0000

Lycée Charles Coëffin — Sciences physique Fiche de travaux pratiques — CPGE TSI2

TD 6: Superpositions de deux ondes lumineuses

Objectifs

- Justifier et exploiter l'additivité des intensités.
- Vérifier que les principales conditions pour que le phénomène d'interférences apparaisse (égalité des pulsations et déphasage constant dans le temps) sont réunies.
- Établir et exploiter la formule de Fresnel.
- Associer un bon contraste à des intensités voisines.

Entraı̂nement 10.3 — Valeurs moyennes (I).

Cette moyenne, notée $\langle s(t) \rangle,$ est définie par

• Exprimer et utiliser l'ordre d'interférences dues à un dispositif de trous d'Young et justifier la forme des franges observées.

Pré-requis : sources lumineuses ; modèle de l'optique géométrique ; modèle scalaire de la lumière.

Un détecteur mesure la moyenne temporelle d'un signal périodique s(t) de période T.

1 Entraı̂nements

$\langle s(t) \rangle = \frac{1}{T} \int_0^T s(t) dt.$
On donne les relations trigonométriques suivantes :
On étudie les signaux suivants :
$s_1(t) = S_1 \cos(\omega_1 t - k_1 x)$ et $s_2(t) = S_2 \sin(\omega_2 t - k_2 x + \varphi_2)$.
a) Exprimer la période T_1 de $s_1(t)$ en fonction de ω_1 .
b) À partir de la définition fournie, calculer $\langle s_1(t) \rangle$ sur T_1 .
c) Exprimer la période T_2 de $s_2(t)$ en fonction de ω_2 .
d) À partir de la définition fournie, calculer $\langle s_2(t) \rangle$ sur T_2 .
e) Exprimer la période T_3 de $f_1(t)=s_1^2(t)$ en fonction de ω_1 .

f) À partir de la définition fournie, calculer $\langle f_1(t) \rangle$ sur T_3 .

g) Exprimer la période T_4 de $f_2(t) = s_2^2(t)$ en fonction de ω_2 .

h) À partir de la définition fournie, calculer $\langle f_2(t) \rangle$ sur T_4 .

(III) Entraînement 10.5 — Bataille de contrastes.

On mesure les maxima et les minima d'éclairements de différentes figures d'interférences.

Quelle est celle qui présente le plus fort contraste $C = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}}$?

On rappelle que 1 pW = 1 × 10⁻¹² W.

(a) $I_{\max} = 10.0 \times 10^6$ W·m⁻² et $I_{\min} = 1.00$ MW·m⁻²

Entraı̂nement 10.6 — Signaux isophases.

 $\begin{array}{ll} \text{(b)} \ \ I_{\rm max} = 660 \, \rm mW \cdot mm^{-2} \ et \ I_{\rm min} = 0.220 \, kW \cdot dm^{-2} \\ \text{(c)} \ \ I_{\rm max} = 5.00 \, \rm mW \cdot mm^{-2} \ et \ I_{\rm min} = 2.00 \, mW \cdot cm^{-2} \\ \text{(d)} \ \ I_{\rm max} = 72.0 \, \rm pW \cdot \mu m^{-2} \ et \ I_{\rm min} = 3.00 \, MW \cdot km^{-2} \\ \end{array}$

Une source émet deux vibrations lumineuses $s(x,t)=S_0\cos(\omega t-kx)$ et $s'(x,t)=S_0\cos(\omega t'-kx')$ de période temporelle T (associée à la pulsation $\omega=\frac{2\pi}{T}$ et la fréquence $f=\frac{1}{T}$) et de longueur d'onde λ (associée à la pulsation spatiale $k=\frac{2\pi}{\lambda}$). On note $n\in\mathbb{Z}$.

- a) Exprimer $\Delta \varphi$ le retard de phase entre s et s' pour $t=t'=t_0$
- b) Pour $t=t'=t_0$, comment s'expriment les écarts de positions Δx_n lorsque s et s' ont la même excitation lumineuse?
- (a) $\Delta x_n = n\lambda$ (b) $\Delta x_n = \left(n + \frac{1}{2}\right)\lambda$ (c) $\Delta x_n = n\frac{\lambda}{2}$
- c) Exprimer $\Delta \varphi$ le retard de phase entre s et s' pour $x=x'=x_0$
- d) Pour $x=x'=x_0$, comment s'expriment les écarts d'instants Δt_n lorsque s et s' ont la même excitation lumineuse?
- (a) $\Delta t_n = nT$ (b) $\Delta t_n = \left(n + \frac{1}{2}\right)T$ (c) $\Delta t_n = n\frac{T}{2}$

2 Annale

$$\cos(p) + \cos(q) = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\cos(p) - \cos(q) = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

$$\sin(p) + \sin(q) = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\sin(p) - \sin(q) = 2\sin\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right)$$

$$ch^{2}(x) - sh^{2}(x) = 1$$

Premier problème:

Interférences lumineuses : dispositif des trous d'Young

On réalise, dans l'air, l'expérience des trous d'Young à l'aide du dispositif décrit et schématisé cidessous.

Un laser, de longueur d'onde dans le vide λ , émet un faisceau lumineux cylindrique d'axe z'z.

On suppose par la suite, sauf mention contraire dans la question 1/, que le faisceau du laser éclaire entièrement et de manière uniforme les différentes ouvertures qui sont placées sur son passage.

Une plaque opaque (P), percée de deux trous circulaires S_1 et S_2 de même taille et de faibles dimensions, est placée perpendiculairement à l'axe z'z.

On note O' le milieu du segment $[S_1S_2]$. Le point O' appartient à l'axe z'z.

La distance entre les centres des deux trous S_1 et S_2 est notée a.

Le phénomène d'interférences est observé sur un écran (E) placé perpendiculairement à l'axe z'z. Soit O le point de l'écran (E) appartenant à l'axe z'z.

La distance entre la plaque (P) et l'écran (E) est égale à D. On a ainsi D = O'O.

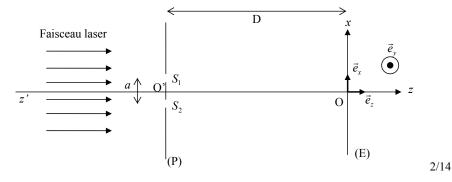
L'espace est rapporté au repère cartésien $(O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$ défini comme suit :

 \vec{e}_z : vecteur unitaire de l'axe Oz, orienté de la plaque (P) vers l'écran (E).

 \vec{e}_x : vecteur unitaire de l'axe Ox, parallèle à $[S_1S_2]$ et orienté de S_2 vers S_1 .

 \vec{e}_y : vecteur unitaire de l'axe Oy tel que la base $(\vec{e}_x, \vec{e}_y, \vec{e}_z)$ soit orthonormée directe.

Dans tout le problème, l'indice de réfraction de l'air sera pris égal à 1.



Troisième partie : description quantitative du phénomène

5/ Différence de chemin optique

Soit un point M de l'écran (E), de coordonnées (x, y, θ) dans le repère $(O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$.

5.1/ Exprimer les coordonnées des trous S_1 et S_2 dans le repère $(O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$.

Exprimer les distances S_1M et S_2M , respectivement entre les trous S_1 et S_2 et le point M. On exprimera S_1M et S_2M en fonction de a, D, x et y.

En déduire l'expression de la différence de chemin optique $\delta(M) = S_2 M - S_1 M$ au point M entre les rayons issus de S_1 et S_2 . On exprimera $\delta(M)$ en fonction de a, D, x et y. Le calcul sera mené sans aucune approximation.

5.2/ La distance a entre les deux trous étant petite par rapport à la distance d'observation D, et le point M étant proche du point O, on peut considérer que a, x, y sont très petits devant D.

En faisant un développement limité au premier ordre de l'expression de $\delta(M)$ obtenue précédemment, en déduire l'expression simplifiée de $\delta(M)$ en fonction de a, D et x.

5.3/ En prenant en compte l'expression de $\delta(M)$ calculée à la question précédente, expliquer comment serait modifiée la figure d'interférences si on remplaçait les deux trous par deux fentes très fines appartenant à la plaque (P), parallèles à l'axe Oy et distantes de a?

6/ Intensité lumineuse de l'onde résultante

On représente par $s_1(t) = s_2(t) = s_0 \cos\left(\frac{2\pi c}{\lambda}t\right)$ l'expression des ondes respectivement aux points S_1 et S_2 .

 s_0 représente l'amplitude de l'onde considérée, c représente la célérité de la lumière dans le vide et t le temps.

On néglige l'atténuation de l'onde entre les trous et le point M.

6.1/ Déterminer l'expression $s_{1M}(t)$ de l'onde issue du trou S_1 lorsqu'elle arrive au point M. On exprimera $s_{1M}(t)$ en fonction de s_0 , S_1M , c, λ et t.

Déterminer, de même, l'expression $s_{2M}(t)$ de l'onde issue du trou S_2 lorsqu'elle arrive au point M. On exprimera $s_{2M}(t)$ en fonction de s_0 , S_2M , c, λ et t.

6.2/ En déduire l'expression $s_M(t)$ de l'onde qui résulte de la superposition des deux ondes $s_{1M}(t)$ et $s_{2M}(t)$ au point M. On exprimera $s_M(t)$ en fonction de s_0 , S_1M , S_2M , c, λ et t.

Mettre l'expression de $s_M(t)$ sous la forme du produit d'un terme indépendant du temps (amplitude de l'onde) et d'un terme dépendant du temps.

6.3/ Sachant que l'intensité lumineuse I_M (appelée aussi éclairement) qui résulte, au point M, de l'onde $s_M(t)$ est proportionnelle au carré de l'amplitude de $s_M(t)$ avec K constante de proportionnalité, exprimer l'intensité lumineuse I_M au point M en fonction de s_0 , K, δ et λ puis en fonction de s_0 , K, a, x, λ et D.

4/14

6.4/ Calculer, en détaillant clairement le raisonnement effectué, l'expression de l'interfrange i de la figure d'interférences. Exprimer i en fonction de a, λ et D.

6.5/ Tracer l'allure du graphe de I_M en fonction de x.

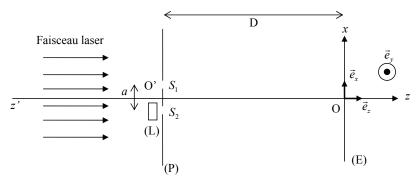
6.6/ Quelle est la position de la frange d'ordre 0 ?

Quatrième partie : modification du dispositif interférentiel

Nous nous plaçons encore pour cette partie dans le cas où la distance a entre les deux trous étant petite par rapport à la distance d'observation D, et le point M étant proche du point O, on peut considérer que a, x, y sont très petits devant D.

7/ Interposition d'une lame à faces parallèles

<u>Dans cette question uniquement</u>, on rajoute devant le trou S_2 une petite lame (L) (verre ou mica) à faces parallèles, d'épaisseur e et d'indice n pour la longueur d'onde λ utilisée. Le faisceau laser arrive toujours perpendiculairement à la plaque (P) et traverse la lame (L) sous incidence normale.



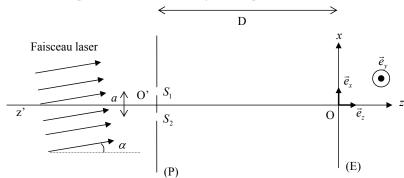
Calculer la différence de chemin optique $\delta'(M)$ au point M entre les rayons issus de S_1 et S_2 . Exprimer $\delta'(M)$ en fonction de n, e, a, x et D.

En déduire, en utilisant les résultats de la partie précédente, de quelle distance d la figure d'interférences sera translatée. On exprimera d en fonction de n, e, a et D.

Dans quel sens se déplace la figure d'interférences par rapport au cas de la question précédente ?

8/ Inclinaison du faisceau laser

Les rayons du faisceau laser ne sont plus parallèles à l'axe z'z. Ils sont inclinés d'un angle α par rapport à cet axe. On se placera dans le cas où l'angle α est petit.



Comment est modifiée la figure d'interférences ? Ouelle est dans ce cas la position de la frange d'ordre 0 ?