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Introduction
Cas introductif

Revenons sur un dipdle étudié
I'année derniere : la bobine.

Source : phet.colorado.


https://phet.colorado.edu/sims/html/magnets-and-electromagnets/latest/magnets-and-electromagnets_all.html?locale=fr

Introduction
Cas introductif

Revenons sur un dipdle étudié
I'année derniere : la bobine.

Source : phet.colorado.

Peut-on retrouver I'expression du champ magnétique produit par une bobine
longue ?


https://phet.colorado.edu/sims/html/magnets-and-electromagnets/latest/magnets-and-electromagnets_all.html?locale=fr
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Densité de courant et intensité de courant
Définition

On a vu dans la lecon précédente que la source du champ électrique était

De maniére analogue, comme on I'a vu I'année derniere, la source du
champ magnétique est
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Définition

On a vu dans la lecon précédente que la source du champ électrique était
la charge électrique.

De maniére analogue, comme on I'a vu I'année derniere, la source du
champ magnétique est le courant électrique.
@ cause : charge Q) ; effet : champ électrique E

@ cause : courant [ ; effet : champ magnétique B.



Densité de courant et intensité de courant

Définition

On a vu dans la lecon précédente que la source du champ électrique était
la charge électrique.

De maniére analogue, comme on I'a vu I'année derniere, la source du
champ magnétique est le courant électrique.
@ cause : charge Q) ; effet : champ électrique E

@ cause : courant [ ; effet : champ magnétique B.

Lorsque les sources de ces champs sont statiques, par exemple une
distribution de charges () immobile ou une distribution de courant I
immobile, les champs produits seront qualifiés respectivement de champ
électrostatique et de champ magnétostatique.
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Définition

Comme on I'a fait pour lune distribution
de charge (Q qu'on a caractérisée par une
densité de charge volumique p, surfacique
o ou linéique A, on peut définir une densité
de courant volumique j
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Comme on I'a fait pour lune distribution
de charge (Q qu'on a caractérisée par une
densité de charge volumique p, surfacique
o ou linéique A, on peut définir une densité
de courant volumique j

Soit un cylindre de surface S modélisant un fil électrique. Ce fil est parcouru
par des différents porteurs de charge ¢; (C) de vitesse V; (m-s~!) et de
densité volumique n; (m~3). Le vecteur densité volumique de courant
;(M) en un point M de la surface du cylindre est

= an%‘z
i

Il s'exprime donc en
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Définition

Comme on I'a fait pour lune distribution
de charge (Q qu'on a caractérisée par une
densité de charge volumique p, surfacique
o ou linéique A, on peut définir une densité
de courant volumique j

Soit un cylindre de surface S modélisant un fil électrique. Ce fil est parcouru
par des différents porteurs de charge ¢; (C) de vitesse V; (m-s~!) et de
densité volumique n; (m~3). Le vecteur densité volumique de courant
;(M) en un point M de la surface du cylindre est

= an%‘z
i

1

Il s’exprime donc en C-s~'-m~2 soit en A - m~2.



Densité de courant et intensité de courant
Définition

On peut montrer que le courant I parcou-
rant le cylindre peut étre décomposé en
une somme continue de produit scalaire
entre un petit élément de surface orientée
77d.S en un point M quelconque de la sur-
face, et la densité de courant volumique
J(M) en ce méme point

1://3](]\4).%5. |



Densité de courant et intensité de courant
Définition

On peut montrer que le courant I parcou-
rant le cylindre peut étre décomposé en
une somme continue de produit scalaire
entre un petit élément de surface orientée
77d.S en un point M quelconque de la sur-
face, et la densité de courant volumique
J(M) en ce méme point

1://3](]\4).%5. |

Le courant I correspond au flux du vecteur densité de courant ; au
travers de la surface S. '

Le choix de I'orientation du vecteur normale a la surface 77 correspond au
choix d'un sens positif pour I le long du fil.
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Définition

Lorsqu'on a affaire, non plus a un cylindre,
mais 3 une nappe, on utilise la densité de
courant surfacique fs et dans ce cas |'intensité
du courant dans la nappe est

I:/js-ﬁde
L

avec L la largeur de la nappe et df I'élément d'intégration linéique le long
de cette largeur.

