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Introduction
Cas introductif

Revenons sur un dipôle étudié
l’année dernière : la bobine.

Source : phet.colorado.

Peut-on retrouver l’expression du champ magnétique produit par une bobine
longue ?

https://phet.colorado.edu/sims/html/magnets-and-electromagnets/latest/magnets-and-electromagnets_all.html?locale=fr
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Densité de courant et intensité de courant
Définition

On a vu dans la leçon précédente que la source du champ électrique était

la charge électrique

.

De manière analogue, comme on l’a vu l’année dernière, la source du
champ magnétique est

le courant électrique

.

cause : charge Q ; effet :

champ électrique E⃗

cause : courant I ; effet :

champ magnétique B⃗.

Lorsque les sources de ces champs sont statiques, par exemple une
distribution de charges Q immobile ou une distribution de courant I
immobile, les champs produits seront qualifiés respectivement de champ
électrostatique et de champ magnétostatique.
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Densité de courant et intensité de courant
Définition

Comme on l’a fait pour lune distribution
de charge Q qu’on a caractérisée par une
densité de charge volumique ρ, surfacique
σ ou linéique λ, on peut définir une densité
de courant volumique j⃗.

Soit un cylindre de surface S modélisant un fil électrique. Ce fil est parcouru
par des différents porteurs de charge qi (C) de vitesse V⃗i (m · s−1) et de
densité volumique ni (m−3). Le vecteur densité volumique de courant
j⃗(M) en un point M de la surface du cylindre est

j⃗(M) =
∑

i

niqiV⃗i.

Il s’exprime donc en

C · s−1·m−2 soit en A · m−2.
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Densité de courant et intensité de courant
Définition

On peut montrer que le courant I parcou-
rant le cylindre peut être décomposé en
une somme continue de produit scalaire
entre un petit élément de surface orientée
n⃗dS en un point M quelconque de la sur-
face, et la densité de courant volumique
j⃗(M) en ce même point

I =
¨

S
j⃗(M) · n⃗dS.

Le courant I correspond au flux du vecteur densité de courant j⃗ au
travers de la surface S.
Le choix de l’orientation du vecteur normale à la surface n⃗ correspond au
choix d’un sens positif pour I le long du fil.
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Lorsqu’on a affaire, non plus à un cylindre,
mais à une nappe, on utilise la densité de
courant surfacique j⃗S et dans ce cas l’intensité
du courant dans la nappe est

I =
ˆ

L
j⃗S · n⃗dℓ

avec L la largeur de la nappe et dℓ l’élément d’intégration linéique le long
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Densité de courant et intensité de courant
Définition

Lorsqu’on a affaire, ni à un fil, ni à une nappe, mais à un fil, la valeur de la
densité linéique de courant j⃗L s’identifie à l’intensité du courant

j⃗L = In⃗.



Densité de courant et intensité de courant
Symétries et invariances

Certaines distributions continues de courant présentent certaines symétries
et invariances qu’il faut connaître car elles permettent d’obtenir
rapidement des informations sur le champ magnétique qu’elles
produisent.
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Symétries et invariances

La première distribution à connaître est la
fil rectiligne infini : on considère un fil
parcouru par un courant stationnaire I.

Étudions les plans de symétrie et d’anti-
symétrie de la distribution passant par un
point M quelconque. On constate
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d’antisymétrie.
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Étudions maintenant les invariances de la distributions. On constate

que si on fait tourner le fil d’un angle θ quelconque, la situation ne change
pas du point de vue de M : il y a invariance selon la coordonnée θ

que si on translate le fil le long de l’axe associé à la coordonnée z, la situation
ne change pas du point de vue de M : il y a invariance selon la coordonnée z

que si on translate la fil le long de l’axe associé à la coordonnée r, alors la
situation change du point de vue de M : le fil s’éloigne ou se rapproche, il n’y
a pas invariance selon la coordonnée r.



Densité de courant et intensité de courant
Symétries et invariances

La première distribution à connaître est la
fil rectiligne infini : on considère un fil
parcouru par un courant stationnaire I.

Étudions les plans de symétrie et d’anti-
symétrie de la distribution passant par un
point M quelconque. On constate

Étudions maintenant les invariances de la distributions. On constate
que si on fait tourner le fil d’un angle θ quelconque, la situation ne change
pas du point de vue de M : il y a invariance selon la coordonnée θ

que si on translate le fil le long de l’axe associé à la coordonnée z, la situation
ne change pas du point de vue de M : il y a invariance selon la coordonnée z

que si on translate la fil le long de l’axe associé à la coordonnée r, alors la
situation change du point de vue de M : le fil s’éloigne ou se rapproche, il n’y
a pas invariance selon la coordonnée r.



