

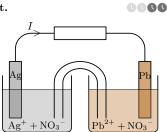
CPGE TSI2

Lycée Charles Coëffin — Sciences physique Fiche de travaux pratiques — CPGE TSI2

TD 9 : Thermodynamique d'un système siège d'une réaction chimique

Objectifs

- Exploiter la relation entre l'enthalpie libre de réaction et les potentiels des couples mis en jeu dans une réaction d'oxydo-réduction.
- Relier l'enthalpie libre standard et les potentiels standard des couples d'oxydo-réduction.
- Relier la tension à vide d'une pile électrochimique et l'enthalpie libre de la réaction modélisant son fonctionnement.
- Décrire et expliquer le fonctionnement d'une pile électrochimique à partir de données sur sa constitution et de tables de potentiels standard.


Pré-requis : système physico-chimique; transformation chimique d'un système; réaction d'oxydo-réduction.

1 Cahier d'entraînement

Entraînement 27.2 — Au bout d'une heure de fonctionnement.

La pile ci-contre (deux demi-piles, reliées par un pont salin) débite un courant d'intensité constante I pendant la durée $\Delta t.$

Le compartiment de gauche correspond à une lame d'argent plongeant dans une solution de nitrate d'argent (volume $V_1=100,0\,\mathrm{mL}$ et concentration $C_1=0,100\,\mathrm{mol\cdot L^{-1}}$), mettant en jeu le couple $\mathrm{Ag}^+/\mathrm{Ag}$. Celui de droite correspond à une lame de plomb plongeant dans une solution de nitrate de plomb ($V_2=V_1$ et $C_2=C_1$), mettant en jeu le couple $\mathrm{Pb}^{2+}/\mathrm{Pb}$.

Les ions argent sont réduits sur l'électrode d'argent : $Ag^+ + e^- = Ag$. Le plomb est oxydé sur l'électrode de plomb : $Pb = Pb^{2+} + 2e^-$. Finalement, l'équation de réaction est :

$$2 \text{ Ag}^+(\text{aq}) + \text{Pb}(\text{s}) = 2 \text{ Ag}(\text{s}) + \text{Pb}^{2+}(\text{aq}).$$

- a) Exprimer la quantité d'électricité Q échangée pendant Δt en fonction de I et Δt
- b) Quelle(s) relation(s) correspond(ent) à la quantité de matière d'électrons $n_{\rm e}$ échangée pendant Δt ?

(a)
$$n_{\rm e} = Qe/\mathcal{N}_{\rm A}$$

(b)
$$n_{\rm e} = Q\mathcal{F}$$

(c)
$$n_{\rm e} = I\Delta t/\mathcal{N}_{\rm A}$$

(d)
$$n_{\rm e} = Q/\mathcal{F}$$

- c) Exprimer la quantité de matière $n_{\rm Ag^+}$ consommée pendant Δt en fonction de $n_{\rm e}$
- d) Exprimer la quantité de matière $n_{\mathrm{Pb}^{2+}}$ formée pendant Δt en fonction de n_{e}
- e) Calculer la concentration finale $[Ag^+]_f$ pour $\Delta t = 1,00 \, h$ et $I = 65,0 \, mA$
- f) Calculer la concentration finale $\left[\text{Pb}^{2+} \right]_{\text{f}}$ pour $\Delta t = 1,00\,\text{h}$ et $I = 65,0\,\text{mA}$