Dans ce cas le vecteur densité de courant surfacique jg s'exprime en
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Définition

Lorsqu'on a affaire, non plus a un cylindre,
mais 3 une nappe, on utilise la densité de
courant surfacique fs et dans ce cas |'intensité
du courant dans la nappe est

I:/js-ﬁde
L

avec L la largeur de la nappe et df I'élément d'intégration linéique le long
de cette largeur.

Dans ce cas le vecteur densité de courant surfacique jg s'exprime en
A-m~! et le courant I correspond 2 la circulation du vecteur densité de
courant surfacique.



Densité de courant et intensité de courant

Définition

Lorsqu’on a affaire, ni a un fil, ni a une nappe, mais a un fil, la valeur de la
densité linéique de courant j;, s'identifie a I'intensité du courant

< modéle linéique &—0



Densité de courant et intensité de courant

Symétries et invariances

Certaines distributions continues de courant présentent certaines symétries
et invariances qu'il faut connaitre car elles permettent d'obtenir
rapidement des informations sur le champ magnétique qu’elles
produisent.



Densité de courant et intensité de courant

Symétries et invariances

La premiere distribution a connaitre est la
fil rectiligne infini : on considére un fil
parcouru par un courant stationnaire I.
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La premiére distribution a connaitre est la o
fil rectiligne infini : on considere un fil
parcouru par un courant stationnaire 1.
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o4 ot

Nl !

symétrie de la distribution passant par un
point M quelconque. On constate

Etudions les plans de symétrie et d’anti- T

@ qu'un plan selon les vecteurs 1, et i, peut couper le fil en deux parties
symétriques (7 est en miroir) : le plan (M, ,, ) est plan de symétrie
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La premiére distribution a connaitre est la o
fil rectiligne infini : on considere un fil
parcouru par un courant stationnaire 1.

; |/
o4 ot
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symétrie de la distribution passant par un
point M quelconque. On constate

Etudions les plans de symétrie et d’anti- T

@ qu'un plan selon les vecteurs 1, et i, peut couper le fil en deux parties
symétriques (; est en miroir) : le plan (M, i, ) est plan de symétrie

@ qu'un plan selon les vecteurs i, et iy peut couper le fil en deux parties
anti-symétrique (; n'est pas en miroir) : le plan (M, d,, i) est plan
d’'antisymétrie

@ qu'un plan selon les vecteurs iy et @, ne peut pas couper le fil en deux
parties égales : le plan (M, iy, i,) n'est ni plan de symétrie ni plan
d’'antisymétrie.
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Symétries et invariances
La premiére distribution a connaitre est la I~
fil rectiligne infini : on considere un fil T T?
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Etudions maintenant les invariances de la distributions. On constate
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La premiére distribution a connaitre est la o
fil rectiligne infini : on considere un fil
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Etudions maintenant les invariances de la distributions. On constate

@ que si on fait tourner le fil d’un angle 8 quelconque, la situation ne change
pas du point de vue de M : il y a invariance selon la coordonnée 6

@ que si on translate le fil le long de I'axe associé a la coordonnée z, la situation
ne change pas du point de vue de M : il y a invariance selon la coordonnée z
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Symétries et invariances

La premiére distribution a connaitre est la o
fil rectiligne infini : on considere un fil

parcouru par un courant stationnaire 1.

T
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Etudions maintenant les invariances de la distributions. On constate

@ que si on fait tourner le fil d’un angle 8 quelconque, la situation ne change
pas du point de vue de M : il y a invariance selon la coordonnée 6

@ que si on translate le fil le long de I'axe associé a la coordonnée z, la situation
ne change pas du point de vue de M : il y a invariance selon la coordonnée z

@ que si on translate la fil le long de I'axe associé a la coordonnée r, alors la
situation change du point de vue de M : le fil s’éloigne ou se rapproche, il n'y
a pas invariance selon la coordonnée 7.
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Symétries et invariances

La deuxieme distribution a connaitre est
celle d'un solénoide infini : on considére
une bobine parcouru par un courant i(t).
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Symétries et invariances

La deuxieme distribution a connaitre est t
celle d'un solénoide infini : on considere
une bobine parcouru par un courant i(t).