Densité de courant et intensité de courant
Symétries et invariances

La première distribution à connaître est la
fil rectiligne infini : on considère un fil
parcouru par un courant stationnaire I.

Étudions les plans de symétrie et d’anti-
symétrie de la distribution passant par un
point M quelconque. On constate

Étudions maintenant les invariances de la distributions. On constate
que si on fait tourner le fil d’un angle θ quelconque, la situation ne change
pas du point de vue de M : il y a invariance selon la coordonnée θ

que si on translate le fil le long de l’axe associé à la coordonnée z, la situation
ne change pas du point de vue de M : il y a invariance selon la coordonnée z

que si on translate la fil le long de l’axe associé à la coordonnée r, alors la
situation change du point de vue de M : le fil s’éloigne ou se rapproche, il n’y
a pas invariance selon la coordonnée r.



Densité de courant et intensité de courant
Symétries et invariances

La première distribution à connaître est la
fil rectiligne infini : on considère un fil
parcouru par un courant stationnaire I.

Étudions les plans de symétrie et d’anti-
symétrie de la distribution passant par un
point M quelconque. On constate

Étudions maintenant les invariances de la distributions. On constate
que si on fait tourner le fil d’un angle θ quelconque, la situation ne change
pas du point de vue de M : il y a invariance selon la coordonnée θ

que si on translate le fil le long de l’axe associé à la coordonnée z, la situation
ne change pas du point de vue de M : il y a invariance selon la coordonnée z

que si on translate la fil le long de l’axe associé à la coordonnée r, alors la
situation change du point de vue de M : le fil s’éloigne ou se rapproche, il n’y
a pas invariance selon la coordonnée r.



Densité de courant et intensité de courant
Symétries et invariances

La deuxième distribution à connaître est
celle d’un solénoïde infini : on considère
une bobine parcouru par un courant i(t).

Étudions les plans de symétrie et d’anti-
symétrie de la distribution passant par un
point M quelconque. On constate
Étudions les invariances par rapport au
point M . On constate



Densité de courant et intensité de courant
Symétries et invariances

La deuxième distribution à connaître est
celle d’un solénoïde infini : on considère
une bobine parcouru par un courant i(t).

Étudions les plans de symétrie et d’anti-
symétrie de la distribution passant par un
point M quelconque. On constate

Étudions les invariances par rapport au
point M . On constate

qu’un plan selon les vecteurs u⃗r et u⃗z coupe le cylindre en deux parties
ati-symétrique (i(t) n’est pas en miroir) : le plan (M, u⃗r, u⃗z) est plan
d’anti-symétrie
qu’un plan selon les vecteurs u⃗r et u⃗θ peut couper le cylindre en deux
parties miroirs : le plan (M, u⃗r, u⃗θ) est plan de symétrie
qu’un plan selon les vecteurs u⃗θ et u⃗z ne coupe pas le cylindre : le plan
(M, u⃗θ, u⃗z) n’est ni plan de symétrie ni plan d’antisymétrie.



Densité de courant et intensité de courant
Symétries et invariances

La deuxième distribution à connaître est
celle d’un solénoïde infini : on considère
une bobine parcouru par un courant i(t).

Étudions les plans de symétrie et d’anti-
symétrie de la distribution passant par un
point M quelconque. On constate

Étudions les invariances par rapport au
point M . On constate

qu’un plan selon les vecteurs u⃗r et u⃗z coupe le cylindre en deux parties
ati-symétrique (i(t) n’est pas en miroir) : le plan (M, u⃗r, u⃗z) est plan
d’anti-symétrie

qu’un plan selon les vecteurs u⃗r et u⃗θ peut couper le cylindre en deux
parties miroirs : le plan (M, u⃗r, u⃗θ) est plan de symétrie
qu’un plan selon les vecteurs u⃗θ et u⃗z ne coupe pas le cylindre : le plan
(M, u⃗θ, u⃗z) n’est ni plan de symétrie ni plan d’antisymétrie.



Densité de courant et intensité de courant
Symétries et invariances

La deuxième distribution à connaître est
celle d’un solénoïde infini : on considère
une bobine parcouru par un courant i(t).

