
[12,13,17,9,4,16] [3,12,|17,9,4,16] [3,12,17,|9,4,16]

[3,9,12,17,14,16] 1[3,4,9,12,17,]16] [3,4,9,12,16,17]

Ecrire une fonction python qui permette de trier le tableau par insertion, en complétant le script suivant :

def tri_insertion(T):
for i in range(1,len(T)):#on traite les éléments restants
#on mémorise 1’élément a traiter
e #variable créée pour trouver la bonne place
while ... #tant que la bonne place n’est pas trouvée
#on cherche la bonne place
#on insére 1’élément a sa place
#on supprime le doublons
return T

Evaluer la complexité temporelle des deux algorithmes de tri.

3. Triabulles

Soit T un tableau de valeurs, décrire I'évolution de la variable T au cours de ’algorithme suivant :

def tri_a_bulles(T):
for i in range(len(T)-1):
for j in range(len(T)-1,i,-1):
if T[j1<T[j-11:
TL[j1,TLj-11=T[j-11,T[j]
return T
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TRAVAUX PRATIQUES 6

GRAPHES

len(L) donne lalongueur de L

L=] L est la liste vide

L[i] donne la valeur de I’élément de la liste d’indice 1
L+T concatene (juxtapose) les listes L et T
L.append(a) ajoute a a la fin de la liste

L.insert(i,a) ajoute I'élément a a la i® position

del L[i] supprime le i® élément

for k in range(i,j) | boucle pour k allantde i (inclus) a j (exclus)
while boucle tant que

M=array([L1,L2,...]) | Mestlamatrice constituée des lignes L1,L2...
len(M) donne le nombre de lignes de M

M[i] [3] donne I'élément situé a la ligne i et a la colonne j

On peut implémenter une matrice en Python par l'instruction array a importer de la bibliotheque numpy :

from numpy import array

On considere la graphe pondéré suivant :

11 8
37 3
3 4 7
e el
9
11 4 G 12 H
2

1. Donner une instruction python qui permet de construire la matrice d'adjacence M = (m; ;) ot m;,; est
égal a la valeur portée par I'aréte reliant les sommets d’indices i et j si ces sommets sont adjacents, ou co
sinon.



TRAVAUX PRATIQUES 6 : Graphes

Pour cela, on considere la liste des sommets: S=[’A’,’B’>,°C?,’D’ ,’E’,’F’,’G’,’H’]; les indices des
sommets dans la matrice M doivent correspondre aux indices des sommets dans la liste S.
On importera co de la bibliothéque numpy par : from numpy import inf.

2. Ecrire une fonction python voisins(M: array,S:1ist,S0:str)— > list, prenant en arguments la ma-

trice M d’adjacence d'un graphe, la liste S de ses sommets, et un sommet Sy de ce graphe. Cette fonction
renvoie la liste des voisins du sommet Sy.

Par exemple : voisins(M,S,’A’)— [’B’,’C’,’D’].

3. Ecrire une fonction degre(, S,Sy), de mémes arguments que la fonction précédente, qui renvoie le nombre
de voisins du sommet Sy ; c’est-a-dire le nombre d’arétes issues de Sy.
Par exemple, degre (M,S,?A’) — 3.

4. Pour optimiser I'étude de certaines situations, il est parfois imoprtant de trier les sommets par ordre
croissant de degré.
Ecrire alors une fonction triSommets (M, S) qui revoie la liste des sommets triée par ordre croissant des
degrés.
Par exemple, triSommets (M,S) — [’H’,’A’,’F’,’B’,°C’,”G’,’D’,’E’].

5. Ecrire une fonction longChemin(M, S,L) qui prend un arguments une matrice M, laliste S de ces sommets

et une liste L contenant des sommets (adjacents ou non). Cette fonction renvoie la longueur de ce chemin
s’il est réalisable ou co sinon.

Par exemple, longChemin(M,S, [’A’,°C?,’E?,’F’]) — 18.
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TRAVAUX PRATIQUES {

ALGORITHME DE GAUSS-JORDAN

On peut implémenter une matrice en Python par l'instruction np.array aprés avoir importé la biblio-
théque numpy par l'instruction : import numpy as np. Vous trouverez en annexe des instructions utiles pour
manipuler les matrices.

Pour ce TP, nous allons opter pour une programmation modulaire; ainsi toutes les fonctions auxiliaires
seront enregistrées dans un fichier que nous appellerons gausspy.