Etudions les plans de symétrie et d’anti- ~— W
symétrie de la distribution passant par un W M
point M quelconque. On constate

@ qu'un plan selon les vecteurs ., et i, coupe le cylindre en deux parties
ati-symétrique (i(t) n'est pas en miroir) : le plan (M, ,, ) est plan
d’anti-symétrie

@ qu'un plan selon les vecteurs i, et iy peut couper le cylindre en deux
parties miroirs : le plan (M, ,,Uy) est plan de symétrie

@ qu'un plan selon les vecteurs iy et i, ne coupe pas le cylindre : le plan
(M, iy, 1) n'est ni plan de symétrie ni plan d'antisymétrie.
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change pas du point de vue de M : il y a invariance selon la coordonnée 6
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La deuxiéme distribution a connaftre est
celle d'un solénoide infini : on considere
une bobine parcouru par un courant i(t).
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@ que si on fait tourner le solénoide d'un angle 6 quelconque, la situation ne
change pas du point de vue de M : il y a invariance selon la coordonnée 6

@ que si on translate le solénoide le long de I'axe associé a la coordonnée z, la
situation ne change pas du point de vue de M car le solénoide est infini : il y

a invariance selon la coordonnée z
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Symétries et invariances

La deuxieme distribution a connaltre est
celle d'un solénoide infini : on considere
une bobine parcouru par un courant i(t).

Etudions les invariances par rapport au
point M. On constate

i(®)

@ que si on fait tourner le solénoide d'un angle 6 quelconque, la situation ne
change pas du point de vue de M : il y a invariance selon la coordonnée 6

@ que si on translate le solénoide le long de I'axe associé a la coordonnée z, la
situation ne change pas du point de vue de M car le solénoide est infini : il y

a invariance selon la coordonnée z

@ que si on translate le solénoide le long de I'axe associé a la coordonnée 7,
alors la situation change du point de vue de M : le solénoide s’éloigne ou se
rapproche, il n'y a pas invariance selon la coordonnée 7.
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Composantes et orientations du champ magnétique

A partir des symétries et invariances des distributions de courants, on

peut déterminer les orientations et les composantes du champ
magnétique.
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Champ magnétique

Composantes et orientations du champ magnétique

A partir des symétries et invariances des distributions de courants, on
peut déterminer les orientations et les composantes du champ
magnétique.

Dans le cas du champ électrique on a vu que ce dernier est contenu dans
les plans de symétrie et donc normal aux plans d’antisymétrie de la
distribution de charges.

Dans le cas du champ magnétique, ce dernier est contenu dans les plans
d’antisymétrie et donc normal aux plans de symétrie de la distribution
de courants.

On retiendra que la normale d'un plan d'antisymétrie d’une distribution de
charges donne directement la direction du champ électrique qu'elle produit.
Et que la normale d'un plan de symétrie d'une distribution de courant

donne directement la direction du champ magnétique qu’elle produit. '



Champ magnétique

Composantes et orientations du champ magnétique

Considérons le fil infini parcouru par un
courant 1.

A priori, on ne sait rien du champ magnétique au poiht M, on le note
B(M) = B(r,0, 2)id, + B(r,0, 2)ig + B(r, 0, 2)i..

On peut simplifier cette expression a partir des symétries et des invariances
de la distribution de courant.
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Composantes et orientations du champ magnétique
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Considérons le fil infini parcouru par un
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courant [. 1o
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A priori, on ne sait rien du champ magnétique au poiht M, on le note
B(M) = B(r,0, 2)i, + B(r,0, 2)ig + B(r,0, 2)il..
On peut simplifier cette expression a partir des symétries et des invariances

de la distribution de courant.

On utilise les symétries de courant pour obtenir I'orientation du
champ : le champ magnétique est contenu dans les plans d'antisymétrie et

perpendiculaire aux plans de symétrie de la distribution de charges. ,
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Composantes et orientations du champ magnétique

Considérons le fil infini parcouru par un
0
courant 1. !

A priori, on ne sait rien du champ magnétique au point M, on le note
B(M) = B(r,0, 2)i, + B(r,0, )iy + B(r,0, z)iL..

On peut simplifier cette expression a partir des symétries et des invariances

de la distribution de courant.

On a vu que le plan de symétries du fil est (M, i, ), ainsi le champ est
orienté selon



Champ magnétique

Composantes et orientations du champ magnétique

Considérons le fil infini parcouru par un
0
courant 1. !

A priori, on ne sait rien du champ magnétique au point M, on le note
B(M) = B(r,0, 2)i, + B(r,0, )iy + B(r,0, z)iL..

On peut simplifier cette expression a partir des symétries et des invariances

de la distribution de courant.

On a vu que le plan de symétries du fil est (M, i, ), ainsi le champ est
orienté selon le vecteur unitaire iy, ainsi

B(M) = B(r,0, 2)iy.