Étudions les plans de symétrie et d’anti-
symétrie de la distribution passant par un
point M quelconque. On constate

Étudions les invariances par rapport au
point M . On constate

qu’un plan selon les vecteurs u⃗r et u⃗z coupe le cylindre en deux parties
ati-symétrique (i(t) n’est pas en miroir) : le plan (M, u⃗r, u⃗z) est plan
d’anti-symétrie
qu’un plan selon les vecteurs u⃗r et u⃗θ peut couper le cylindre en deux
parties miroirs : le plan (M, u⃗r, u⃗θ) est plan de symétrie

qu’un plan selon les vecteurs u⃗θ et u⃗z ne coupe pas le cylindre : le plan
(M, u⃗θ, u⃗z) n’est ni plan de symétrie ni plan d’antisymétrie.



Densité de courant et intensité de courant
Symétries et invariances

La deuxième distribution à connaître est
celle d’un solénoïde infini : on considère
une bobine parcouru par un courant i(t).

Étudions les plans de symétrie et d’anti-
symétrie de la distribution passant par un
point M quelconque. On constate

Étudions les invariances par rapport au
point M . On constate

qu’un plan selon les vecteurs u⃗r et u⃗z coupe le cylindre en deux parties
ati-symétrique (i(t) n’est pas en miroir) : le plan (M, u⃗r, u⃗z) est plan
d’anti-symétrie
qu’un plan selon les vecteurs u⃗r et u⃗θ peut couper le cylindre en deux
parties miroirs : le plan (M, u⃗r, u⃗θ) est plan de symétrie
qu’un plan selon les vecteurs u⃗θ et u⃗z ne coupe pas le cylindre : le plan
(M, u⃗θ, u⃗z) n’est ni plan de symétrie ni plan d’antisymétrie.



Densité de courant et intensité de courant
Symétries et invariances
La deuxième distribution à connaître est
celle d’un solénoïde infini : on considère
une bobine parcouru par un courant i(t).

Étudions les plans de symétrie et d’anti-
symétrie de la distribution passant par un
point M quelconque. On constate

Étudions les invariances par rapport au
point M . On constate

que si on fait tourner le solénoïde d’un angle θ quelconque, la situation ne
change pas du point de vue de M : il y a invariance selon la coordonnée θ

que si on translate le solénoïde le long de l’axe associé à la coordonnée z, la
situation ne change pas du point de vue de M car le solénoïde est infini : il y
a invariance selon la coordonnée z
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alors la situation change du point de vue de M : le solénoïde s’éloigne ou se
rapproche, il n’y a pas invariance selon la coordonnée r.
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que si on translate le solénoïde le long de l’axe associé à la coordonnée z, la
situation ne change pas du point de vue de M car le solénoïde est infini : il y
a invariance selon la coordonnée z

que si on translate le solénoïde le long de l’axe associé à la coordonnée r,
alors la situation change du point de vue de M : le solénoïde s’éloigne ou se
rapproche, il n’y a pas invariance selon la coordonnée r.
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Champ magnétique
Composantes et orientations du champ magnétique

À partir des symétries et invariances des distributions de courants, on
peut déterminer les orientations et les composantes du champ
magnétique.

Dans le cas du champ électrique on a vu que ce dernier est contenu dans
les plans de symétrie et donc normal aux plans d’antisymétrie de la
distribution de charges.

Dans le cas du champ magnétique, ce dernier est contenu dans les plans
d’antisymétrie et donc normal aux plans de symétrie de la distribution
de courants.

On retiendra que la normale d’un plan d’antisymétrie d’une distribution de
charges donne directement la direction du champ électrique qu’elle produit.
Et que la normale d’un plan de symétrie d’une distribution de courant
donne directement la direction du champ magnétique qu’elle produit.
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À partir des symétries et invariances des distributions de courants, on
peut déterminer les orientations et les composantes du champ
magnétique.

Dans le cas du champ électrique on a vu que ce dernier est contenu dans
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On retiendra que la normale d’un plan d’antisymétrie d’une distribution de
charges donne directement la direction du champ électrique qu’elle produit.
Et que la normale d’un plan de symétrie d’une distribution de courant
donne directement la direction du champ magnétique qu’elle produit.



Champ magnétique
Composantes et orientations du champ magnétique

Considérons le fil infini parcouru par un
courant I.

A priori, on ne sait rien du champ magnétique au point M , on le note

B⃗(M) = B(r, θ, z)u⃗r + B(r, θ, z)u⃗θ + B(r, θ, z)u⃗z.

