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Objectifs

• Relier l’intensité du courant et le flux du vecteur densité de courant volumique ; justifier la
modélisation d’une distribution de courant par une distribution filiforme.

• Identifier les plans de symétrie et d’antisymétrie d’une distribution de courants ; identifier les
invariances d’une distribution de courants ; exploiter les symétries et les invariances d’une
distribution de courants pour prévoir des propriétés du champ magnétostatique créé.

• Identifier les situations pour lesquelles le champ magnétostatique peut être calculé simplement
à l’aide du théorème d’Ampère ; choisir un contour, une surface et les orienter pour appliquer
le théorème d’Ampère en vue de déterminer l’expression d’un champ magnétostatique créé
par une distribution présentant un haut degré de symétrie.

• Justifier le choix d’une modélisation d’une distribution de courants par une distribution
infinie ; établir les expressions des champs magnétostatiques créés en tout point de l’espace
par un fil rectiligne infini de section non nulle, parcouru par des courants uniformément
répartis en volume, par un solénoïde infini en admettant que le champ est nul à l’extérieur.

• Orienter les lignes de champ magnétostatique créées par une distribution de courants ;
associer les variations de l’intensité du champ magnétostatique à l’évolution de la position
relative des lignes de champ ; vérifier qu’une carte de lignes de champ est compatible avec
les symétries et les invariances d’une distribution.

Pré-requis : systèmes de coordonnées cartésiennes, polaires et cylindriques. Champ magnétique : règle
de la main droite ; sources de champs magnétique ; cartes de champ magnétique.
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1 Cahier d’entraînement

EMP2 Électromagnétisme en régime permanentFiche d’entraînement no 4

Magnétostatique

Prérequis
Repérages cartésien, cylindrique et sphérique. Intégrales curvilignes, de sur-
face et de volume. Champs scalaire et vectoriel. Théorème d’Ampère.
Constantes utiles
→ Charge électrique élémentaire : e = 1,602× 10−19 C
→ Masse de l’électron : me = 9,11× 10−31 kg
→ Perméabilité magnétique du vide : µ0 = 4π × 10−7 H ·m−1

Distributions de courant et densités de courant

Entraînement 4.1 — Dimension de densités de courant.
La dimension d’une intensité électrique est notée I, celle d’un temps T, et celle d’une longueur L.
a) On note #»

j une densité volumique de courant, #»
js une densité surfacique de courant et I l’intensité d’un

courant. Quelles sont les relations correctes ?

a I =
¨

#»
j •

#  »dS b #»
j =

¨

I
#  »dS c I =

˚

#»
j •

#   »dV d I =
ˆ

#»
js •

#»dℓ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Comment s’écrit la dimension de la norme d’une densité volumique de courant #»
j ?

a I · L−3 b I · T · L−2 c I · T · L−3 d I · L−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Comment s’écrit la dimension de la norme d’une densité surfacique de courant #»
js ?

a I · L−1 b I · T · L−1 c I · L2 d I · L−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 4.2 — Densité volumique de courant en coordonnées cylindriques.
Soit un conducteur cylindrique (rayon a et longueur ℓ) d’axe (Oz) parcouru par un courant d’intensité

I =
¨

#»
j •

#  »dS,

où #»
j = j0

b

r
#»ez est le vecteur densité volumique de courant, avec j0 et b constants, et #  »dS = dS #»ez un élément

de section orientée.

z

ℓ
a

#»
j

Exprimer I en fonction de la section S du conducteur, du rayon a et des constantes j0 et b.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 4.3 — Densité surfacique de courant en coordonnées cylindriques.
Soit un conducteur cylindrique (rayon a et longueur ℓ) d’axe (Oz) parcouru
par un courant d’intensité

I =
ˆ

#»
js •

#»dℓ,

où #»
js = js,0

#»eθ est un vecteur densité surfacique de courant constant et #»dℓ =
dz #»ez un élément de longueur orientée.

z#»
js

ℓ
a

Exprimer I en fonction de la longueur ℓ du conducteur et de la constante js,0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Symétries et invariances