Champ magnétique

Composantes et orientations du champ magnétique

\
Considérons le fil infini parcouru par un ! IJ , V
courant [. 1o Mo
BIENR
N

A priori, on ne sait rien du champ magnétique au point M, on le note

—

B(M) = B(r,0, 2)i, + B(r,0,2)dy + B(r,0,2)i,.

On peut simplifier cette expression a partir des symétries et des invariances
de la distribution de courant.

On utilise maintenant les invariances de la distribution de courant pour
obtenir les composantes dont ne dépend pas le champ. '
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Composantes et orientations du champ magnétique

[
Considérons le fil infini parcouru par un ! I"/ . |/
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A priori, on ne sait rien du champ magnétique au point M, on le note
B(M) = B(r,0, 2)i, + B(r,0, 2)ilg + B(r,0, z)iL..

On peut simplifier cette expression a partir des symétries et des invariances
de la distribution de courant.

On a vu que la distribution était invariantes par rotation selon I'angle 6 et
par translation selon z, ainsi le champ ne dépend pas de ses coordonnées



Champ magnétique

Composantes et orientations du champ magnétique

Considérons le fil infini parcouru par un
0
courant 1. !

A priori, on ne sait rien du champ magnétique au point M, on le note
B(M) = B(r,0, 2)i, + B(r,0, 2)ilg + B(r,0, z)iL..

On peut simplifier cette expression a partir des symétries et des invariances
de la distribution de courant.

On a vu que la distribution était invariantes par rotation selon I'angle 6 et
par translation selon z, ainsi le champ ne dépend pas de ses coordonnées

B(M) = B(r)ig. @



Champ magnétique

Composantes et orientations du champ magnétique

j p

R
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Considérons le fil infini parcouru par un

courant 1. [
St
N

On peut confirmer que le champ est bien E(M) = B(r)ty a partir de la
régle de la main droite en placant le pouce selon i(t) ou j, soit i, : les

autres doigts sont bien orientés selon iy.



Champ magnétique

Composantes et orientations du champ magnétique

Considérons le solénoide infini parcouru N
par un courant I.

it)

A priori, on ne sait rien du champ magnétique au point M, on le note

—

B(M) = B(r,0, 2)t, + B(r,0, z)ig + B(r,0, 2) ..

On peut simplifier cette expression a partir des symétries et des invariances
de la distribution de charges.



Champ magnétique

Composantes et orientations du champ magnétique

Considérons le solénoide infini parcouru
par un courant I.

N
0—

N —1

i(®)

A priori, on ne sait rien du champ magnétique au point M, on le note

B(M) = B(r,0, 2)i, + B(r,0, 2)ig + B(r,0, 2)il..

On peut simplifier cette expression a partir des symétries et des invariances

de la distribution de charges.

On utilise les symétries de courant pour obtenir I'orientation du
champ : le champ magnétique est contenu dans les plans d'antisymétrie et

perpendiculaire aux plans de symétrie de la distribution de charges. Q



Champ magnétique

Composantes et orientations du champ magnétique

Considérons le solénoide infini parcouru
par un courant I.

N

00—
N —1

i)

A priori, on ne sait rien du champ magnétique au point M, on le note
B(M) = B(r,0, 2)i, + B(r,0, 2)ig + B(r,0, z)iL..

On peut simplifier cette expression a partir des symétries et des invariances

de la distribution de charges.

On a vu que le plan de symétrie du cylindre est (M, i, Uy), ainsi le champ

est orienté selon
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Composantes et orientations du champ magnétique

Considérons le solénoide infini parcouru N

00— i
par un courant I.
N —1

a

i)

A priori, on ne sait rien du champ magnétique au point M, on le note
B(M) = B(r,0, 2)i, + B(r,0, 2)ig + B(r,0, z)iL..

On peut simplifier cette expression a partir des symétries et des invariances

de la distribution de charges.

On a vu que le plan de symétrie du cylindre est (M, i, Uy), ainsi le champ
est orienté selon le vecteur unitaire 4., ainsi

B(M) = B(r,0, 2)i..
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Composantes et orientations du champ magnétique

Considérons le solénoide infini parcouru N, I

par un courant I. ]

i)

A priori, on ne sait rien du champ magnétique au point M, on le note
B(M) = B(r,0, 2)i, + B(r,0, )iy + B(r,0, z)iL..

On peut simplifier cette expression a partir des symétries et des invariances
de la distribution de charges.

