

Lycée Charles Coëffin — Sciences physique Fiche de travaux pratiques — CPGE TSI2

TD 5 : Modèle scalaire des ondes lumineuses

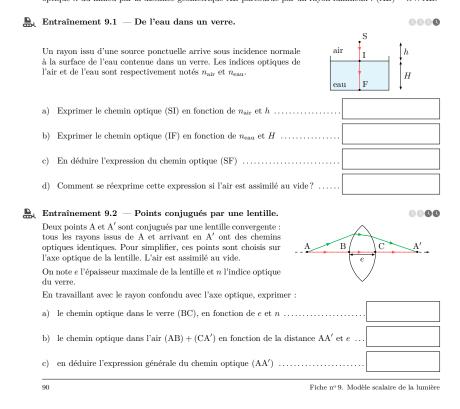
Objectifs

- Exprimer le retard de phase en un point (par rapport à un autre) en fonction de la durée de propagation ou du chemin optique.
- Associer une description de la formation des images en termes de rayon de lumière et en termes de surfaces d'onde.
- Utiliser la propriété énonçant que le chemin optique séparant deux points conjugués est indépendant du rayon de lumière choisi.
- Relier l'intensité lumineuse à la moyenne temporelle du carré de la grandeur scalaire optique.

Pré-requis : sources lumineuses ; modèle de l'optique géométrique ; approximation de Gauss, lentilles minces, formules de conjugaison et de grandissement transversal de Descartes ; modèle le l'œil et appareil photographique.

1 Entraı̂nements

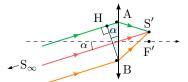
Dans un milieu homogène, le chemin optique entre deux points A et B est défini comme le produit de l'indice optique n du milieu par la distance géométrique AB parcourue par un rayon lumineux : (AB) = $n \times$ AB.



Entraînement 9.3 — Lentille éclairée avec un angle d'incidence non nul.

0000

Des rayons, provenant d'une source S à l'infini, éclairent une lentille sous un angle d'incidence α . Ils convergent en un point S' du plan focal image de la lentille. Les points A et B sont situés à gauche, juste avant la lentille. L'indice optique du verre est n. L'air est assimilé au vide.



a) En sachant que le plan passant par H et B est une surface d'onde pour la source S, exprimer la différence de chemin optique (SA) – (SB) en fonction de la distance AB et de l'angle α .

.....

b) Les points S et S' sont conjugués donc les chemins optiques (SAS') et (SBS') sont égaux.

En déduire la différence de chemin optique (AS') - (BS') en fonction de la distance AB et de l'angle α .

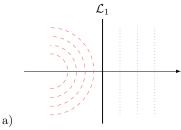
.....

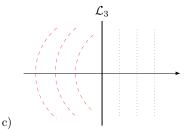
Surfaces d'onde et théorème de Malus

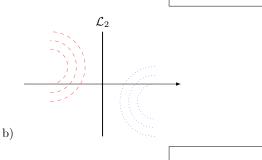
D'après le théorème de Malus, les rayons lumineux issus d'un point source S sont perpendiculaires aux surfaces d'onde relatives à cette source. La surface d'onde étant le lieu des points d'égal chemin optique par rapport à la source.

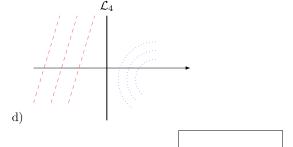
Entraînement 9.4 — Action d'une lentille inconnue sur des surfaces d'onde.

On considère ici des surfaces d'onde issues d'un point objet (en tirets) et celles de son image (en pointillés) par une lentille inconnue. Pour chaque situation, déterminer si la lentille est « convergente » ou « divergente ».









Entraı̂nement 9.5 — Action d'une lentille divergente sur des surfaces d'onde. 0000 On construit l'image par une lentille divergente $\mathcal L$ d'une source lumineuse placée à l'infini sur l'axe optique. Une ou plusieurs réponses sont possibles. a) En amont de la lentille, les surfaces d'onde sont : (a) perpendiculaires à l'axe optique (c) des plans parallèles entre eux (b) des cercles concentriques centrés sur F...... b) En aval de la lentille, les surfaces d'onde sont : (a) des cercles concentriques centrés sur F(c) des cercles concentriques centrés sur F'(b) des plans perpendiculaires à l'axe optique Entraînement 9.6 — Une loi bien connue... 0000 Une onde plane arrive sur un dioptre plan séparant deux depuis S_{∞} milieux d'indice n_1 et n_2 . On note \mathcal{H}_1 le projeté orthogonal de I_2 sur le rayon (2). De même, H_2 est le projeté orthogo- H_1 nal de I_1 sur le rayon (1). On note $I_1I_2=a$. a) Quels couples de points appartiennent à la même sur n_1 face d'onde? (a) I_2 et I_1 (b) I₂ et H₁ (c) I₁ et H₂ vers M_{∞} b) Que vaut l'angle α ? c) Exprimer le chemin optique (H_1I_1) en fonction de n_1 , a et α . d) Que vaut l'angle β ? À partir des questions c) et e), déduire une relation entre n_1 , $\sin(i_1)$, n_2 et $\sin(i_2)$

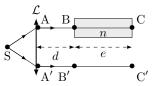
Retard de phase

Le retard de phase, ou phase, d'un rayonnement en un point M par rapport à sa source au point S est défini par $\phi(M) = \frac{2\pi}{\lambda_0}(SM)$, où (SM) le chemin optique entre les deux points.

