

Lycée Charles Coëffin — Sciences physique Fiche de travaux pratiques — CPGE TSI2

TD 8 : Thermodynamique d'un système siège d'une réaction chimique - partie 1

Objectifs

- Exprimer et utiliser le potentiel chimique d'un constituant.
- Déterminer la variation d'enthalpie libre d'un système physico-chimique entre deux états d'équilibre thermodynamique.

Pré-requis : système physico-chimique; transformation chimique d'un système; loi d'Arrhenius, énergie d'activation; réaction acide-bas; réaction de dissolution ou de précipitation; réaction d'oxydo-réduction.

Exercices

1 Solution idéale de benzène et de toluène

Le benzène et le toluène sont deux hydrocarbures aromatiques, liquides à $25\,^{\circ}\mathrm{C}$, de formules brutes respectives $\mathrm{C_6H_6}$, et $\mathrm{C_7H_8}$. Associées, les phases liquides forment un mélange qui peut être considéré comme idéal.

On réalise le mélange, à $25\,^{\circ}\mathrm{C}$, de $234\,\mathrm{g}$ de benzène et de $234\,\mathrm{g}$ de toluène.

Données : $M_{\rm H} = 1.0 \, {\rm g \cdot mol^{-1}}$ et $M_{\rm C} = 12.0 \, {\rm g \cdot mol^{-1}}$.

- 1. Exprimer le potentiel chimique du benzène liquide et du toluène liquide purs sous $1 \, \mathrm{bar}$.
- 2. Exprimer de même le potentiel chimique du benzène liquide et du toluène liquide dans le mélange, toujours sous $1\,\mathrm{bar}$.
- 3. Pour une fonction X, on appelle grandeur de mélange la différence

$$\Delta_{\text{mel}}X = X_{\text{après le mélange}} - X_{\text{avant le mélange}}.$$

Déterminer $\Delta_{\rm mel}G$, $\Delta_{\rm mel}S$ et $\Delta_{\rm mel}H$ lors du mélange après le mélange avant le mélange de ces deux hydrocarbures à $25\,^{\circ}{\rm C}$ sous $1\,{\rm bar}$. Conclure.

2 Grandeurs de mélange

Un récipient, placé dans un thermostat à la température T, est divisé en deux compartiments par une paroi amovible. Le premier, de volume V_1 , contient n_1 moles de diazote à la pression P_1 . Le second, de volume V_2 , contient n_2 , moles de dioxygène à la pression P_2 .

Données : $V_1 = 0.2 \,\mathrm{L}$, $V_2 = 0.3 \,\mathrm{L}$, $n_1 = 10^{-2} \,\mathrm{mol}$, $n_2 = 2 \times 10^{-2} \,\mathrm{mol}$ et $T = 300 \,\mathrm{K}$.

1. Évaluer l'enthalpie libre $G_{\rm ini}$ du système constitué des deux gaz séparés par la paroi.

- 2. Évaluer l'enthalpie libre $G_{\text{m\'el}}$ du mélange des deux gaz (une fois la paroi amovible retirée).
- 3. En déduire l'enthalpie libre de mélange $\Delta_{
 m m\'el}G=G_{
 m m\'el}-G_{
 m ini}$. Effectuer l'application numérique.
- 4. Calculer $\Delta_{\text{m\'el}} S$, puis $\Delta_{\text{m\'el}} H$.

3 Équilibre liquide-vapeur de l'eau

Dans le domaine de stabilité de l'eau liquide, celle-ci est en équilibre avec la vapeur d'eau, à la pression de vapeur saturante $P_{\rm sat}$, qui dépend de la température par la relation :

$$\log P_{\text{sat}} = 17,07 - \frac{2768}{T} - 3,75 \log T$$

avec P_{sat} en bar et T en K.

- 1. En un point quelconque de la courbe $P_{\rm sat}(T)$, donner la relation entre les potentiels chimiques du corps pur dans chaque phase. Calculer la différence $\mu_\ell^\circ \mu_v^\circ$ à $T = 400\,{\rm K}$.
- 2. On dispose d'un mélange eau liquide-eau vapeur à $T=400\,\mathrm{K}$, sous $P=3.0\,\mathrm{bar}$. Déterminer si ce mélange peut être en équilibre.
- 3. Calculer la différence $\mu_\ell \mu_v$ et prévoir l'évolution du système.

Annale

Étude de la solubilité du diiode*

- 1. On considère une solution "diluée idéale" formée d'un unique soluté (noté avec l'indice 2) dans un solvant (noté avec l'indice 1). En négligeant la dépendance en pression, donner l'expression, à une température donnée :
 - (a) du potentiel chimique $\mu_{2,c}$ du soluté, en fonction de sa concentration molaire c_2 et du potentiel chimique standard $\mu_{2,c,\infty}^{\circ}$. défini par référence à l'état du soluté en solution infiniment diluée, dans l'échelle des concentrations molaires;
 - (b) du potentiel chimique $\mu_{2,x}$, du soluté en fonction de sa fraction molaire x_2 , et du potentiel chimique standard $\mu_{2,x,\infty}^{\circ}$ défini par référence à l'état du soluté en solution infiniment diluée, dans l'échelle des fractions molaires ;
 - (c) du potentiel chimique μ_1 , du solvant en fonction de sa fraction molaire x_1 , et du potentiel chimique standard μ_1° défini par référence au corps pur liquide.
- 2. Sachant que la solubilité du diiode dans l'eau pure à $25\,^{\circ}\mathrm{C}$ vaut $s=1,36\times 10^{-3}\,\mathrm{mol}\cdot\mathrm{L}^{-1}$, en déduire les valeurs des potentiels chimiques standard dans l'eau du diiode $\mu_{2,c,\infty}^{0,\mathrm{aq}}$ et $\mu_{2,x,\infty}^{0,\mathrm{aq}}$. On pose $\mu_{\mathrm{L}_2}^{0,s}=0\,\mathrm{J}\cdot\mathrm{mol}^{-1}$.
- 3. On réalise, à $25\,^{\circ}\mathrm{C}$, un équilibre de partage du diiode entre une phase aqueuse et une phase constituée de tétrachlorométhane $\mathrm{CCl_4}$, non miscible à l'eau.
 - La concentration du diiode dans la phase organique, déterminée par spectrophotométrie, est égale à $c_{2,org} = 7.40 \times 10^{-2} \, \mathrm{mol \cdot L^{-1}}$.
 - La concentration du diiode dans la phase aqueuse est déterminée par titrage. On titre $V_s=100,0\,\mathrm{mL}$ de cette solution aqueuse préalablement séparée de la phase organique par une solution de thiosulfate de sodium $\mathrm{Na_2S_2O_3}$ de concentration égale à $1,24\times10^{-2}\,\mathrm{mol\cdot L^{-1}}$.

L'équivalence de la réaction de dosage $I_2+2\,S_2O_3^{\,2-}\to 2I-+S4O6^{2-}$ est observée à $V_{\rm \acute{e}q}=13.7\,\rm mL$.

- (a) Déterminer la concentration $c_{2,\mathrm{aq}}$ du diiode dans la phase aqueuse.
- (b) À partir des résultats obtenus, calculer le potentiel chimique standard du diiode dans CCl_4 : $\mu_{2,c,\infty}^{0,\text{org}}$.
- 4. Calculer la solubilité du diiode dans CCl_4 , à 25 °C.