\mathbf{E}_{1}	ntraînement 27.3 — Demi-équations et équat	tion de fonctionnement.				
So ur pl	oit une pile zinc-argent. Le compartiment de gauc ne solution de sulfate de zinc $(\mathrm{Zn^{2+}(aq)} + \mathrm{SO_4^{2-}(ac)})$ congeant dans une solution de nitrate d'argent (Ag	che correspond à une lame de zinc plongeant dans q)). Celui de droite correspond à une lame d'argent $(aq) + NO_3^-(aq)$).				
a)	Écrire la demi-équation électronique associée au couple $\mathrm{Zn}^{2+}/\mathrm{Zn}$					
b)	Écrire la demi-équation électronique associée au c	couple Ag ⁺ /Ag				
c)	c) Sachant que la réaction électrochimique se fait entre le zinc Zn(s) et les ions argent Ag ⁺ (aq), écrir					
1'€	quation de la réaction d'oxydo-réduction ayant lieu	dans cette pile				
d)	Quelles sont les propositions correctes?					
(a) L'électrode d'argent s'épaissit.	(c) L'électrode d'argent s'amincit.				
(b) L'électrode de zinc s'épaissit.	d L'électrode de zinc s'amincit.				
Αι	ıtour de la pile Daniell					
Ent	traînement 27.4 $-$ Polarité et tension à vide					
Soit une lam	sume pile Daniell cuivre-zinc. Le compartiment de ga solution de sulfate de zinc $(Zn^{2+}(aq) + SO_4^{2-}(aq))$ e de cuivre plongeant dans une solution de sulfate d donne : $E^{\circ}(Zn^{2+}/Zn) = -0.76 \text{ V}$ et $E^{\circ}(Cu^{2+}/Cu)$	suche correspond à une lame de zinc plongeant dans) à $0.1 \text{ mol} \cdot \text{L}^{-1}$. Celui de droite correspond à une le cuivre $(\text{Cu}^{2+}(\text{aq}) + \text{SO}_4{}^{2-}(\text{aq}))$ à $0.25 \text{ mol} \cdot \text{L}^{-1}$.				
La	relation de Nernst pour un couple M^{n+}/M (cation	métallique/métal) de potentiel standard E° est :				
<i>E</i> =	$=E^{\circ} + \frac{RT}{n\mathcal{F}} \ln \frac{a(\mathbf{M}^{n+})}{a(\mathbf{M})}$, avec n le nombre d'électron	us échangés. Si $T=298\mathrm{K}$ (25 °C), on peut utiliser				
l'ap	proximation $\frac{RT \ln(10)}{\mathcal{F}} \approx 0.059 \text{V}$. La concentration	standard, égale à $1 \operatorname{mol} \cdot \operatorname{L}^{-1}$, est notée C° .				
On pile	rappelle également que la relation entre l'enthalpie et la tension à vide $U_{\rm co}$ (en circuit ouvert) est : $\Delta_{\rm r}$	libre de la réaction $\Delta_{\rm r} G$ de fonctionnement d'une $G=-n\mathcal{F}U_{\rm co}.$				
a)	Calculer le potentiel de Nernst du couple $\rm Zn^{2+}/\rm Zn$	à 25 °C				
b)	Calculer le potentiel de Nernst du couple $\mathrm{Cu}^{2+}/\mathrm{Cu}$	à 25 °C				
c)	Indiquer la polarité $(+ \text{ ou } -)$ de chaque demi-pile					
d)	Identifier alors l'anode et la cathode					
e)	Quelles propositions indiquent correctement le sens	de déplacement des porteurs de charge?				
a	Dans les fils, les électrons se déplacent de la cathode vers l'anode.	© Dans les fils, les électrons se déplacent de l'anode vers la cathode.				
(b) Dans le pont salin, les anions se déplacent du compartiment de gauche vers celui de droite.	(d) Dans le pont salin, les cations se déplacent du compartiment de gauche vers celui de droite.				
f)	Calculer la tension à vide $U_{\rm co}$ de la pile (différence	de potentiel à ses bornes) .				
g)	Calculer l'enthalpie libre de réaction à 25 °C					

	Entraînement 27.5 —	Constante d'équilibre	et potentiels standard.
--	---------------------	-----------------------	-------------------------

0000

Soit une pile Daniell cuivre-zinc, d'équation de fonctionnement

$$Cu^{2+}(aq) + Zn(s) \longrightarrow Zn^{2+}(aq) + Cu(s)$$

et de constante d'équilibre K° . On donne : $E^{\circ}(\operatorname{Zn}^{2+}/\operatorname{Zn}) = -0.76\,\mathrm{V}$ et $E^{\circ}(\operatorname{Cu}^{2+}/\operatorname{Cu}) = 0.34\,\mathrm{V}$.