Le fichier principal qui contiendra I'algorithme de Gauss-Jordan sera nommé gauss et nous importerons le
module par l'instruction import gausspy as gp;ainsitoutes les fonctions contenues dans gausspy pourrons
étre appelées sous la forme gp.NomDeLaFonction.

Nombreux sont les logiciels permettant de résoudre un systeme d’équations linéaires.

On se propose ici de programmer 1'algorithme de Gauss-Jordan de résolution d’'un systeme linéaire de n
équations a n inconnues.

On considere le systéeme linéaire de n équations a n inconnues suivant :

anxi+apxy+--+aipx, = b1 (L)

anxy+azpXxy+--+ayx, = by (L)
(2)

Am X1+ AppXo + -+ appXn = by (Ly)

On note A la matrice des coefficients associée a (¥), B la matrice du second membre et X la matrice des
inconnues. Le systéme () s’écrit alors : AX = B ou encore :

an - aj - ain b
(AB)=| an - aij -+ ain bi
An1 -+ Qpj -+ Gpn bp

On appelle cette derniere matrice la matrice augmentée du systéme ().

Afin de simplifier la mise en ceuvre de la méthode de Gauss, nous allons faire I'hypothése que la matrice A
est inversible, c’est-a-dire que le systeme est de Cramer.

Il admet ainsi une unique solution donnée par X = A~ B.

1. Création de la matrice augmentée
Ecrire une fonction python Augmente(4,B) qui prend en arguments une matrice A carrée de taille n et une
matrice colonne B a n lignes. Cette fonction retourne la matrice augmentée (A|B) associé au systéme a
résoudre.

61



TRAVAUX PRATIQUES 7 : Algorithme de Gauss-Jordan

2. Ecrire une fonction EchangeLigne(M, i, j) qui prend en arguments une matrice M et deux entiers i et j.
Cette fonction doit retourner la matrice dans laquelle les lignes i et j ont été échangées.

3. Recherche du pivot
Lhypothese d’'inversibilité de la matrice A assure I'existence d'un pivot non nul sur chaque colonne i. On
se propose d’écrire une fonction Pivot (!, i) qui prend en arguments une matrice M et un entier i. Quitte
a utiliser EchangeLigne(M, i, j), cette fonction devra retourner la matrice dans laquelle le pivot se trouve
au bon endroit.

11 faut donc se poser la question du choix du pivot. Ce choix doit étre fait avec I'objectif de minimiser les
erreurs d’arrondis.

Pour illustrer I'incidence du choix du pivot sur les erreurs d’arrondis, étudions I’exemple suivant :

10_4X1 + X2
X1+ X2

1

x Larésolution exacte donne :

-1 2x1074 -1
= —— =~1,00010001...et xp = ———
1074-1 1074-1
Si on utilise des flottants a trois chiffres significatifs, on obtient x; = 1 et x, = 1.
1074 X + x2 1

(1-10%x, 2-10%
d = 210 _ 9998 _ 9996x10° avec 3 chiffres significatifs, cela d =let tant d
onc x; = 1-10%7 — 9999 ~ 9,999x103 ’ avec o cnitires signincatiis, cela donne xp; = 1 et, en reportant dans

la premiere équation, on obtient x; =0!!!

X1 =~0,99989998...

* Résolution avec 10~# comme pivot : le systéme devient : {

X1+XxX2 = 2
(1-10"Hx 1-2x1074

avec trois chiffres significatifs, cela donne x» = 1 et, en repor-

* Résolution avec 1 comme pivot : le systeme devient : {

_ 1-2x107* _ 0,9998 _ 9,998x107%,
donc Xz = 7555 = 59999 = 9,999x107
tant dans la premiére équation, x; = 1.

Cet exemple montre que le choix de petits pivots peut engendrer des erreurs d’arrondis catastrophiques
(comme obtenir x; = 0ici!).
Pour éviter une trop grand instabilité de 1’algorithme, nous allons donc choisir comme pivot sur la co-
lonne i le ceefficient a;; ayant la plus grande valeur absolue.
Ecrire alors la fonction Pivot(M, i) quiretourne la matrice dans laquelle le pivot est au bon endroit.