Entraînement 4.4 — Vent solaire.
Le vent solaire est un flux de particules chargées, majoritairement constitué de protons et de noyaux
d’hélium. Le Soleil est considéré comme ponctuel et placé à l’origine O d’un repère sphérique. En première
approximation, le vent solaire est assimilé à un courant de particules radial et stationnaire.
a) Si l’émission est isotrope, quelle est l’expression simplifiée du vecteur densité de courant en M(r, θ, φ) ?

a #»
j (M) = jr(r, θ) #»eθ

b #»
j (M) = jθ(r) #»eθ

c #»
j (M) = jr(r, θ) #»er

d #»
j (M) = jr(r) #»er

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Exprimer alors l’intensité IR du courant électrique traversant une sphère de rayon R.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 4.5 — Propriétés de symétrie d’une distribution de courant (I).
Soit un solénoïde d’axe (Ox), parcouru par un courant station-
naire d’intensité I.

On rappelle qu’un plan de symétrie (resp. antisymétrie) d’une
distribution de courant est un plan pour lequel les courants de
la distribution sont répartis de manière strictement identique
(resp. opposée) de part et d’autre du plan.

Parmi les propositions ci-dessous, quelles sont celles qui sont
correctes ?

• • • •I •

⊗⊗⊗⊗⊗

O
x

y

solénoïde

a Le plan (xOy) est un plan de symétrie de la
distribution.

b Le plan (xOy) est un plan d’antisymétrie de
la distribution même si le solénoïde n’est pas
infiniment long.

c Le plan (xOz) est un plan d’antisymétrie de
la distribution.

d Le plan (xOz) est un plan de symétrie de la
distribution seulement si le solénoïde est infi-
niment long.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 4.6 — Propriétés de symétrie d’une distribution de courant (II).
On considère la situation suivante, où deux fils infinis sont parcourus par des courants de même intensité
I et de même sens (de l’arrière vers l’avant).

x

y

•
O

•
I

•

•
P1

•
P2

•
P3

•
P4

On rappelle qu’en tout point d’un plan de symétrie (respectivement d’antisymétrie) de la distribution, le
champ magnétostatique est perpendiculaire (respectivement appartient) à ce plan.

a) Le plan (xOy) est un plan d’antisymétrie pour la distribution.
Quelles sont les propositions correctes ?

a Le vecteur #»ez est normal à ce plan.
b Au point O, le champ #»

B est selon ± #»ez.
c Au point P1, le champ #»

B appartient à ce plan.
d Au point P3, le champ #»

B appartient à ce plan.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Le plan (yOz) est un plan de symétrie pour la distribution.
Quelles sont les propositions incorrectes ?

a Le vecteur #»ex est normal à ce plan.

b #»

B(P4) = By(P4) #»ey +Bz(P4) #»ez

c Au point P2, le champ #»

B est selon ± #»ey.

d #»

B(O) = B(O) #»ez

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Quelles sont les propositions incomplètes ou incorrectes ?

a Le plan (xOz) est un plan d’antisymétrie pour la distribution.

b #»

B(O) = #»0

c Le champ #»

B est toujours perpendiculaire au plan (xOz).

d #»

B(P2) = − #»

B(P1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 4.7 — Couche épaisse infinie parcourue par un courant.
Soit une couche infinie suivant les axes (Ox) et (Oy), située entre les plans d’équations z = d et z = −d,
parcourue par un courant de densité volumique uniforme #»

j = j0
#»ex.

x

z

⊗
y

O

d

−d

×M

#»ȷ

Vue de côté

y

z

⊙
x

O

d

−d

×M

Σ

−ℓ−ℓ ℓ⊙
#»ȷ

Vue de face

a) Exprimer l’intensité I du courant qui traverse la surface Σ orientée suivant #»ex . . .

b) Quelles sont les invariances de cette distribution de courant ?

a invariance par translation parallèlement à l’axe (Ox)
b invariance par rotation autour de l’axe (Oz)
c invariance par translation parallèlement à l’axe (Oy)
d aucune invariance

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Le champ magnétostatique au point M est suivant le vecteur #»ey.
Sachant que les composantes du champ magnétostatique possèdent les mêmes invariances que la distribu-
tion, déterminer l’expression correcte.

a #»

B(M) = By(y) #»ey b #»

B(M) = By(z) #»ey c #»