- Exprimer K° en fonction des activités des composés à l'équilibre
- Exprimer K° en fonction des concentrations des solutés à l'équilibre
- Écrire la relation de Nernst à 25 °C pour le couple Zn²⁺/Zn
- d) Écrire la relation de Nernst à 25 °C pour le couple Cu²⁺/Cu
- e) L'unicité du potentiel à l'équilibre implique une égalité entre le potentiels de Nernst des deux couples d'oxydo-réduction. Appliquer l'unicité du potentiel à l'équilibre pour en déduire les relations correctes.
- $\begin{array}{ll} \text{ (a) } E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} E_{\text{Zn}^{2+}/\text{Zn}}^{\circ} = \frac{0{,}059}{2} \log \frac{[\text{Zn}^{2+}]_{\text{\'eq}}}{[\text{Cu}^{2+}]_{\text{\'eq}}} & \text{ (c) } E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} E_{\text{Zn}^{2+}/\text{Zn}}^{\circ} = \frac{0{,}059}{2} \log \frac{[\text{Cu}^{2+}]_{\text{\'eq}}}{[\text{Zn}^{2+}]_{\text{\'eq}}} \\ \text{ (b) } E_{\text{Zn}^{2+}/\text{Zn}}^{\circ} E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} = \frac{0{,}059}{2} \log \frac{[\text{Cu}^{2+}]_{\text{\'eq}}}{[\text{Cu}^{2+}]_{\text{\'eq}}} & \text{ (d) } E_{\text{Zn}^{2+}/\text{Zn}}^{\circ} E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} = \frac{0{,}059}{2} \log \frac{[\text{Cu}^{2+}]_{\text{\'eq}}}{[\text{Zn}^{2+}]_{\text{\'eq}}} \end{array}$

- f) En déduire l'expression correcte de K° en fonction des potentiels standard.
 - (a) $K^{\circ} = 10^{\frac{2}{0.059}(E^{\circ}(Cu^{2+}/Cu) E^{\circ}(Zn^{2+}/Zn))}$
- (c) $K^{\circ} = 10^{\frac{2}{0.059}(E^{\circ}(\text{Zn}^{2+}/\text{Zn}) E^{\circ}(\text{Cu}^{2+}/\text{Cu}))}$
- (b) $K^{\circ} = 10^{\frac{0.059}{2}(E^{\circ}(Cu^{2+}/Cu) E^{\circ}(Zn^{2+}/Zn))}$
- (d) $K^{\circ} = 10^{\frac{2}{0.059}} (E^{\circ}(Zn^{2+}/Zn) E^{\circ}(Cu^{2+}/Cu))$

Détermination d'un potentiel standard

Entraînement 27.6 — Expression d'un potentiel standard à partir de deux autres.

La relation entre l'enthalpie libre standard de demi-réaction $\Delta_{1/2}G^{\circ}$ et le potentiel standard E° du couple considéré est : $\Delta_{1/2}G^{\circ} = -n \times \mathcal{F} \times E^{\circ}$, avec n le nombre d'électrons échangés et \mathcal{F} la constante de Faraday. On donne les potentiels standard suivants : $E_1^{\circ}(Cu^{2+}/Cu) = 0.34 \text{ V}$ et $E_2^{\circ}(Cu^{2+}/Cu^+) = 0.16 \text{ V}$. Celui du couple Cu^+ / Cu est noté E_3° .

- a) Écrire la demi-équation électronique, notée (1), associée au couple $\operatorname{Cu}^{2+}/\operatorname{Cu}$
- b) Écrire la demi-équation électronique, notée (2), associée au couple Cu²⁺ / Cu⁺ ...
- c) Écrire la demi-équation électronique, notée (3), associée au couple Cu⁺ / Cu
- d) Quelle est la combinaison linéaire reliant ces trois demi-équations?
- (a) (1) = (2) + (3)
- (b) (1) = (3) (2)
- (c) $(1) = 2 \times ((2) + (3))$

e) Quelle est la relation entre les trois enthalpies libres standard de demi-réaction?

.....

- (a) $\Delta_{1/2}G_1^{\circ} = \Delta_{1/2}G_2^{\circ} + \Delta_{1/2}G_3^{\circ}$
- \bigcirc $\Delta_{1/2}G_1^{\circ} = \Delta_{1/2}G_3^{\circ} \Delta_{1/2}G_2^{\circ}$
- (b) $\Delta_{1/2}G_1^{\circ} = \Delta_{1/2}G_2^{\circ} \Delta_{1/2}G_3^{\circ}$
- (d) $\Delta_{1/2}G_1^{\circ} = 2 \times (\Delta_{1/2}G_2^{\circ} + \Delta_{1/2}G_3^{\circ})$

f) En déduire une relation entre les trois potentiels standard et calculer E_3° .

- (a) $E_3^{\circ} = 2E_2^{\circ} E_1^{\circ} = -0.02 \,\mathrm{V}$
- © $E_3^{\circ} = E_1^{\circ} E_2^{\circ} = 0.18 \,\text{V}$

- (a) $E_3 = 2E_2 = E_1 = -0.02 \text{ v}$ (b) $E_3^\circ = 2E_1^\circ E_2^\circ = 0.52 \text{ V}$ (d) $E_3^\circ = E_2^\circ E_1^\circ = -0.18 \text{ V}$

Annale

II.2 - MOXIE

Mars Oxygen ISRU Experiment, littéralement " expérience d'utilisation in situ des ressources en oxygène de Mars ", ou MOXIE, est un instrument du rover Perseverance. Il est destiné à démontrer la faisabilité de la production de dioxygène sur Mars par électrolyse à oxyde solide, appelée SOEC en anglais, du dioxyde de carbone qui constitue 95 % de l'atmosphère martienne. Le 20 avril 2021, MOXIE a produit un total de 5,4 g de dioxygène en une heure, ce qui peut permettre à un astronaute de respirer normalement pendant une dizaine de minutes. MOXIE aspire, compresse et chauffe les gaz atmosphériques martiens au travers d'un filtre, d'un compresseur à spirale et d'éléments chauffants isolés thermiquement, puis scinde le dioxyde de carbone CO2 en dioxygène O2 et monoxyde de carbone CO par électrolyse à oxyde solide.

Une SOEC présente le fonctionnement inverse d'une pile à combustible à oxyde solide, appelée SOFC. Nous commencerons par l'étude d'une pile électrochimique classique pour comprendre le principe de fonctionnement de la pile à combustible, puis du module d'électrolyse MOXIE.

La pile classique considérée est constituée de demi-piles séparées par un pont salin : une électrode de zinc solide plongeant dans une solution ionique contenant les ions Zn2+(aq) et une électrode de cuivre solide plongeant dans une solution ionique contenant les ions Cu²⁺(aq).

- Q52. Réaliser un schéma de la pile électrochimique classique précédente.
- Q53. Écrire les demi-équations se produisant à l'anode et à la cathode en précisant à chaque fois s'il s'agit d'une oxydation ou d'une réduction.
- Q54. Indiquer le sens de circulation et la nature des porteurs de charge dans les fils électriques.
- Q55. Quelle est la nature des porteurs de charge dans le pont salin ? Préciser le rôle de ce pont.

La pile à combustible considérée est alimentée en dihydrogène gazeux H_{2(q)} et dioxygène gazeux $O_{2(g)}$. Les couples oxydo-réducteurs sont : $H^+_{(aq)}/H_{2(g)}$ et $O_{2(g)}/H_2O_{(l)}$. Le cœur de la pile est composé de deux électrodes, l'anode et la cathode, séparées par un électrolyte.

- Q56. Le réactif oxydé est appelé le combustible de la pile. Parmi les espèces chimiques présentes dans les couples, laquelle constitue le combustible ?
- Q57. Écrire les deux demi-équations d'oxydoréduction.

- **Q58.** Écrire les formules de Nernst associées à ces deux couples (on considérera un fonctionnement à la température ambiante de 298 K).
- Q59. Déterminer l'expression de la force électromotrice de cette pile.

Une variante de la pile à combustible étudiée ci-dessus est une pile à oxydes solides (SOFC en anglais), dans laquelle les ions oxyde O^{2-} migrent de la cathode alimentée en air vers l'anode alimentée en dihydrogène et où l'eau est produite. Une telle pile à combustible de type SOFC utilise comme oxyde solide la zircone stabilisée à l'yttrium (YZS en anglais) correspondant à une substitution partielle d'ion zirconium par des ions yttrium dans l'oxyde ZrO₂.

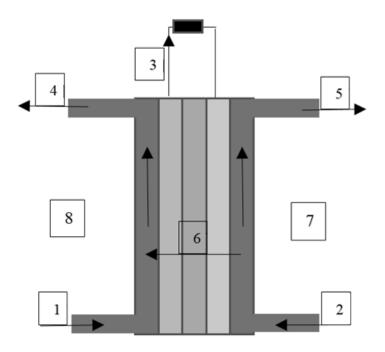
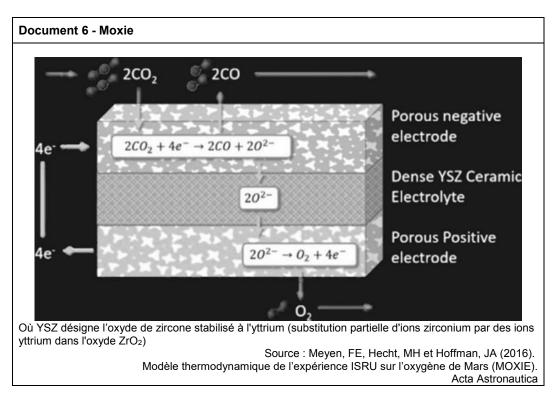