4. Echelonnement de la matrice
Ecrire une fonction ElimineD(M, i, j,1) qui prend en arguments une matrice M, deux entiers i et j et
un réel ¢. Cette fonction doit retourner une matrice dans laquelle la ligne L; est remplacée par la ligne
L;j— ¢ x L; pour j > i. Cette fonction pourra étre utilisée pour échelonner la matrice augmentée (A|B).

5. Normalisation de la matrice échelonnée
Une fois la matrice échelonnée, il faut "remonter" pour calculer les x;. Pour commencer on normalise la
matrice en opérant sur les lignes afin que tous les ccefficients diagonaux valent 1.
Ecrire alors une fonction Normalise(M) qui effectue cette opération.

6. Remontée
La derniére ligne donne la valeur de x,. On utilise le pivot valant 1 sur la derniere ligne et la derniere
colonne pour éliminer x, dans les lignes L;,_1, L;—2,..., L.
La ligne L;_; donne alors la valeur de x,_;; puis on élimine x,_; dans les lignes L,,_»,...,L;. Et ainsi de
suite...
Ecrire alors une fonction E1limineM(V, i, j, 1) qui prend en arguments une matrice M, deux entiers i et j
et un réel ¢. Cette fonction doit retourner une matrice dans laquelle la ligne L; est remplacée par la ligne
Lj— ¢ x L; pour j <i. Cette fonction doit permettre la remontée dans la matrice augmentée et le calcul
de chaque valeur de x;. On obtiendra ainsi une matrice augmentée (A|B) dans laquelle la matrice A est
diagonale.
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7. Obtention du résultat

La matrice augmentée (A| B) est maintenant telle que la matrice A est diagonale et que tous les ccefficients
sont égaux a 1. Il suffit d’extraire le second membre de cette matrice pour obtenir la solution.

Ecrire alors une fonction SecondMembre(M) qui permette d’extraire, sous la forme d’'une liste, la derniere
colonne d'un matrice M.

Toutes les fonctions précédente sont enregistrées dans le module gausspy et pourront donc étre utilisées
dans l'algorithme de Gauss.

8. Algorithme de Gauss
En utilisant correctement les fonctions du module gausspy , écrire I'algorithme qui pour une matrice A
carrée de taille n et une matrice colonne B a n lignes donne la solution du systeme de Cramer correspon-
dant.

9. Application.
Utiliser cet algorithme pour résoudre le systéme :

X+y+z=6
—2x—-y+z=-1
3x+2y-2z=1

10. Approfondissement.

Ecrire une fonction Comat (), i, j) qui prend en argument une matrice carrée sous la forme d’'un tableau
(array) et deux entiers i et j. Cette fonction doit retourner la matrice obtenue a partir de M dans laquelle
on a retiré la ligne d’'indice i ligne et la colonne d’indice j.

Programmer alors une fonction récursive Det (M) qui prend un argument une matrice carrée sous la forme
d’un tableau et qui retourne le déterminant de cette matrice.

ANNEXE

Une matrice peut étre considérée comme un tableau (array) a deux dimensions. La bibliotheque numpy est
spécialisée dans la manipulation de ces tableaux.

1. Création d’'une matrice.

Au préalable, il ne faut pas oublier d'importer le module numpy.

import numpy as np

A=np.array([[1,2,3],[4,5,6]1]) [[1. 2. 3.]

print (A) [4. 5. 6.]1]

print (type(A)) #type de structure

print (A.shape) #nombre de lignes et <type ’numpy.ndarray’>
colonnes (2, 3)

Il est possible de créer une matrice a partir d'une liste de valeurs; voici quelques exemples :

A=np.arange (0,10) .reshape(2,5) [[0.1. 2. 3. 4.]
print (A) [6. 6. 7. 8. 9.1]
B=np.array([1,2,3,4,5,6]) [[1. 2.]
C=B.reshape(3,2) [3. 4.]

print (C) [6. 6.1]
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L=[1.2,1.3,1.4,1.5]

D=np.asarray (L) .reshape(2,2) [[ 1.2 1.3]
print (D) [ 1.4 1.5]]
Redimensionnement d’'une matrice :

[r1. 2.1
A=np.array([[1,2,3],[4,5,6]1]) [3. 4.]
print (np.resize(A,new_shape=(3,2))) [5. 6.1]

2. Opérations sur les matrices.

On peut additionner deux matrices de mémes dime

nsions et multiplier une matrice par un scalaire :

A=np.arange(1,7) .reshape(2,3)
B=np.array([[6,5,4],[3,2,111)
print (A+B)
print (2x4)