B(M) = By(y, z) #»ey

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Champs magnétostatiques

Entraînement 4.8 — Théorème de superposition.
Deux solénoïdes longs, parcourus par des courants stationnaires d’in-
tensités I1 et I2, sont positionnés perpendiculairement entre eux et à
égale distance d’un point O. En ce point, le champ magnétostatique
produit par le solénoïde (1) est supposé s’écrire #  »

B1(O) = µ0n1I1
#»ex,

avec n1 le nombre de spires par unité de longueur du solénoïde (1).

a) Par analogie avec l’expression fournie pour le solénoïde (1), écrire
le champ magnétostatique produit par le solénoïde (2) au point O.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

••••
I1 •

⊗⊗⊗⊗⊗

••
•• I2

•

⊗
⊗
⊗
⊗
⊗

O
x

y

solénoïde (1)

solénoïde (2)

#  »

B1(O)

b) D’après le théorème de superposition, comment s’écrit alors le champ total produit au point O ?

a #»

B(O) = µ0(n1I1 + n2I2) #»ez

b #»

B(O) = µ0(n1I1 − n2I2) #»ez

c #»

B(O) = µ0(n1I1 − n2I2)( #»ex + #»ey)
d #»

B(O) = µ0(n1I1
#»ex − n2I2

#»ey)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Entraînement 4.9 — Analyse dimensionnelle et champ magnétique.
Sachant que la force magnétique s’exprime comme #»

F = q #»v ∧ #»

B, avec #»v une vitesse, q une charge électrique
et #»

B un champ magnétique, déterminer laquelle des expressions ci-dessous est homogène à la norme B
d’un champ magnétique si m est une masse et R un rayon.

a qv

mR
b mR

qv
c qR

mv
d mv

qR

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entraînement 4.10 — Graphes et expressions d’un champ magnétique.
On donne les graphes associés aux champs magnétiques créés par divers dispositifs, chacun étant parcouru
par un courant d’intensité I.

a
r

B(r) 1

a
r

B(r) 2

a
r

B(r) 3

a
r

B(r) 4

Le champ magnétique d’un conducteur cylindrique de rayon a parcouru par un courant volumique uniforme
est donné par

B = µ0Ir

2πa2 pour 0 < r < a et B = µ0I

2πr pour r > a.

Quel graphe correspond au champ magnétique créé par ce conducteur cylindrique ? . . . . . . . .

Entraînement 4.11 — Champ magnétostatique quadrupolaire.
En repérage cartésien et dans le plan d’équation z = 0, les composantes du champ magnétostatique créé
par un quadrupôle sont Bx = ky, By = kx et Bz = 0, avec k une constante non nulle.

a) Quelle carte de champ correspond à l’expression du champ donnée ci-dessus ? . . . . . . . . . .

XO

M

N
1

XO

2

XO

3

X
O

4

#»ex

#»ey

#»ez

b) En ce qui concerne la carte de champ 1 , quelle est la proposition valide ?

a #»

B(M) = #»

B(N) b B(M) < B(N) c B(M) > B(N)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Annale

2/12 
 

Physique-chimie dans la cuisine ! 
Les parties I à III s’intéressent au fonctionnement de trois appareils électroménagers : une plaque à 
induction, une machine à eau pétillante et un réfrigérateur. 
La partie IV concerne l’étude d’une bouteille de vin. 
Enfin, la partie V traite de l’étude d’une expérience réalisée dans un four micro-ondes, sous forme 
de question ouverte. 

Partie I - Plaque à induction 

Dans une plaque à induction, une bobine est placée sous une plaque en vitrocéramique. Lorsque 
cette bobine est parcourue par un courant électrique alternatif, un champ magnétique variable induit 
un champ électrique qui entraîne la circulation de courants électriques dans le métal du récipient posé 
sur la plaque. Ces courants électriques, appelés " courants de Foucault ", génèrent de l’énergie 
thermique par effet Joule. 
Nous nous intéresserons tour à tour au champ magnétique créé par un fil rectiligne de longueur infinie, 
puis par une spire circulaire. 
Ensuite, nous nous intéresserons au phénomène d’induction dans le fond de la casserole et à l’effet 
Joule associé. 