Figure 3 - Schéma de la pile à combustible SOFC

- **Q60.** Établir la correspondance entre les huit numéros du schéma de la **figure 3** et la liste suivante : $H_{2(g)}$, air (dont $O_{2(g)}$), O^{2-} , électrons, anode, cathode, $H_2O_{(l)}+H_{2(g)}$, air appauvri.
- Q61. La cathode constitue-t-elle le pôle positif ou négatif ? Justifier.


Dans un véhicule motorisé fonctionnant grâce à une pile à combustible, on estime à 1,5 kg la masse de dihydrogène nécessaire pour parcourir 250 km.

Q62. En considérant le dihydrogène comme un gaz parfait, calculer la quantité de matière de dihydrogène correspondant à cette masse, puis le volume occupé par cette quantité de gaz à 20 °C sous pression atmosphérique (p_{atm} = 1,0·10⁵ Pa). Commenter la valeur obtenue.

Il est à noter qu'aucune connaissance sur l'électrolyse n'est nécessaire pour répondre aux questions suivantes.

On considère maintenant l'électrolyse de l'eau $H_2O_{(l)}$ qui correspond à la réaction inverse, c'est-à-dire à la formation par voie électrochimique d' $H_{2(g)}$, ainsi que d' $O_{2(g)}$, par l'application d'un courant électrique au travers de deux électrodes séparées par un électrolyte.

- Q63. Donner l'équation de la réaction d'électrolyse de l'eau.
- **Q64.** À partir du **document 6**, écrire l'équation de la réaction bilan de l'électrolyseur utilisant le CO₂ de l'atmosphère martienne.

Q65. Dans quel but l'électrolyse du dioxyde de carbone peut-elle être mise en œuvre sur Mars ou dans la station spatiale internationale ?

Données

Constante de Faraday : 9,65·10⁴ C

Constante de Planck : $h = 6,63 \cdot 10^{-34} \text{ J} \cdot \text{s}$

Constante des gaz parfaits : R = 8,31 J·mol⁻¹·K⁻¹

Célérité de la lumière dans le vide : $c = 3,00 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}$

 $1 \text{ eV} = 1,602 \cdot 10^{-19} \text{ J}$

Échelles de température : T(K) = t(°C) + 273

Nombre d'Avogadro : N_A = 6,02·10²³ mol⁻¹

Masse volumique moyenne de l'atmosphère terrestre : ρ = 1,29 kg·m⁻³

Masse molaire de l'hydrogène : M(H) = 1,0 g⋅mol-1

Masse molaire du carbone : M(C) = 12 g⋅mol⁻¹

Masse molaire de l'oxygène : M(O) = 16 g⋅mol⁻¹

Potentiels standards : $E^{\circ}(Zn^{2+}/Zn_{(s)}) = -0.76 \text{ V}$ $E^{\circ}(Cu^{2+}/Cu_{(s)}) = 0.34 \text{ V}$

Rotationnel : $\overrightarrow{\operatorname{rot}}\left(\overrightarrow{A}\right) = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right)\overrightarrow{e_x} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right)\overrightarrow{e_y} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right)\overrightarrow{e_z}$

Relation : $\overrightarrow{\operatorname{rot}}\left(\overrightarrow{\operatorname{rot}}\left(\overrightarrow{E}\right)\right) = \overrightarrow{\operatorname{grad}}\left(\operatorname{div}\overrightarrow{E}\right) - \overrightarrow{\Delta E}$

Tableau des enthalpies standard de formation et des entropies molaires standard à 298 K :

	$H_2O_{(I)}$	CH _{4(g)}	$H_{2(g)}$	CO _{2(g)}
Δ _f H°(kJ·mol ⁻¹)	-286	-75		-394
S _m °(J·mol ⁻¹ ·K ⁻¹)	70	186	131	214