On utilise maintenant les invariances de la distribution de courants
pour obtenir les composantes dont ne dépend pas le champ. '
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Composantes et orientations du champ magnétique

Considérons le solénoide infini parcouru N

00— i
par un courant I.
N —1

a

i(®)

A priori, on ne sait rien du champ magnétique au point M, on le note
B(M) = B(r,0, 2)i, + B(r,0, 2)ig + B(r,0, z)iL..

On peut simplifier cette expression a partir des symétries et des invariances
de la distribution de charges.

On a vu que la distribution était invariantes par rotation selon I'angle 6 et
par translation selon z, ainsi le champ ne dépend pas de ses coordonnées

B(M) =
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Composantes et orientations du champ magnétique

Considérons le solénoide infini parcouru N

00— i
par un courant I.
N —1

a

i(®)

A priori, on ne sait rien du champ magnétique au point M, on le note
B(M) = B(r,0, 2)i, + B(r,0, 2)ig + B(r,0, z)iL..

On peut simplifier cette expression a partir des symétries et des invariances
de la distribution de charges.

On a vu que la distribution était invariantes par rotation selon I'angle 6 et
par translation selon z, ainsi le champ ne dépend pas de ses coordonnées

B(M) = B(r)i,. @
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Composantes et orientations du champ magnétique

Considérons le solénoide infini parcouru N |
00— i
par un courant I. Y,
\b—/

On peut confirmer que le champ est bien E(M) = B(r)u, a partir de la
régle de la main droite en placant les doigts autres que le pouce selon i(t)
ou j, soit iy : le pouce est bien orienté selon .
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Circulation du champ magnétique

Afin d'employer le théoréme au coeur de cette lecon, il nous revenir sur une
notion que |'on a déja rencontrée : la circulation d’un champ, ici celui du
champ magnétique le long d'un contour £ que I'on notera C(B).

éﬁ_/B )-al @

avec d/ correspond |'élément de contour orienté.



Champ magnétique

Circulation du champ magnétique

Afin d'employer le théoréme au coeur de cette lecon, il nous revenir sur une
notion que |'on a déja rencontrée : la circulation d’un champ, ici celui du
champ magnétique le long d'un contour £ que I'on notera C(B).

éﬁ_/B )-al @

avec d/ correspond |'élément de contour orienté.

En fonction de la géométrie du contour choisi, il faut sélectionner la
bonne expression de d/.
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Théoréme d'Ampere

Le théoréme que I'on utilise pour obtenir I'expression du champ
magnétostatique dii a une distribution de courant est le théoréme
d’Ampere :

la circulation du champ magnétique le long d’une boucle fermée C est égale
au courants électriques enlacés par la boucle }; I, ; multiplié par la

constante o '
yéé(M) Al = ,u,()ZIi. |

Attention, les courants enlacés sont algébriques : comptés positivement
s'ils traversent le contour d'Ampére dans le sens donné par la régle de la
main droite et négativement sinon.
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Théoréme d'Ampére

Quelle est la somme de courants enlacés ?

Q>
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Théoréme d'Ampére

Quelle est la somme de courants enlacés?

ZL’Z — L — L+ 13+ 1y — 1.
i

I

A I'aide du contour C et de la main droite on obtient le sens selon lequel on
compte les courants positivement : vers le haut.
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Théoréme d'Ampére

Exploitons le théoreme d'Ampére pour
obtenir |'expression du champ pour un
fil infini parcouru par un courant d'in-
tensité I.

N
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Théoréme d'Ampere

Exploitons le théoreme d'Ampére pour
obtenir |'expression du champ pour un
fil infini parcouru par un courant d'in-
tensité I.

Pour ce faire, il faut choisir un
contour d’Ampeére : une ligne fermée
passant par un point M de l'espace.
Pour un fil, on choisit pour contour,
un cercle de rayon r entourant le
fil.

V)




Champ magnétique

Théoréme d'Ampere
Exploitons le théoreme d'Ampére pour

obtenir I'expression du champ pour un
fil infini parcouru par un courant d'in- il

tensité 1.

contour d’Ampeére : une ligne fermée

passant par un point M de l'espace.

Pour un fil, on choisit pour contour, - I
N A

un cercle de rayon r entourant le ;

fil. ’

Premiére étape : on a montré, d'apres les symétries et les invariances de la

distribution de courant dans le fil que le champ B(M) est tel que

L]
Pour ce faire, il faut choisir un 10 ) >|/
]




Champ magnétique

Théoréme d'Ampere

Exploitons le théoréeme d'Ampére pour
obtenir I'expression du champ pour un
fil infini parcouru par un courant d'in-
tensité 1.