On peut simplifier cette expression à partir des symétries et des invariances
de la distribution de courant.
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On peut simplifier cette expression à partir des symétries et des invariances
de la distribution de courant.

On utilise les symétries de courant pour obtenir l’orientation du
champ : le champ magnétique est contenu dans les plans d’antisymétrie et
perpendiculaire aux plans de symétrie de la distribution de charges.
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On peut simplifier cette expression à partir des symétries et des invariances
de la distribution de courant.
On a vu que le plan de symétries du fil est (M, u⃗r, u⃗z), ainsi le champ est
orienté selon

le vecteur unitaire u⃗θ, ainsi
B⃗(M) = B(r, θ, z)u⃗θ.
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On utilise maintenant les invariances de la distribution de courant pour
obtenir les composantes dont ne dépend pas le champ.
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On peut simplifier cette expression à partir des symétries et des invariances
de la distribution de courant.
On a vu que la distribution était invariantes par rotation selon l’angle θ et
par translation selon z, ainsi le champ ne dépend pas de ses coordonnées

B⃗(M) =

B(r)u⃗θ.
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Champ magnétique
Composantes et orientations du champ magnétique

Considérons le fil infini parcouru par un
courant I.

On peut confirmer que le champ est bien B⃗(M) = B(r)u⃗θ à partir de la
règle de la main droite en plaçant le pouce selon i(t) ou j⃗, soit u⃗z : les
autres doigts sont bien orientés selon u⃗θ.
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Composantes et orientations du champ magnétique

Considérons le solénoïde infini parcouru
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Champ magnétique
Composantes et orientations du champ magnétique

Considérons le solénoïde infini parcouru
par un courant I.

On peut confirmer que le champ est bien B⃗(M) = B(r)u⃗z à partir de la
règle de la main droite en plaçant les doigts autres que le pouce selon i(t)
ou j⃗, soit u⃗θ : le pouce est bien orienté selon u⃗z.



Champ magnétique
Circulation du champ magnétique

Afin d’employer le théorème au cœur de cette leçon, il nous revenir sur une
notion que l’on a déjà rencontrée : la circulation d’un champ, ici celui du
champ magnétique le long d’un contour L que l’on notera C(B⃗)L

C(B⃗)L =
ˆ

L
B⃗(M) · dℓ⃗

avec dℓ⃗ correspond l’élément de contour orienté.

En fonction de la géométrie du contour choisi, il faut sélectionner la
bonne expression de dℓ⃗.
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Champ magnétique
Théorème d’Ampère

Le théorème que l’on utilise pour obtenir l’expression du champ
magnétostatique dû à une distribution de courant est le théorème
d’Ampère :

la circulation du champ magnétique le long d’une boucle fermée C est égale
au courants électriques enlacés par la boucle

∑
i Ien, i multiplié par la

constante µ0

˛
C

B⃗(M) · dℓ⃗ = µ0
∑

i

Ii.

Attention, les courants enlacés sont algébriques : comptés positivement
s’ils traversent le contour d’Ampère dans le sens donné par la règle de la
main droite et négativement sinon.



Champ magnétique
Théorème d’Ampère

Quelle est la somme de courants enlacés ?∑
i

Ii =

− I1 − I2 + I3 + I4 − I4.

À l’aide du contour C et de la main droite on obtient le sens selon lequel on
compte les courants positivement : vers le haut.
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Champ magnétique
Théorème d’Ampère

Exploitons le théorème d’Ampère pour
obtenir l’expression du champ pour un
fil infini parcouru par un courant d’in-
tensité I.

Pour ce faire, il faut choisir un
contour d’Ampère : une ligne fermée
passant par un point M de l’espace.
Pour un fil, on choisit pour contour,
un cercle de rayon r entourant le
fil.
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Exploitons le théorème d’Ampère pour
obtenir l’expression du champ pour un
fil infini parcouru par un courant d’in-
tensité I.

Pour ce faire, il faut choisir un
contour d’Ampère : une ligne fermée
passant par un point M de l’espace.
Pour un fil, on choisit pour contour,
un cercle de rayon r entourant le
fil.
Première étape : on a montré, d’après les symétries et les invariances de la
distribution de courant dans le fil que le champ B⃗(M) est tel que

B⃗(M) = B(r)u⃗θ.
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0
B(r)u⃗θ · u⃗θrdθ = µ0Ienl



Champ magnétique
Théorème d’Ampère
Exploitons le théorème d’Ampère pour
obtenir l’expression du champ pour un
fil infini parcouru par un courant d’in-
tensité I.

