DS 3 : interférences lumineuses et thermochimie

Durée: 4h

Indications

- Le sujet est divisé en 3 parties indépendantes.
- Les calculatrices sont interdites.
- Une absence d'unité non justifiée à la fin d'une application numérique ne comptera aucun point.
- Indiquer clairement le numéro de la question (exemple question 5.1 de la partie B noter "B5.1", question 21 de la partie C noter "C21", etc.), aérer la copie et encadrer vos résultats afin de faciliter le travail du correcteur.

Partie A

- 1. Donner les deux formules de conjugaison des lentilles minces de Descartes.
- 2. Donner la définition d'un oscillateur harmonique, les équations qu'il respecte et donner un exemple.
- 3. Donner les trois référentiels utilisés en mécanique.
- 4. Donner l'expression de la force de gravitation.
- 5. Donner l'expression de la force de rappel d'un ressort.
- 6. Donner le théorème de l'énergie cinétique.
- 7. Donner l'expression du théorème du moment cinétique.
- 8. Définir une transformation monotherme, isotherme, monobare, isobare, isochore.
- 9. Donner l'expression du champ magnétique créé par une bobine longue.
- 10. Donner la loi de Faraday.

Partie B

$$\cos(p) + \cos(q) = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\cos(p) - \cos(q) = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

$$\sin(p) + \sin(q) = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\sin(p) - \sin(q) = 2\sin\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right)$$

$$ch^{2}(x) - sh^{2}(x) = 1$$

Premier problème:

Interférences lumineuses : dispositif des trous d'Young

On réalise, dans l'air, l'expérience des trous d'Young à l'aide du dispositif décrit et schématisé cidessous.

Un laser, de longueur d'onde dans le vide λ , émet un faisceau lumineux cylindrique d'axe z'z.

On suppose par la suite, sauf mention contraire dans la question 1/, que le faisceau du laser éclaire entièrement et de manière uniforme les différentes ouvertures qui sont placées sur son passage.

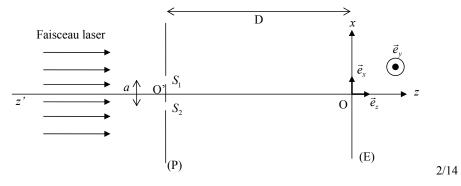
Une plaque opaque (P), percée de deux trous circulaires S_1 et S_2 de même taille et de faibles dimensions, est placée perpendiculairement à l'axe z'z.

On note O' le milieu du segment $[S_1S_2]$. Le point O' appartient à l'axe z'z.

La distance entre les centres des deux trous S_1 et S_2 est notée a.

Le phénomène d'interférences est observé sur un écran (E) placé perpendiculairement à l'axe z'z. Soit O le point de l'écran (E) appartenant à l'axe z'z.

La distance entre la plaque (P) et l'écran (E) est égale à D. On a ainsi D = O'O.


L'espace est rapporté au repère cartésien $(O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$ défini comme suit :

 \vec{e}_z : vecteur unitaire de l'axe Oz, orienté de la plaque (P) vers l'écran (E).

 \vec{e}_x : vecteur unitaire de l'axe Ox, parallèle à $[S_1S_2]$ et orienté de S_2 vers S_1 .

 \vec{e}_y : vecteur unitaire de l'axe Oy tel que la base $(\vec{e}_x, \vec{e}_y, \vec{e}_z)$ soit orthonormée directe.

Dans tout le problème, l'indice de réfraction de l'air sera pris égal à 1.

Troisième partie : description quantitative du phénomène

5/ Différence de chemin optique

Soit un point M de l'écran (E), de coordonnées (x, y, θ) dans le repère $(O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$.

5.1/ Exprimer les coordonnées des trous S_1 et S_2 dans le repère $(O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$.

Exprimer les distances S_1M et S_2M , respectivement entre les trous S_1 et S_2 et le point M. On exprimera S_1M et S_2M en fonction de a, D, x et y.

En déduire l'expression de la différence de chemin optique $\delta(M) = S_2 M - S_1 M$ au point M entre les rayons issus de S_1 et S_2 . On exprimera $\delta(M)$ en fonction de a, D, x et y. Le calcul sera mené sans aucune approximation.

- 5.2/ La distance a entre les deux trous étant petite par rapport à la distance d'observation D, et le point M étant proche du point O, on peut considérer que a, x, y sont très petits devant D. En faisant un développement limité au premier ordre de l'expression de $\delta(M)$ obtenue précédemment, en déduire l'expression simplifiée de $\delta(M)$ en fonction de a, D et x.
- 5.3/ En prenant en compte l'expression de $\delta(M)$ calculée à la question précédente, expliquer comment serait modifiée la figure d'interférences si on remplaçait les deux trous par deux fentes très fines appartenant à la plaque (P), parallèles à l'axe Oy et distantes de a?

6/ Intensité lumineuse de l'onde résultante

On représente par $s_1(t) = s_2(t) = s_0 \cos\left(\frac{2\pi c}{\lambda}t\right)$ l'expression des ondes respectivement aux points S_1 et S_2 .

 s_0 représente l'amplitude de l'onde considérée, c représente la célérité de la lumière dans le vide et t le temps.

On néglige l'atténuation de l'onde entre les trous et le point M.

6.1/ Déterminer l'expression $s_{1M}(t)$ de l'onde issue du trou S_1 lorsqu'elle arrive au point M. On exprimera $s_{1M}(t)$ en fonction de s_0 , S_1M , c, λ et t.

Déterminer, de même, l'expression $s_{2M}(t)$ de l'onde issue du trou S_2 lorsqu'elle arrive au point M. On exprimera $s_{2M}(t)$ en fonction de s_0 , S_2M , c, λ et t.

6.2/ En déduire l'expression $s_M(t)$ de l'onde qui résulte de la superposition des deux ondes $s_{1M}(t)$ et $s_{2M}(t)$ au point M. On exprimera $s_M(t)$ en fonction de s_0 , S_1M , S_2M , c, λ et t.

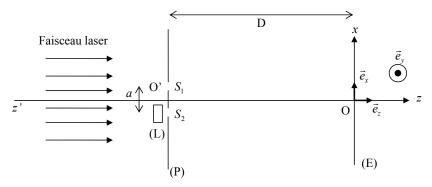
Mettre l'expression de $s_M(t)$ sous la forme du produit d'un terme indépendant du temps (amplitude de l'onde) et d'un terme dépendant du temps.

6.3/ Sachant que l'intensité lumineuse I_M (appelée aussi éclairement) qui résulte, au point M, de l'onde $s_M(t)$ est proportionnelle au carré de l'amplitude de $s_M(t)$ avec K constante de proportionnalité, exprimer l'intensité lumineuse I_M au point M en fonction de s_0 , K, δ et λ puis en fonction de s_0 , K, a, x, λ et D.

4/14

6.4/ Calculer, en détaillant clairement le raisonnement effectué, l'expression de l'interfrange i de la figure d'interférences. Exprimer i en fonction de a, λ et D.

6.5/ Tracer l'allure du graphe de I_M en fonction de x.

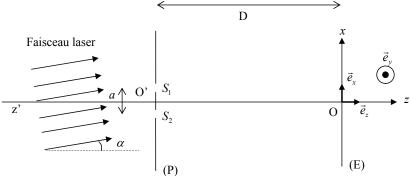

6.6/ Quelle est la position de la frange d'ordre 0?

Quatrième partie : modification du dispositif interférentiel

Nous nous plaçons encore pour cette partie dans le cas où la distance a entre les deux trous étant petite par rapport à la distance d'observation D, et le point M étant proche du point D, on peut considérer que a, x, y sont très petits devant D.

7/ Interposition d'une lame à faces parallèles

<u>Dans cette question uniquement</u>, on rajoute devant le trou S_2 une petite lame (L) (verre ou mica) à faces parallèles, d'épaisseur e et d'indice n pour la longueur d'onde λ utilisée. Le faisceau laser arrive toujours perpendiculairement à la plaque (P) et traverse la lame (L) sous incidence normale.


Calculer la différence de chemin optique $\delta'(M)$ au point M entre les rayons issus de S_1 et S_2 . Exprimer $\delta'(M)$ en fonction de n, e, a, x et D.

En déduire, en utilisant les résultats de la partie précédente, de quelle distance d la figure d'interférences sera translatée. On exprimera d en fonction de n, e, a et D.

Dans quel sens se déplace la figure d'interférences par rapport au cas de la question précédente ?

8/ Inclinaison du faisceau laser

Les rayons du faisceau laser ne sont plus parallèles à l'axe z'z. Ils sont inclinés d'un angle α par rapport à cet axe. On se placera dans le cas où l'angle α est petit.

Comment est modifiée la figure d'interférences ? Ouelle est dans ce cas la position de la frange d'ordre 0 ?

Partie C

Partie II - Machine à eau pétillante

Une machine à eau pétillante permet aux consommateurs de transformer facilement l'eau du robinet en eau pétillante en quelques secondes. Elle permet également de transformer une boisson sucrée quelconque en soda.

Ces machines offrent une alternative économique et écologique à la consommation de boissons gazeuses en bouteilles plastiques à usage unique.

L'eau pétillante est obtenue par dissolution de dioxyde de carbone sous haute pression dans l'eau initialement plate (sans gaz). Le dioxyde de carbone est stocké dans une bonbonne métallique sous haute pression. Les données relatives à la partie II sont indiquées ci-après.

Données - Partie II

Numéros atomiques et masses molaires atomiques

Élément	Н	С	0
Numéro atomique	1	6	8
Masse molaire (g·mol⁻¹)	1,0	12	16

Électronégativité dans l'échelle de Pauling

L'électronégativité de l'hydrogène vaut 2,2 et celle de l'oxygène vaut 3,4.

Enthalpies standard de formation à 298 K

$$\begin{split} & \Delta_f H^{\circ}(CO_{2(g)}) = -393,5 \text{ kJ} \cdot \text{mol}^{-1} \\ & \Delta_f H^{\circ}(CO_{2(aq)}) = -413,8 \text{ kJ} \cdot \text{mol}^{-1} \end{split}$$

Relation de Van't Hoff :
$$\frac{d \ln(K^{\circ})}{dT} = \frac{\Delta r H^{\circ}}{RT^2}$$

Masse volumique du thé liquide : ρ = 1,0 kg·L⁻¹

Masse d'un glaçon : m ≈ 10 g

Capacité thermique massique du thé liquide et de l'eau liquide : c_{liq} ≈ 4,0 kJ·K⁻¹·kg⁻¹

Capacité thermique massique de la glace : $c_g \approx 2.0 \text{ kJ} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}$

Enthalpie massique de fusion de la glace à 0 °C : L_{fus} = 3,3·10² kJ·kg⁻¹

II.1 - Étude des molécules d'eau et de dioxyde de carbone

Q19. Donner les schémas de Lewis des molécules d'eau et du dioxyde de carbone.

La molécule d'eau est coudée alors que le dioxyde de carbone est une molécule linéaire.

- Q20. Expliquer qualitativement cette différence.
- **Q21.** Représenter, justifications à l'appui, le vecteur moment dipolaire de la molécule d'eau sur un schéma de celle-ci. Préciser le qualificatif donné en conséquence à cette molécule.
- **Q22.** En expliquant la démarche suivie, déterminer quelle espèce, parmi l'eau ou le dioxyde de carbone, possède la température d'ébullition la plus élevée sous une pression de 1 bar.

II.2 - Équilibre chimique de gazéification de l'eau

Lors de la gazéification de l'eau, le dioxyde de carbone gazeux, supposé parfait, se dissout suivant l'équation (1):

$$CO_{2(g)} = CO_{2(aq)} \tag{1}$$

- **Q23.** Déterminer l'enthalpie standard de réaction de l'équilibre (1). Préciser si la transformation est exothermique ou endothermique.
- Q24. Indiquer l'influence d'une augmentation de température sur l'équilibre (1). Justifier la réponse apportée.

On donne dans le **tableau 1** quelques valeurs de la solubilité du CO₂ dans l'eau :

Température (°C)	0	10	20	30	40	50
Solubilité du dioxyde de carbone (g·L-1)	3,35	2,32	1,69	1,26	0,97	0,76

Tableau 1 - Solubilité du dioxyde de carbone dans l'eau à différentes températures sous 1 bar

Q25. La réponse à la question précédente est-elle en accord avec les valeurs expérimentales du tableau 1 ? Justifier la réponse apportée.

- **Q26.** Déterminer l'expression du quotient de réaction Q_r associé à l'équilibre précédent en fonction notamment de la pression partielle p_{CO_2} en dioxyde de carbone gazeux et de la concentration $[CO_{2(aq)}]$ en dioxyde de carbone dissous.
- **Q27.** Préciser l'influence d'une augmentation isotherme de la pression en dioxyde de carbone gazeux sur le quotient de réaction. Dans quel sens le milieu réactionnel évoluera-t-il pour retourner vers l'équilibre ?
- **Q28.** Donner l'expression du potentiel chimique du dioxyde de carbone gazeux supposé parfait, $\mu_{\text{CO2,1g}}$ à la température T et pour une pression partielle p_{CO_2} en CO₂.
- **Q29.** Donner l'expression du potentiel chimique du dioxyde de carbone dissous, soluté supposé infiniment dilué, $\mu_{\text{CO2},\text{aq}}$, à la température T, en fonction de la concentration en quantité de matière en CO_2 dissous.

Lorsqu'une espèce chimique est dans un état d'équilibre entre deux phases, son potentiel chimique est le même dans chacune des phases.

Q30. Montrer alors, lorsque l'équilibre (1) est établi à la température T et sous une pression totale P fixée, qu'il est possible d'écrire :

$$[CO_{2(aq)}] = k p_{CO_2}$$

où k est une constante ne dépendant que de la température T dont vous donnerez l'expression littérale.

Dans les conditions de l'expérience, la constante k a pour valeur : k = 0,025 mol·L⁻¹·bar⁻¹.

- Q31. Calculer la valeur de la concentration en quantité de matière en dioxyde de carbone dissous, à 298 K, en équilibre avec une phase gazeuse dont la pression partielle en CO₂ est égale à 4,0 bar.
- Q32. En déduire la masse de CO₂ contenue dans 1,0 L d'eau.