 
Figure 1 - Plaque à induction 

 
Source : La physique par les objets quotidiens – Cédric Ray et Jean-Claude Poizat 

 
Les données utiles à la Partie I sont indiquées ci-dessous : 
 
Données - Partie I  

Théorème de Stokes : 

∮ 𝐴𝐴→ .(𝐶𝐶) 𝑑𝑑𝑑𝑑→ =  ∬ 𝑟𝑟𝑟𝑟𝑟𝑟→  (𝐴⃗𝐴) 𝑑𝑑𝑑𝑑→ Ʃ  où Ʃ est une surface qui s’appuie sur le contour fermé C orienté. 

Conductivité thermique de l’acier : λ = 16 W·m-1·K-1 

Capacité thermique massique de l’acier : c = 1,0 kJ·kg-1·K-1 

Masse volumique de l’acier :  = 8 000 kg·m-3 
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I.1 - Théorème d’Ampère 

Q1.  Écrire l’équation de Maxwell-Ampère reliant le champ magnétique, le vecteur densité de 
courant et le champ électrique. 

On considère que l’on se trouve dans le cas de régimes lentement variables. Le champ magnétique 
s’identifie alors au champ magnétique déterminé selon une approche de magnétostatique.  

Q2.  Que devient l’équation de Maxwell-Ampère dans le cadre de l’hypothèse précédente ? 

Q3.  En utilisant le théorème de Stokes, démontrer le théorème d’Ampère dans le cadre de la 
magnétostatique et dans le cas des courants circulant dans des circuits filiformes. Vous 
préciserez sur un schéma les conventions d’orientation des surfaces et contours utilisés. 

I.2 - Champ magnétique créé par un fil rectiligne de longueur infinie 

Soit un fil rectiligne de longueur infinie parcouru par un courant électrique d’intensité I et placé dans 
le vide. L’espace est rapporté à la base cylindrique (𝑢𝑢𝑟𝑟⃗⃗⃗⃗⃗, 𝑢𝑢𝜃𝜃⃗⃗⃗⃗⃗, 𝑢𝑢𝑧𝑧⃗⃗⃗⃗⃗). 
On considère que, dans l’hypothèse de régimes lentement variables, le cas d’un courant d’intensité 
variable au cours du temps est assimilable au cas d’un courant d’intensité constante.   
 
 
 
 
 
 
 
 
 
 

Figure 2 - Fil infini parcouru par un courant électrique d’intensité I 

Q4.  Analyser les symétries et les invariances de la distribution de courant pour déterminer la 
direction du champ magnétique et les paramètres d’espace dont dépendent sa ou ses 
coordonnée(s) en coordonnées cylindriques. 

Q5.  En appliquant le théorème d’Ampère, établir l’expression du champ magnétique créé par ce fil 
à une distance R du fil. Préciser le contour d’Ampère choisi. 

I.3 - Champ magnétique créé par une spire 

Soit une spire circulaire de rayon r, de centre O, parcourue par un courant d’intensité I. 
On considère ici encore que, dans l’hypothèse de régimes lentement variables, le cas d’un courant 
d’intensité variable au cours du temps est assimilable au cas d’un courant d’intensité constante. 
Soit un point M situé sur l’axe de la spire, de coordonnée x et tel que du point M la spire soit vue sous 
l’angle . 
 
 
 
 
 
 
 
 

Figure 3 - Spire circulaire de rayon r parcourue par un courant d’intensité I 

I 

O 

 

M 
x 

r 
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Q6.  En utilisant les propriétés de symétrie de la distribution de courant, déterminer la direction et 
le sens du champ magnétique créé par cette spire au point M. 
Reproduire succinctement le schéma précédent et représenter la direction et le sens du 
champ magnétique créé au point M. 

 
Le champ magnétique créé en un point M de l’axe de la spire est donné par l’expression : 

𝐵𝐵 = 𝜇𝜇0𝐼𝐼
2𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠3(𝛼𝛼) = 𝐵𝐵0 𝑠𝑠𝑠𝑠𝑠𝑠3(𝛼𝛼)

où 𝛼𝛼 représente l’angle sous lequel la spire est vue depuis le point M et 𝐵𝐵0 = 𝜇𝜇0𝐼𝐼
2𝑟𝑟  . 