Entraînement 9.7 — Surface d'onde et déphasage.

0000

Un point source S émettant un rayonnement monochromatique de longueur d'onde λ_0 est placé au foyer objet d'une lentille mince convergente. Une lame d'indice n et d'épaisseur e est placée à une distance d de la lentille et recouvre une partie du faisceau. On considère que les points A et A', à équidistance de S se situent juste après la lentille. On prendra l'indice de l'air égal à 1.

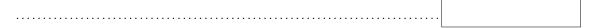


- a) Quels couples de points appartiennent à la même surface d'onde?

- b) Exprimer la phase $\phi(C')$ en fonction de λ_0 , (SA'), d et e.

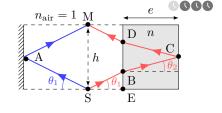
c) Exprimer la phase $\phi(C)$ en fonction de λ_0 , (SA), d, n et e.

d) En déduire le déphasage $\Delta \phi = \phi(\mathbf{C}) - \phi(\mathbf{C}')$ en fonction de λ_0 , n et e.



La Entraînement 9.8 − Phases et déphasage.

Un signal lumineux de longueur d'onde dans le vide λ_0 est émis depuis une source en S. On considère que le point d'incidence A se situe juste avant le miroir, et on rappelle qu'une réflexion sur un miroir métallique produit un retard de phase de π .



Exprimer la phase ϕ_1 du rayon 1 réfléchi par le miroir de gauche en fonction de h et θ_1 aux points de l'espace suivant.

- b) $\phi_1(M)$
- Exprimer la distance BD en fonction de e et θ_2
- d) Exprimer la distance EB en fonction de e, h et θ_2
- e) Quelle est l'expression correcte de $\phi_2(B)$, la phase du rayon de droite au point B?

(a)
$$\frac{2\pi}{\lambda_0} \left(\frac{h}{2n\sin\theta_1} - \frac{e}{\cos\theta_2} \right)$$
 (b) $\frac{2\pi}{\lambda_0} \left(\frac{h}{2\sin\theta_1} - \frac{e}{n\cos\theta_2} \right)$ (c) $\frac{2\pi}{\lambda_0} \left(\frac{e}{\cos\theta_2} - \frac{h}{2n\sin\theta_1} \right)$

f)	Exprimer la phase de ce rayon en M, $\phi_2(M)$, en fonction de h, e, n, θ_1 et $\cos \theta_2$.
g)	Exprimer le déphasage $\Delta \phi = \phi_2(M) - \phi_1(M)$ en fonction de e, n et $\cos \theta_2$.
Ο,	
	Quelle est l'expression correcte de $\Delta \phi$? On rappelle que $\sin^2 a + \cos^2 a = 1$. (a) $\frac{4\pi}{\lambda_0} \frac{e(n^2 - 1)}{\sqrt{n^2 - \sin^2 \theta_1}} - \pi$ (b) $\frac{4\pi}{\lambda_0} \frac{e(n^2 - 1)}{\sqrt{n^2 - \sin^2 \theta_1}} + \pi$ (c) $\frac{2\pi}{\lambda_0} \frac{e(n^2 - 1)}{\sqrt{n^2 - \sin^2 \theta_1}} + \pi$
En	traînement 9.9 — Déphasage dû à une lame.
1211	Cas 1 Cas 2
pha pas issu	souhaite exprimer les différences de ases $\Delta \phi = \phi(N) - \phi(M)$ entre le rayon sant par N et le rayon passant par M as de la même source à l'infini S de loneur d'onde dans le vide λ_0 .
L'ii a)	ndice de l'air est pris égal à 1. $\frac{e}{d}$ Pour le cas 1, exprimer le déphasage $\Delta \phi = \phi({\rm N}) - \phi({\rm M})$ selon e, λ_0 et n .
On	considère maintenant le cas 2.
b)	Exprimer la distance I_1I_2 en fonction de e et θ_2
c)	Exprimer la distance H_1H_2 en fonction de I_1I_2 et $\theta_1 - \theta_2$
d)	Exprimer le déphasage $\Delta \phi = \phi(N) - \phi(M)$ en fonction de $e, \lambda_0, n, \theta_2$ et $\theta_1 - \theta_2$.
a)	Exprime is dephase $\Delta \phi = \phi(11)$ $\phi(11)$ on foliotion de $e, \lambda_0, h, v_2 \in v_1$ v_2 .
e) <i>On</i>	Quelle est l'expression correcte de $\cos(\theta_1 - \theta_2)$? $rappelle que \cos(a - b) = \cos a \cos b + \sin a \sin b \ et \ que \sin^2 a + \cos^2 a = 1.$
(i	$\cos \theta_1 \cos \theta_2 - n + n \sin^2 \theta_2$ $\cos \theta_1 \sin \theta_2 + n - n \sin^2 \theta_2$ $\cos \theta_1 \sin \theta_2 + n - n \sin^2 \theta_2$
f)	En déduire une expression de $\Delta \phi$ fonction de e , λ_0 , n , $\cos \theta_2$ et $\cos \theta_1$.

Photométrie

Entraînement 9.12 ─ Intensité lumineuse.

Un signal $s(t) = S_0 \cos(\omega t)$ de période T est détecté par deux capteurs de temps de réponse $\tau = 1$ ns. Les capteurs A et B délivrent des signaux de tension u_1 et u_2 respectivement proportionnels à la moyenne de s et au carré de la moyenne de s^2 : on a

$$u_1 = K_1 \langle s(t) \rangle$$
 et $u_2 = K_2 \langle s^2(t) \rangle$,

où K_1 et K_2 sont des constantes.

On considère que les signaux u_1 et u_2 émergent du bruit de mesure lorsque leur valeur absolue est respectivement supérieure à $\frac{K_1S_0}{2\pi\times 100}$ et $\frac{K_2S_0^2}{2}$.

On indique que la moyenne temporelle d'un signal f(t) mesuré pendant une durée τ est

$$\langle f(t) \rangle = \frac{1}{\tau} \int_0^{\tau} f(t) dt.$$

a) Exprimer u_1 en fonction de K_1 , S_0 , τ et T.

- b) Quelle est la valeur maximale de u_1 fonction de $\frac{r}{T}$?
- (a) $2\pi K_1 S_0 \frac{T}{\frac{\tau}{\tau}}$ (b) $2\pi K_1 S_0 \frac{T}{T}$

c) En déduire la fréquence maximale du signal exploitable par le capteur A.

d) Exprimer u_2 en fonction de K_2 , S_0 , τ et T.

On rappelle que $\cos^2 a = \frac{1 + \cos(2a)}{2}$

- e) Quelle est la valeur maximale de u_2 fonction de $\frac{\tau}{T}$?
- (a) $\frac{K_2S_0^2}{2\tau}\left(T + \frac{\tau}{4\pi}\right)$

 $\bigcirc \frac{K_2 S_0^2}{\tau} \left(\tau + \frac{T}{4\pi}\right)$

...... f) Existe-t-il une fréquence maximale du signal exploitable par le capteur B?

	_
- 0	7774

\blacksquare Entraı̂nement 9.13 — Choix d'une photodiode.

La sensibilité d'une photodiode s est, au cours d'une mesure de durée τ , le rapport de proportionnalité entre l'intensité du courant électrique produit $I_{\rm mes}$ et la puissance lumineuse mesurée $\mathcal{P}_{\rm mes}$: on a

$$s = I_{\text{mes}}/\mathcal{P}_{\text{mes}}.$$

De plus, l'intensité du courant d'obscurité $I_{\rm obs}$ d'une photodiode correspond à l'intensité électrique minimale que doit dépasser le courant produit au cours d'une mesure.

On dispose de trois photodiodes détectant respectivement trois radiations de longueurs d'onde dans le vide différentes. Les caractéristiques des photodiodes et des radiations sont données ci-dessous.

photodiode 1			$I_{\rm obs\ 1} = 3{,}00 \times 10^{-5}\mu{\rm A}$	$\tau_1 = 2,00 \times 10^{-4} \mathrm{ms}$
photodiode 2	$\lambda_2 = 550 \times 10^3 \mathrm{pm}$	$s_2 = 200 \mathrm{mA \cdot W^{-1}}$	$I_{\text{obs }2} = 150 \text{pA}$	$ au_2 = 0.450 \mu s$
photodiode 3	$\lambda_3 = 0,660 \mu \mathrm{m}$	$s_3 = 300 \mathrm{A \cdot kW^{-1}}$	$I_{\rm obs\ 3} = 2{,}00{\rm nA}$	$\tau_3 = 50.0 \text{ns}$

 ${\it Calculer\ en\ watt\ les\ puissances\ lumineuses\ minimales\ d\'etectables\ par\ les\ photodiodes.}$

a) $\mathcal{P}_{\min 1}$		b) \mathcal{P}_{r}	nin 2 · · · ·		c)	$\mathcal{P}_{min\;3}\;\ldots.$	
Calculer en joule les énergies minimales détectables au cours d'une durée $ au$ par les photodiodes.							
d) $E_{\min 1}$		e) $E_{\rm r}$	min 2 ····		f)	$E_{\min 3} \ldots$	
g) Sachant que l'énergie d'un photon est donnée par $E=h\nu$, où $h=6.63\times 10^{-34}\mathrm{J\cdot s}$ est la constante de Planck, quelle photodiode permet de mesurer le plus petit nombre de photons?							
(a) Photodiod	e 1 (b) i	Photodio	de 2	C Photodi	ode 3		