Pour ce faire, il faut choisir un
contour d’Ampeére : une ligne fermée
passant par un point M de |'espace.
Pour un fil, on choisit pour contour,
un cercle de rayon r entourant le
fil.

D’'apres le théoréme d'Ampére

I
/

T
—

i
NG
=0

—
S)
—

e
\

% E(M) ’ dZ: polent
L



Champ magnétique

Théoréme d'Ampere

Exploitons le théoréeme d'Ampére pour
obtenir I'expression du champ pour un
fil infini parcouru par un courant d'in-
tensité 1.

Pour ce faire, il faut choisir un
contour d’Ampeére : une ligne fermée
passant par un point M de |'espace.
Pour un fil, on choisit pour contour,
un cercle de rayon r entourant le
fil.

D’'apres le théoréme d'Ampére

I
/

T
—

i
NG
=0

—
S)
—

e
\

% E(M) ’ dZ: polent
L

2
/ B(r)ﬁﬁ : ﬁGTde = ,UJOIenl
0
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Théoréme d'Ampere

Exploitons le théoreme d'Ampére pour
obtenir I'expression du champ pour un
fil infini parcouru par un courant d'in-
tensité 1.

Pour ce faire, il faut choisir un
contour d’Ampeére : une ligne fermée
passant par un point M de |'espace.
Pour un fil, on choisit pour contour,

un cercle de rayon r entourant le
fil.

N
/

1
—
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Jie
P g

—
S)
—

=
\

¥

27
/ B(r)ig - tprdf = polent
0



Champ magnétique

Théoréme d'Ampere

Exploitons le théoreme d'Ampére pour
obtenir I'expression du champ pour un
fil infini parcouru par un courant d'in-
tensité 1.

Pour ce faire, il faut choisir un
contour d’Ampeére : une ligne fermée
passant par un point M de |'espace.
Pour un fil, on choisit pour contour,

un cercle de rayon r entourant le
fil.

N
/

1
—
-

Jie
P g

—
S)
—

=
\

¥

27
/ B(r)ig - tprdf = polent
0

27
rB(r) / 49 = oo
0



Champ magnétique

Théoréme d'Ampere

Exploitons le théoreme d'Ampére pour
obtenir |'expression du champ pour un
fil infini parcouru par un courant d'in-
tensité 1.

Pour ce faire, il faut choisir un
contour d’Ampeére : une ligne fermée
passant par un point M de l'espace.
Pour un fil, on choisit pour contour,
un cercle de rayon r entourant le
fil.

2
TB(T)/ df = polen
0

N 1
(] =~
i
ot

¥




Champ magnétique

Théoréme d'Ampere

Exploitons le théoreme d'Ampére pour
obtenir |'expression du champ pour un
fil infini parcouru par un courant d'in-
tensité 1.

Pour ce faire, il faut choisir un
contour d’Ampeére : une ligne fermée
passant par un point M de l'espace.
Pour un fil, on choisit pour contour,
un cercle de rayon r entourant le
fil.

2
TB(T)/ df = polen
0

B(r)

_ ol
27

4

N 1
(] =~
i
ot

4 "
N/ "

On reconnait I'expression du périmétre d’un cercle £ = 27r.

U,
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Théoréme d'Ampére

Exploitons le théoreme d'Ampére pour
obtenir I'expression du champ pour un
fil infini parcouru par un courant d'in-
tensité 1.

Pour ce faire, il faut choisir un
contour d’Ampére : une ligne fermée
passant par un point M de |'espace.
Pour un fil, on choisit pour contour,
un cercle de rayon r entourant le
fil.

b

[ = — ()
4,
~

Au final, le champ magnétique produit par le fil infini est

- I
B(M) = K%,

- 2r

\ 4
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Théoréme d'Ampére

Exploitons le théoréme d’Ampére pour obtenir |'expression du champ pour
un solénoide infini de rayon R et parcouru par un courant [.
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Théoréme d'Ampere

Exploitons le théoréme d’Ampére pour obtenir |'expression du champ pour
un solénoide infini de rayon R et parcouru par un courant [.

Pour ce faire, il faut choisir un contour d’Ampeére : une ligne fermée
passant par un point M de |'espace. Pour un solénaide, on choisit pour
contour, un rectangle.
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Théoréme d'Ampére

Premiére étape : contour a l'inté-
rieur du solénoide On décompose la
circulation du champ sur le contour
fermé qu'est le rectangle

¢ g : d[: tolen
C1

N

A

\s

= X

N

Ug

Tl
Yy oy

/'c
\\m\\

=
=
o




Champ magnétique

Théoréme d'Ampére

N

Premiére étape : contour a l'inté-
rieur du solénoide On décompose la c| B
. . < U
circulation du champ sur le contour JoA |/“H
fermé qu'est le rectangle 4ol _J1 i
\ Z M
NLL M
¢ B -dl = polen D /’A
C1 N —
i(t)

/B B(r), - widz + /C B(r)d, - (—,) dr

B

D A
+/ B(r)i, - (—u)dz —{—/ B(r)i, - updr = pol
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Théoréme d'Ampére

N

Premiere étape : contour a l'inté-

rieur du solénoide On décompose la Cl| B
circulation du champ sur le contour AT A I/ﬁ
, , ~— r Ug
fermé qu'est le rectangle 240 &" i
\ Z M
NLL
5]5 B -df = pplen DA
C1 N —

B D
B(rl)/A dz — B(rg)/ dz = polent ; B(r1)AB — B(re)CD = pgley
C

Ien
B(r1) — B(rs) = “ZBI car AB = CD.




Champ magnétique

Théoréme d'Ampére

Premiére étape : contour a l'inté- &
rieur du solénoide On décompose la cC| B
circulation du champ sur le contour JoA |/‘
fermé qu'est le rectangle 240l g1 7,
\Z M
NG
¢ g : dZZ Holent D /d”A
C1 Nl —1
i(t)
0 Len .
B(r1) — B(rg) = B - 0 soit B(ry) = B(ra).

car le rectangle n’enlace aucun courant I.;; = 0. Le champ magnétique
est le méme en tout point a I'intérieur du solénoide. '
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Théoréme d'Ampére

Deuxieme étape : contour a I'ex-
térieur du solénoide On décompose
la circulation du champ sur le contour
fermé qu'est le rectangle

55 B dl = joly
C1

N

\

i

o
o

{




Champ magnétique

Théoréme d'Ampére

N

Deuxiéme étape : contour a l'ex- ~
térieur du solénoide On décompose C _ B
la circulation du champ sur le contour — ‘r,\ MI/“”
fermé qu'est le rectangle oI 1
\%
N~
¢ B-dl = ﬂOIenl Z D~ A
¢ Ko




Champ magnétique

Théoréme d'Ampére

N

Deuxiéme étape : contour a l'ex-

térieur du solénoide On décompose C _ B
la circulation du champ sur le contour L ‘r,\ T/ﬂ”
fermé qu'est le rectangle o— 1 1 i
Y
N
¢ B-dlf = tolen 7 DA
Cy Nl —

i)

B D
B(rl)/ dz — B(rg)/ dz = poleny ; B(r1)AB — B(r2)CD = pplen
A C

Ien
B(r1) — B(rg) = MZBl car AB=CD.




Champ magnétique

Théoréme d'Ampére

N

Deuxieme étape : contour a I'ex- T
térieur du solénoide On décompose C_ B
la circulation du champ sur le contour — ‘r,\ u{/“p
fermé qu'est le rectangle oI 1 3,
Y M
N~
55 B-dl = polen P A
¢ ]

B(r1) — B(ra) — “ﬁfgl —0 soit B(r)=B(r).

car le rectangle n'enlace aucun courant I.;) = 0. Le champ magnétique
est le méme en tout point a I’extérieur du solénoide. '
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Théoréme d'Ampere

On peut connaitre la valeur du champ
magnétique a I'extérieur a partir des
lignes de champs.

Dans le cas d'un solénoide fini, la valeur du champ diminue plus on
s’éloigne de la source : ce qui se traduit par des lignes de champs de plus
en plus éloignées les unes des autres.

Dans le cas d'un solénoide infini, les lignes de champs se rejoignent a
I’infini : ce qui traduit une valeur de champ nul a I’extérieur du
solénoide.
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Théoréme d'Ampére

N

Deuxieme étape : contour a I'ex- b
térieur du solénoide On décompose C _ B
la circulation du champ sur le contour L ‘r,\ T/ﬁ”
fermé qu'est le rectangle oI L 7,
Y M
~— ]
55 B - dl = piolen A
Cy Nl —1

i)

Le champ magnétique extérieur est nul I'’extérieur du solénoide infini.

\ 4



Champ magnétique

Théoréme d'Ampére

Troisieme étape : contour a cheval
sur le solénoide et I'extérieur On
décompose la circulation du champ sur
le contour fermé qu'est le rectangle

¢ g : d[: tolen
C1

N

C | B B
N / Ug
\5—2_ ' |/ i
2]
DT 4
N
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Théoréme d'Ampére

N

Troisieme étape : contour a cheval —

sur le solénoide et I'extérieur On cC | B
décompose la circulation du champ sur | 1A . T/W
le contour fermé qu'est le rectangle e & i
¥ M
N
¢ B -dl = polen D., 4
& ol

/B B(r), - widz + /C B(r)d, - (—,) dr
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Théoréme d'Ampére

N

Troisieme étape : contour a cheval ~—
sur le solénoide et I'extérieur On

)

C | B
décompose la circulation du champ sur \__/‘ A, T/a”
le contour fermé qu'est le rectangle 0% 1 7,
| M
¢ B-dl = HoLen Q/; A
C1 N —

it

B D
B(Tl)/A dz — B(""Q)/; dz = HOIenl ; B(’I”l)AB — B(’I“Q)CD = /LOIen

B(r1) — B(rg) = % car AB=CD.
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Théoréme d'Ampére

N

Troisieme étape : contour a cheval T
sur le solénoide et I’extérieur On c | B
décompose la circulation du champ sur \.__/‘ A, “|’/HH
le contour fermé qu'est le rectangle 04 [ i
2
¢ g ~dl = polen D[z) A
C1 N —
i(t)
7l
poNT
B(r1) — B(rg) = 7= ponl.

car le rectangle enlace N courants I sur une distance { = AB. On
retrouve I'expression du champ magnétique dans une bobine longue.



Champ magnétique

Théoréme d’A]mpére , , N
omme on |I'a vu I'année derniére cette

expression du champ magnétique pour
une bobine longue n'est valable que si
I'on étudie le champ a I'intérieur du
bobine longue, soit en négligeant les
effets de bords.

Dans le cas du condensateur ou de la
bobine, négliger les effets de bords
revient a utiliser une distribution
infinie. On étudie uniquement ce qui
se passe “loin” des bords de la bobine
ou du condensateur.

N

\_

{ <f

\\

\;;\p [ <4




Champ magnétique

Lignes et tubes de champ

On définit une ligne de champ magnétostatique B comme dr(M)
une courbe tangente au champ B en chacun de ses point. M E(M)



Champ magnétique
Lignes et tubes de champ

On définit une ligne de champ magnétostatique B comme dr(M)
une courbe tangente au champ B en chacun de ses point. M E(M)
On obtient I'équation d'une ligne de champ en écrivant que le champ en un
point M B est tangent a I'élément de longueur orientée di(

M) de la ligne
de champ en ce point, soit

B(M)AdF(M)=0. ¢



Champ magnétique
Lignes et tubes de champ

On définit une ligne de champ magnétostatique B comme dr(M)
une courbe tangente au champ B en chacun de ses point. M E(M)

On obtient I'équation d'une ligne de champ en écrivant que le champ en un
point M B est tangent a |'élément de longueur orientée d7(M) de la ligne
de champ en ce point, soit

B(M)AdF(M)=0. ¢

On retiendra que, comme les lignes de champs sont tangents aux champs
magnétostatique, elles sont, comme lui, contenues dans les plans
d’antisymétrie et orthogonales aux plans de symétries de la
distribution de courant. .



Champ magnétique

Lignes et tubes de champ

On peut définir un tube de champ comme les
surfaces ouvertes formée par un ensemble de lignes

de champs s'appuyant sur une courbe fermée. '

Dans I'exemple ci-contre, les courbes fermées sont
deux cercles de diamétres différents.




Champ magnétique
Lignes et tubes de champ

On peut définir un tube de champ comme les
surfaces ouvertes formée par un ensemble de lignes

de champs s'appuyant sur une courbe fermée. '

Dans I'exemple ci-contre, les courbes fermées sont
deux cercles de diamétres différents.

Une zone ot les lignes de champs sont resserrées correspond a une zone
ou le champ électrique est intense, alors qu’une zone ou les lignes de
champs sont espacées correspond a une zone oou le champ électrique
est faible. '
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