(7. 7. 7.1
[7. 7. 7.11
[[ 2. 4. 6.]
[ 8. 10. 12.11]

On peut accoler un vecteur B en tant que nouvelle ligne (axis = 0) ou en tant que nouvelle colonne

(axis=1):

A=array([[1,3],[-2,2]11)
B=array([[4,5]])
print (append(A,B,axis=0))

A=np.array([[1,3],[-2,211)
B=np.array ([[4],[5]1])
print (np.append(A,B,axis=1) )

Insertion de B en tant que nouvelle ligne (axis = 0)

a la position d’indice 1 :

A=np.array([[1,3],[-2,2]11) [[ 1. 3.]
B=np.array([[4,5]]1) [4. 5.]
print (np.insert(A,1,B,axis=0)) [ -2. 2.1]
Suppression de la ligne (axis = 0) via son indice (n°1) :
A=np.array([[1,3],[4.,5.]1,[-2,2]11) [[ 1. 3.1
print (np.delete(A,1,axis=0)) [-2. 2.]1]
. Extractions des valeurs d’'une matrice.

[[1. 2. 3.]
A=np.array([[1,2,3],[4,5,6],[7,8,9]11) [4. 5. 6.]
print (A) [7. 8. 9.1]

Extraction d'une valeur de la matrice via son indice A[i] [j] ou A[i, j] renvoie le terme situé a la ligne

d’indice i et a la colonne d’indicie j.

print (A[0][0])
print (A[2][1])
print (A[len(A)-1][len(A)-11)

oo

Extraction d'une partie de la matrice, de la ligne 0 ala ligne 2 (non incluse) et de la colonne 0 a la colonne

2 (non incluse) :
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print (A[0:2,0:2])

[[1.

[4. 5.1]

Extraction des valeurs d'une ligne ou d’'une colonne

et retournées sous la forme d’'une matrice ligne :

print (A[2,0:1en(A)]) #derniére ligne
#ou plus simplement

print (A[O]) #premiére ligne

print (A[O:len(A),2])#derniére colonne

[7. 8. 9.]
[1. 2. 3.1
[3. 6. 9.]
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LLA RECURSIVITE

La factorielle

1. Programmer une fonction récursive factorielle(n) non terminale qui prend en argument un entier
naturel z et qui renvoie la factorielle de n. Evaluer la complexité de cette fonction.

2. Modifier la fonction précédente pour qu’elle devienne une fonction récursive terminale. Evaluer la com-
plexité de cette derniére fonction et commenter le résultat.
3. Intérét de la dichotomie.

Le 31 décembre 2009, Fabrice BELLARD publie un nouveau record avec presque 2 700 milliards de déci-
males du nombre 7. Et ceci avec un ordinateur personnel classique!

Pour optimiser la complexité des calculs, il utilise le principe de dichotomie.

Voici le principe : pour calculer le produit de tous les entiers compris entre a et b, on effectue les produits
des entiers entre a et ¢, puis entre c et b, ou ¢ est situé au milieu; puis on effectue le produit des deux
résultats. Par exemple, prod(6,18) = prod(6,12) x prod(13,18).

Programmer la fonction récursive prod(a,b) qui effectue le produit de tous les entiers compris entre a
et b. La factorielle de n s’obtiendra alors par 'appel prod(1,n).

Motifs

1. Qu’affiche I'algorithme suivant :

def fonci(n):

if n>0:
print (?*’*n)
foncl(n-1)

2. Modifier la fonction précédente pour qu’elle affiche :

>>> fonc2(5)
*

k%

*k *

kk kk

k% kxk %k

3. Utiliser le principe précédent pour afficher les motifs suivants :
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*k %ok *
*k %k
*k *
*%

*%
*k
*k %k
*k %ok ok

kk kXK KXk Kk kk

*k Kk
*k
*%

*

*

*%

*ok ok
*k Kk

*k %k
*k %
*%

*

*

*%
*k *
*k %k

kk kX KXk Xk kk

*
*% %
*k Fok
*ok ok Kok ok
Kok ok Kk Kk k
Kk Kk Kk Kk KK K
*ok ok ok Kk Kk kK K
*ok ok Kok Kk Kk kK Kk K
Kok Kok Kk Kk KK Kk Kk Fok kK
$ok ok Kok Kk kK kk kok ok Fok ok
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DYNAMIQUE GRAVITATIONNELLE