Q7.  Établir l’expression de B au point M en fonction de B0, r et de x, x représentant la distance 
entre le point O et le point M. 

 
Pour des distances x petites par rapport au rayon de la spire, un développement limité permet de 
montrer que l’expression du champ B au point M est donnée par : 

𝐵𝐵 = 𝐵𝐵0  (1 − 3
2 𝑥𝑥2

𝑟𝑟2) . 

Q8.  Quelle valeur maximale de x permet de considérer que le champ B est égal à B0, (à 10 % près). 

On exprimera x en fonction de r. On donne √ 2
30 ≈ 0,26 . 

I.4 - Chauffage par induction 

Une plaque à induction comporte une bobine (P) de rayon r1 permettant de créer un champ 
magnétique. La bobine (P) est parcourue par un courant sinusoïdal d’intensité 𝐼𝐼(𝑡𝑡) = 𝐼𝐼0 cos(𝜔𝜔𝜔𝜔) et 
de fréquence f = 60 kHz. On modélise la casserole métallique posée sur la plaque par une spire (S) 
circulaire de rayon r2 < r1. Elle est parcourue par un courant d’intensité i(t). 
Les sens des courants sont arbitrairement ceux mentionnés sur la figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 - Représentation de la bobine (P) et de la spire (S) 
 
On considère les hypothèses simplificatrices suivantes : 

Q9.  Déterminer l’expression du flux Φ du champ magnétique qui traverse la spire (S). 

Q10.  En déduire l’expression de la force électromotrice induite e apparaissant dans la spire (S). 

Q11.  Déterminer l’expression du courant induit i(t) dans la bobine. 

- la casserole posée sur la plaque à induction est à une distance z0 de la bobine ; 
- le champ magnétique auquel est soumis la casserole est uniforme et son expression est 

donnée par : 𝐵⃗⃗𝐵 = 𝐵𝐵0 cos(𝜔𝜔𝜔𝜔) 𝑢𝑢𝑧𝑧⃗⃗⃗⃗⃗ où 𝐵𝐵0 est une constante ; 
- la spire (S) a une résistance électrique R et son inductance propre est négligée. 

 

i 
(S) 

I 

(P) 0 y 

x 

z 
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Q12.  Déterminer l’expression de la puissance instantanée P(t) dissipée par effet Joule dans la spire 
(S). 

Q13.  En utilisant les résultats des questions précédentes, montrer que la puissance moyenne Pmoy 
dissipée par effet Joule dans la spire (S) est égale à : 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 =
(𝜔𝜔𝐵𝐵0𝜋𝜋𝑟𝑟22)

2

2𝑅𝑅  

Q14.  Par quel phénomène physique l’énergie thermique transmise au fond de la casserole par effet 
Joule est-elle transmise au contenu de la casserole ? 

Q15.  Citer un intérêt d’une plaque à induction par rapport à une plaque de cuisson électrique 
fonctionnant à l’aide d’une résistance électrique. 

Q16.  Déterminer l’ordre de grandeur des longueurs que r1, r2 et z0 ne doivent pas dépasser pour 
permettre de considérer que l’approximation des régimes quasi-stationnaires est justifiée. 
Commenter. 

 
Une poêle en acier est posée sur la plaque à induction en fonctionnement. On s’intéresse à présent 
à la conduction thermique au sein du manche en acier de la poêle.  
Ce dernier a une longueur L = 20 cm et est modélisé par un cylindre représenté sur la figure 5. 

 
Figure 5 - Modélisation du manche en acier de la poêle 

 
Le champ de température est de la forme 𝑇𝑇(𝑥𝑥, 𝑡𝑡). L’équation de la diffusion thermique à une dimension 
en coordonnées cartésiennes s’écrit : 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜆𝜆
𝜌𝜌𝜌𝜌

𝜕𝜕²𝑇𝑇
𝜕𝜕𝜕𝜕²

Q17.  En utilisant l’équation précédente, justifier qualitativement l’irréversibilité du phénomène de 
diffusion thermique. 

 
Soit τ la durée caractéristique du phénomène de diffusion thermique. 

Q18.  En expliquant la démarche suivie, déterminer un ordre de grandeur de cette durée τ. 
Commenter. 

Partie II - