Programme de colle semaine n° 6

CHAPITRE 5: INTÉGRATION D'UNE FONCTION CONTINUE

Rappels sur l'intégrale d'une fonction continue sur un segment

Théorème fondamental du calcul intégral : Soit $f: I \to \mathbb{R}$ une fonction continue sur un intervalle I, et soit $a \in I$.

La fonction $F: x \mapsto \int_a^x f(t) dt$ est l'unique primitive de f qui s'annule en a.

Conséquences:

- ① Si F est une primitive quelconque de f sur I alors $\int_a^x f(t) dt = F(x) F(a)$.
- ② Si f est une fonction de classe \mathscr{C}^1 sur I alors $\int_a^b f'(t) dt = [f(t)]_a^b = f(b) f(a)$.

1. Intégrale généralisée sur un intervalle de la forme $[a, +\infty[$

Définition d'une intégrale convergente : pour $f:[a,+\infty[\to\mathbb{K},l']$ intégrale $\int_a^{+\infty}f(t)\,\mathrm{d}t$ est dite convergente si la fonction $x \mapsto \int_a^x f(t) dt$ admet une limite finie quand x tend vers $+\infty$.

Soit f une fonction continue et positive sur $[a, +\infty[$, alors l'intégrale $\int_a^{+\infty} f(t) dt$ est convergente si et seulement si la fonction $x \mapsto \int_a^x f(t) dt$ est majorée.

Soient f et g deux fonctions continues et positives sur $[a, +\infty[$; on suppose que $\forall t \in [a, +\infty[$, $f(t) \leq g(t)$. Si $\int_a^{+\infty} g$ converge, alors $\int_a^{+\infty} f$ converge; si $\int_a^{+\infty} f$ diverge, alors $\int_a^{+\infty} g$ diverge.

2. Intégrale généralisée sur un intervalle quelconque

Adaptation de la définition d'une intégrale convergente pour une fonction continue sur un intervalle de la forme [a, b] ou [*a*, *b*[.

Soit f une fonction continue sur]a,b] avec $a \in \mathbb{R}$. Si $\lim_{t \to a^+} f(t)$ existe et est finie (autrement dit si on peut prolonger fpar continuité en a), alors $\int_a^b f(t) dt$ converge.

Intégrales de références :

$$\int_0^1 t^{-\alpha} \, \mathrm{d}t \quad ; \quad \int_1^{+\infty} t^{-\alpha} \, \mathrm{d}t \quad ; \quad \int_0^1 \ln t \, \mathrm{d}t \quad ; \quad \int_0^{+\infty} \mathrm{e}^{-\alpha t} \, \mathrm{d}t$$
 Relation de Chasles. Linéarité, positivité et croissance de l'intégrale.

Théorème de changement de variable : étant données une fonction f continue sur]a,b[et une fonction φ strictement croissante et de classe \mathscr{C}^1 sur $]\alpha,\beta[$, les intégrales $\int_a^b f(t) dt$ et $\int_\alpha^\beta f(\varphi(u))\varphi'(u) du$ avec $a=\lim_{t\to\alpha}\varphi(u)$ et $b=\lim_{t\to\beta}\varphi(u)$ sont de même nature et égales en cas de convergence.

Adaptation au cas où φ est strictement décroissante.

Intégration par parties : Soient u et v deux fonctions de classe \mathscr{C}^1 sur [a,b[avec b>a ou $b=+\infty$. Si $\lim_{t\to a} u(t)v(t)$ existe et est finie, alors les intégrales $\int_a^b u'(t)v(t) \, dt$ et $\int_a^b u(t)v'(t)$ sont de même nature et, si elles convergent, on a:

$$\int_a^b u'(t)v(t) dt = \left[u(t)v(t) \right]_a^b - \int_a^b u(t)v'(t) dt$$

DÉMONSTRATIONS À CONNAÎTRE:

$$\star \int_0^1 \ln(t) \, \mathrm{d}t \text{ converge et vaut } -1.$$

$$\star \int_0^{+\infty} \mathrm{e}^{-\alpha t} \, \mathrm{d}t \text{ converge si, et seulement si } \alpha > 0, \text{ et, dans ce cas vaut } \frac{1}{\alpha}.$$

$$\star \int_0^1 t^{-\alpha} \, \mathrm{d}t \text{ converge si, et seulement si } \alpha < 1, \text{ et, dans ce cas, vaut } \frac{1}{1-\alpha}.$$

$$\star \int_1^{+\infty} t^{-\alpha} \, \mathrm{d}t \text{ converge si, et seulement si } \alpha > 1 \text{ et, dans ce cas, vaut } \frac{1}{\alpha-1}.$$