Modéliser les interactions physiques entre un grand nombre de constituants mene a I’écriture de systémes
différentiels pour lesquels, en dehors de quelques situations particuliéeres, il n’existe aucune solution analy-
tique. Les problémes de dynamique gravitationnelle et de dynamique moléculaire en sont deux exemples. Afin
d’analyser le comportement temporel de tels systemes, I'informatique peut apporter une aide substantielle en
permettant leur simulation numérique. L'objet de ce TP inspiré d'un sujet de CENTRALE, est]’étude de solutions
algorithmiques en vue de simuler une dynamique gravitationnelle afin, par exemple, de prédire une éclipse ou
le passage d'une comete.

Soit y une fonction de classe €2 sur R et tpin et tmax deux réels tels que fmin < fmax-
On note I I'intervalle [fyin, tmax]. On s’intéresse a une équation différentielle du second ordre de la forme :

YieT  y"(0)=fy() @

ol f est une fonction donnée, continue sur R. De nombreux systémes physiques peuvent étre décrits par
une équation de ce type.

On suppose connues les valeurs yy = y (fmin) €t zo = ¥’ (fmin). On suppose également que le systéme phy-
sique étudié est conservatif. Ce qui entraine I’existence d'une quantité indépendante du temps (énergie, quan-
tité de mouvement,...), notée E, qui vérifie I'équation (2) ou g’ = —f :

1
Viel 5y’(t)2+g(y(z))=E )

Mise en forme du probleme

Pour résoudre numériquement I’équation différentielle (1), on introduit la fonction z : I — R définie par
Vtel, z(t)=y'(1).
1. Montrer que I'équation (1) peut se mettre sous la forme d’un systéme différentiel du premier ordre en
z(t) et y(1), noté (S).
2. Soit n un entier naturel strictement supérieur a 1 et J, = [0, n — 1].
On pose h = % etVie J,, t; = tmin + [ h. Montrer que, pour tout entier i € [0, n — 2],

Liv1 liv1

Y(tien) = y(t) + f A0de et 2=z + [ o) de 3)

La suite du probleme exploite les notations introduites dans cette partie et présente deux méthode nu-
mériques dans lesquelles les intégrales précédentes sont remplacées par une valeur approchée.
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Schéma d’Euler explicite

Dans le schéma d’Euler explicite, chaque terme sous le signe intégral est remplacé par sa valeur prise en la
borne inférieure.

3.

Dans ce schéma, montrer que les équations (3) permettent de définir deux suites (y;) ies, €t (2i) icj, Ol
y; et z; sont des valeurs approchées de y(t;) et de z(t;). Donner les relations de récurrence permettant
de déterminer les valeurs de y; et z; connaissant y et zy.

Pour illustrer cette méthode, on considere I’équation différentielle

Viel, y"(H) = —w?y(t) (4)
dans laquelle w est un nombre réel.

Ecrire I'’équation de conservation (2) correspondante a I’équation différentielle (4).

En portant les valeurs de y; et z; sur I'axe des abscisses et I'axe des ordonnées respectivement, quelle
serait I'allure du graphe qui respecte la conservation de E?

La mise en ceuvre de la méthode d’Euler explicite génere le résultat graphique donné Figure 1 a gauche.

100 47 100 47
80 - 80 -
60 - 60 -
40 1 40 1
20 1 20 1
o- 0
—20 1 —20 1
—40 1 —40 1
—607 Euler —607 Verlet
—80 w . w . n . — Y —80 w . : .
—15 —10 =5 0 5 10 15 20 —-10 =5 0 5 10
Figure 1

En quoi ce graphe confirme-t-il que le schéma numérique ne conserve par E? Pouvez-vous justifier son
allure?
Déterminer les suites (y;);.; et (z;);, obtenuesala question 3. qui correspondent a I'équation diffé-
rentielle (4).
Ecrire alors une fonction euler qui recoit en arguments les parametres qui vous semblent pertinents et
qui renvoie deux listes de nombres correspondant aux valeurs associées aux suites (y;) . 7, €t (zi)
Pour illustrer cette méthode, on choisir les valeurs numériques suivantes :