Pour ce faire, il faut choisir un
contour d’Ampère : une ligne fermée
passant par un point M de l’espace.
Pour un fil, on choisit pour contour,
un cercle de rayon r entourant le
fil.
D’après le théorème d’Ampère

˛
L

B⃗(M) · dℓ⃗ = µ0Ienl

ˆ 2π

0
B(r)u⃗θ · u⃗θrdθ = µ0Ienl



Champ magnétique
Théorème d’Ampère
Exploitons le théorème d’Ampère pour
obtenir l’expression du champ pour un
fil infini parcouru par un courant d’in-
tensité I.

Pour ce faire, il faut choisir un
contour d’Ampère : une ligne fermée
passant par un point M de l’espace.
Pour un fil, on choisit pour contour,
un cercle de rayon r entourant le
fil.

ˆ 2π

0
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0
dθ = µ0Ienl



Champ magnétique
Théorème d’Ampère
Exploitons le théorème d’Ampère pour
obtenir l’expression du champ pour un
fil infini parcouru par un courant d’in-
tensité I.

Pour ce faire, il faut choisir un
contour d’Ampère : une ligne fermée
passant par un point M de l’espace.
Pour un fil, on choisit pour contour,
un cercle de rayon r entourant le
fil.

ˆ 2π

0
B(r)u⃗θ · u⃗θrdθ = µ0Ienl

rB(r)
ˆ 2π

0
dθ = µ0Ienl



Champ magnétique
Théorème d’Ampère
Exploitons le théorème d’Ampère pour
obtenir l’expression du champ pour un
fil infini parcouru par un courant d’in-
tensité I.

Pour ce faire, il faut choisir un
contour d’Ampère : une ligne fermée
passant par un point M de l’espace.
Pour un fil, on choisit pour contour,
un cercle de rayon r entourant le
fil.

rB(r)
ˆ 2π

0
dθ = µ0Ienl

B(r) = µ0I

2πr
.

On reconnaît l’expression du périmètre d’un cercle L = 2πr.
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Exploitons le théorème d’Ampère pour
obtenir l’expression du champ pour un
fil infini parcouru par un courant d’in-
tensité I.

Pour ce faire, il faut choisir un
contour d’Ampère : une ligne fermée
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Champ magnétique
Théorème d’Ampère

Exploitons le théorème d’Ampère pour
obtenir l’expression du champ pour un
fil infini parcouru par un courant d’in-
tensité I.

Pour ce faire, il faut choisir un
contour d’Ampère : une ligne fermée
passant par un point M de l’espace.
Pour un fil, on choisit pour contour,
un cercle de rayon r entourant le
fil.
Au final, le champ magnétique produit par le fil infini est

B⃗(M) = µ0I

2πr
u⃗θ.



Champ magnétique
Théorème d’Ampère

Exploitons le théorème d’Ampère pour obtenir l’expression du champ pour
un solénoïde infini de rayon R et parcouru par un courant I.

Pour ce faire, il faut choisir un contour d’Ampère : une ligne fermée
passant par un point M de l’espace. Pour un solénoïde, on choisit pour
contour, un rectangle.
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Exploitons le théorème d’Ampère pour obtenir l’expression du champ pour
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passant par un point M de l’espace. Pour un solénoïde, on choisit pour
contour, un rectangle.



Champ magnétique
Théorème d’Ampère

Première étape : contour à l’inté-
rieur du solénoïde On décompose la
circulation du champ sur le contour
fermé qu’est le rectangle

˛
C1

B⃗ · dℓ⃗ = µ0Ienl



Champ magnétique
Théorème d’Ampère

Première étape : contour à l’inté-
rieur du solénoïde On décompose la
circulation du champ sur le contour
fermé qu’est le rectangle

˛
C1

B⃗ · dℓ⃗ = µ0Ienl

ˆ B

A
B(r)u⃗z · u⃗zdz +

ˆ C

B
B(r)u⃗z · (−u⃗r) dr

+
ˆ D

C
B(r)u⃗z · (−u⃗z) dz +

ˆ A

D
B(r)u⃗z · u⃗rdr = µ0I



Champ magnétique
Théorème d’Ampère

Première étape : contour à l’inté-
rieur du solénoïde On décompose la
circulation du champ sur le contour
fermé qu’est le rectangle

˛
C1

B⃗ · dℓ⃗ = µ0Ienl

B(r1)
ˆ B

A
dz − B(r2)

ˆ D

C
dz = µ0Ienl ; B(r1)AB − B(r2)CD = µ0Ienl

B(r1) − B(r2) = µ0Ienl
AB

car AB = CD.
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Théorème d’Ampère

Première étape : contour à l’inté-
rieur du solénoïde On décompose la
circulation du champ sur le contour
fermé qu’est le rectangle

˛
C1

B⃗ · dℓ⃗ = µ0Ienl

B(r1) − B(r2) = µ0Ienl
AB

= 0 soit B(r1) = B(r2).

car le rectangle n’enlace aucun courant Ienl = 0. Le champ magnétique
est le même en tout point à l’intérieur du solénoïde.
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Théorème d’Ampère

On peut connaître la valeur du champ
magnétique à l’extérieur à partir des
lignes de champs.

Dans le cas d’un solénoïde fini, la valeur du champ diminue plus on
s’éloigne de la source : ce qui se traduit par des lignes de champs de plus
en plus éloignées les unes des autres.
Dans le cas d’un solénoïde infini, les lignes de champs se rejoignent à
l’infini : ce qui traduit une valeur de champ nul à l’extérieur du
solénoïde.
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Deuxième étape : contour à l’ex-
térieur du solénoïde On décompose
la circulation du champ sur le contour
fermé qu’est le rectangle

˛
C1

B⃗ · dℓ⃗ = µ0Ienl

Le champ magnétique extérieur est nul l’extérieur du solénoïde infini.
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Troisième étape : contour à cheval
sur le solénoïde et l’extérieur On
décompose la circulation du champ sur
le contour fermé qu’est le rectangle

˛
C1

B⃗ · dℓ⃗ = µ0Ienl
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le contour fermé qu’est le rectangle

˛
C1

B⃗ · dℓ⃗ = µ0Ienl

B(r1)
ˆ B

A
dz − B(r2)

ˆ D

C
dz = µ0Ienl ; B(r1)AB − B(r2)CD = µ0Ienl

B(r1) − B(r2) = µ0NI

AB
car AB = CD.



Champ magnétique
Théorème d’Ampère

Troisième étape : contour à cheval
sur le solénoïde et l’extérieur On
décompose la circulation du champ sur
le contour fermé qu’est le rectangle

˛
C1

B⃗ · dℓ⃗ = µ0Ienl

B(r1) − B(r2) = µ0NI

ℓ
= µ0nI.

car le rectangle enlace N courants I sur une distance ℓ = AB. On
retrouve l’expression du champ magnétique dans une bobine longue.



Champ magnétique
Théorème d’AmpèreComme on l’a vu l’année dernière cette
expression du champ magnétique pour
une bobine longue n’est valable que si
l’on étudie le champ à l’intérieur du
bobine longue, soit en négligeant les
effets de bords.

Dans le cas du condensateur ou de la
bobine, négliger les effets de bords
revient à utiliser une distribution
infinie. On étudie uniquement ce qui
se passe “loin” des bords de la bobine
ou du condensateur.

B⃗(M) = µ0NI

ℓ
u⃗z = µ0nIu⃗z.



Champ magnétique
Lignes et tubes de champ

On définit une ligne de champ magnétostatique B⃗ comme
une courbe tangente au champ B⃗ en chacun de ses point.

On obtient l’équation d’une ligne de champ en écrivant que le champ en un
point M B⃗ est tangent à l’élément de longueur orientée dr⃗(M) de la ligne
de champ en ce point, soit

B⃗(M) ∧ dr⃗(M) = 0⃗.

On retiendra que, comme les lignes de champs sont tangents aux champs
magnétostatique, elles sont, comme lui, contenues dans les plans
d’antisymétrie et orthogonales aux plans de symétries de la
distribution de courant.
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Champ magnétique
Lignes et tubes de champ

On peut définir un tube de champ comme les
surfaces ouvertes formée par un ensemble de lignes
de champs s’appuyant sur une courbe fermée.

Dans l’exemple ci-contre, les courbes fermées sont
deux cercles de diamètres différents.

Une zone où les lignes de champs sont resserrées correspond à une zone
où le champ électrique est intense, alors qu’une zone où les lignes de
champs sont espacées correspond à une zone ooù le champ électrique
est faible.
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