Y0=3, 20 =0, tmin =0, tmax =3, w =27 et n =100
La courbe pourra étre obtenue par :

i€]y”

import matplotlib.pyplot as plt
import numpy as np

plt.close ()
Y=euler(3,0,2*np.pi,0,3,100) [0]
Z=euler (3,0,2*np.pi,0,3,100) [1]
plt.plot(Y,Z,’ko’,linestyle="-"7)
ax = plt.gca()
ax.spines[’right’].set_color(’none’)
ax.spines[’top’] .set_color(’none’)
plt.xlim(-15, 20)
plt.ylim(-80,120)

plt.show ()
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Schéma de Verlet

Le physicien francais Loup Verlet a proposé en 1967 un schéma numérique d’intégration d’'une équation de
la forme (5) dans lequel, en notant f; = f(y;) et fi+1 = f(yi+1), les relations de récurrence s’écrivent

h? h
J/i+1=y,~+hz,~+7fi et Zi+1=zi+§(fi+fi+1) ()

On reprend I'exemple de I'oscillateur harmonique de la question 4. et on compare les résultats obtenus a
I'aide des schémas d’Euler et de Verlet.
6. Ecrire une fonction verlet qui regoit en arguments les parametres qui vous semblent pertinents et qui
renvoie deux listes de nombres correspondant aux valeurs associées aux suites ( y,-) iey, €t (zi) ey,
7. La mise en ceuvre du schéma de Verlet avec les mémes parametres que ceux utilisés au 5. donne le
résultat de la Figure 1 a droite. Interpréter I'allure de ce graphe.
Que peut-on en conclure sur le schéma de Verlet?
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GRAPHES BIS

On peut implémenter une matrice en Python par l'instruction array a importer de la bibliotheque numpy :

from numpy import array

On considere la graphe pondéré suivant :

11 8
37 3
3 4 7
7 G 7 10
9
11 4 G 12 H
2

1. Donner une instruction python qui permet de construire la matrice d’adjacence M = (m, j) ou m; ; est
égal a la valeur portée par 'aréte reliant les sommets d’indices i et j si ces sommets sont adjacents, ou co
sinon.

Pour cela, on considere la liste des sommets:S=[’A’,°’B’,”C’,’D’,’E’,’F’,°G’,’H’];les indices des
sommets dans la matrice M doivent correspondre aux indices des sommets dans la liste S.
On importera co de la bibliothéque numpy par : from numpy import inf.

2. Ecrire une fonction python voisins(M: array,S:1ist,S0:str)— > list, prenant en arguments la ma-
trice M d’adjacence d'un graphe, la liste S de ses sommets, et un sommet Sy de ce graphe. Cette fonction
renvoie la liste des voisins du sommet Sy.

Par exemple : voisins(M,S,’A’)— [’B?,’C?,’D’].
3. Ecrire une fonction degre(, S,Sy), de mémes arguments que la fonction précédente, qui renvoie le nombre
de voisins du sommet Sy ; c’est-a-dire le nombre d’arétes issues de Sy.

Par exemple, degre (M,S,’A’) — 3.
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4. Pour optimiser 1'étude de certaines situations, il est parfois imoprtant de trier les sommets par ordre
croissant de degré.

Ecrire alors une fonction triSommets (M, S) qui revoie la liste des sommets triée par ordre croissant des
degrés.
Par exemple, triSommets (M,S) — [’H’,’A’,’F’,’B’,’C’,°G’,’D’,’E’].

5. Ecrire une fonction longChemin(M, S,L) qui prend un arguments une matrice M, laliste S de ces sommets
etune liste L contenant des sommets (adjacents ou non). Cette fonction renvoie la longueur de ce chemin
s'il est réalisable ou oo sinon.

Par exemple, LlongChemin(M,S, [’A’,’C?,’E’,’F’]) — 18.

6. Ecrire une fonction dijkstra(villes,départ,arrivée,matrice) qui prend en argument une liste
(list) de villes, le nom (str) de la ville de départ, le nom (str) de la ville d’arrivée et la matrice (array)
d’adjacence du graphe; cette fonction renvoie le plus court chemin entre les deux villes choisies.

Par exemple : di jkstra(S,’A’/H M) — (23.0,['A’,/B,/D',/G,)/F',H])
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INTERPOLATION DE LAGRANGE

Opérations sur les polynomes

On considére un polyndme de degré n sous la forme P(X) = a, X" + ap 1 X" ' +---+ a1 X + ao.
En Python, un polyndme est implémenté sour la forme d'une liste : P = [a_0,a_1,...,a_n]; par exemple, le
polyndéme P(X) = X2 +2X +3sera implémenté par: P = [3,2,1].

1.

Création d’'un polynéme

Dans les algorithmes suivants, nous aurons besoin d’initialiser un polynéme d'un degré donné. Pour
cela, nous allons écrire une fonction Creer (n) qui prend en argument un entier naturel n et qui revoie le
polyndéme de degré n dont tous les ceefficients sont nuls.

Par exemple : Creer(4) — [0,0,0,0].
Degré d’'un polynéme
En fonction des opérations que nous devons effectuer sur les polynémes, nous devons accéder facile-

ment a son degré. Pour cela nous allons écrire une fonction degre (P) qui prend en argument une liste P
correspondant a un polynéme et qui revoie le degré du polynéme considéré.

Par exemple : degre([3,2,1]) — 2.

. Multiplication par un scalaire

Dans I'espace vectoriel des polynomes, il est fréquent de multiplier un polynéme par un scalaire. Pour
cela nous allons écrire une fonction Scalaire(P,s) qui prend en arguments une liste P et un flottant s
et qui revoie la liste correspondant au produit du polynéme P par le scalaire s.

Par exemple, Scalaire([3,2,1],4) — [12,8,4].
Addition de deux polyné6mes

Dans l'espace vectoriel des polynomes, la deuxieme opération incontournable est 'addition de deux
polyndémes. Il est possible bien stir d’additionner deux polynémes de degrés différents; mais pour les
listes il peut étre préférable d’additionner terme a terme deux listes de méme taille. Par exemple, si
P(X) = X?> +2X +3 et Q(X) = X — 4, alors on pourra créer et utiliser les listes [3,2,1] et [-4,1,0] pour
effectuer I'addition.

Ecrire alors une fonction Additionner (P,Q) qui prend en argument deux listes représentant deux poly-
ndéme P et Q et qui renvoie la liste correspondant a la somme de P et de Q.

Par exemple : Additionner([3,2,1],[-4,1]) — [-1,3,1].

Ce qui correspond bien a 'addition (X?+2X +3) + (X -4) = X*+3X - 1.

. Produit de deux polyndémes
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p , q .
Soient P(X) = Z a;X'etQ(X)= Z b; X’ deux polynomes de degrés respectifs p et g, alors le produit PQ
i=0 j=0
k
est un polynome de degré p + g et le ceefficients de X* est donné par Y aibi_i.
i=0
Ecrire alors une fonction Multiplier (P,Q) qui prend en argument deux listes représentant deux poly-
ndme P et Q et qui renvoie la liste correspondant au produit de P et de Q.
Par exemple : Multilpier([3,2,1],[-4,1]) — [-12,-5,-2,1].
Ce qui correspond bien a la multiplication : (X% +2X +3)(X -4) = X3 -2X%-5X - 12.

6. Intégrer un polyndome

p .
Soit P(X) = Z a; X' un polynome de degré p. A l'instar du polyndme dérivé on peut définir le polynéme
i=0
P, P a; i+l . N . . . o el
intégré comme Z —— X", il s’agit d'un polynéme de degré p+ 1 qui coincide avec la primitive de P(x)
i=0!
qui s’annule en 0.
Ecrire alors une fonction Integrer (P) qui prend en argument une liste représentant un polynéme P et

qui renvoie la liste correspondant au polynéme intégré de P.
Par exemple : Integrer((3,2,1]) — [0,3.0,1.0,0.3333333333333333].
Ce qui correspond bien  la I'intégration de X? +2X + 3 qui donne %XS + X% +3X.

7. Evaluer un polyndéme
Ecrire une fonction Evaluer (P,x) qui prend en arguments une liste P correspondant a un polynéme P
et un flottant x; cette fonction renvoie la valeur de P(x). On cherchera a écrire une fonction de complexité
linéaire.
Par exemple : Evaluer([3,2,1],2) — 11. Ce qui correspond bien au calcul P(2) = 2242x2+3.

Polynomes interpolateurs de Lagrange

On considere une liste A = [ao, ai, ..., an] constituée de n + 1 réels deux a deux distincts appelés nceuds. On
définit alors le polyndme de Lagrange d’indice i par:

n X-a;j X-a X—a;_ X—a; X—-a
Li(X)= 1_[ L 0 iiix -1 i+l n
j=0,j#i @i —aj ai—ap ai—aj-1 a;—aj+] a;—an

L,-(aj)=0 Sij?fi

Il s’agitd’ lynéme de degré i vérifie :
s’agit d'un polyndome de degré n qui vérifie {Li(ai):l

8. Polynomes de Lagrange
En utilisant les fonctions définies précédemment, écrire une fonction Lagrange (A,i) qui prend en ar-
guments une liste A de nceuds et un entier i; cette fonction renvoie le polynéme de Lagrange d’indice i.
Par exemple :
Lagrange([1,2,3],0] — [3.0,—2.5,0.5]
Lagrange([1,2,3],1] — [-3.0,4.0,—1.0]
Lagrange([1,2,3],2] — [1.0,—1.5,0.5]

Considérons n + 1 points ((ao, by), (a1, b1), ..., (ay, bn)) tels que les réels (a;)o<i<n sont deux a deux distincts.
Alors il existe un unique polyndéme de degré au plus n qui passe exactement par ces n points; il s’agit du poly-
nome interpolateur de Lagrange défini par :

X—aj

n n n
LX)=) biLiX)=) b; []
i=0 i=0  j=0,j#i @i~ 4j
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9. Polyndome interpolateur de Lagrange

On consideére deux listes, laliste A = [ay, a1, ..., a, | des abscisses des points (nceuds) etlaliste B = [by, by, ..., by |

des ordonnées des points.

En utilisant les fonctions définies précédemment, écrire une fonction Interpoler (A,B) qui prend en
arguments deux liste A et B, et qui renvoie le polynéme interpolateur de Lagrange. Par exemple :

Interpoler([1,2,3],[3,4,2] — [-1.0,5.5,—-1.5]

Pour visualiser le résultat précédent, on peut réaliser le graphique suivant :

import numpy as np 0 il

import matplotlib.pyplot as plt

A=[1,2,3] —20
B=[3,4,2]
plt.close () 07
plt.plot(A,B,’0’,label="points & interpoler’)
X=np.linspace(0,4,100) _60
Y=[Evaluer (Interpoler (A,B) ,x) for x in X]
plt.plot(X,Y,label="polyndéme interpolateur de
Lagrange’) —801
plt.legend ()

plt.show () °

—100 4

points a interpoler
polynéme interpolateur de Lagrange

Application : interpolation polynomiale d’'une fonction

Dans cette partie, nous considérons la fonction définie sur R par f(x) =

Dans un premier temps nous allons construire des polynémes interpolateurs de Lagrange qui permettent
d’approcher cette fonction f et constater le phénomene de Runge. Dans un deuxiéme temps nous utilisons

cette interpolation polynomiale pour calculer une intégrale.

Pour obtenir une interpolation polynomiale de la fonction f sur I'intervalle [-2,2] par exemple, il suffit de

1+ x2°

définir un nombre 7 de nceuds répartis dans cet intervalle et calculer les images de ces nceuds par f.

Par exemple si nous choisissons 5 nceuds équirépartis, nous obtenons A =[-2,-1,0,1,2] et B=1[0.8,2,4,2,0.8].

Le polyndme interpolateur de Lagrange correspondant aux listes A et B donnera alors I'approximation ploy-

nomiale de f a 5 nceuds.

On peut alors penser que plus le nombre de nceuds augmentent et plus 'approximation est bonne; mais en
1901, le mathématicien allemand Carl RUNGE découvrit un résultat contraire a 'intuition : il existe des confi-
gurations ol1 I'écart maximal entre la fonction et son interpolation peut augmenter avec n, comme le montre le

graphique suivant :
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== fonction de Runge
interpolation avec 5 noeuds
interpolation avec 10 noeuds
interpolation avec 15 noeuds

an
0C T T T T

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

10. Donner une séries d’instructions Python qui permettent de réaliser un graphique mettant en évidence le
phénomene de Runge.

11. Calcul d’une intégrale

1 1
Dans cette question on s'intéresse a I'intégrale f f)dx= f dx.
0 0

1+ x2
Lobjectif est de calculer cette intégrale au moyen de polynémes. En utilisant la technique d’interpolation

polynomiale de f et les fonctions définies dans ce TP, donner une série d’instructions qui permettent ce
calcul.

Donner le script de la fonction qui permet de calculer I'intégrale précédente par la méthode des trapézes.
Comparer les résultats.
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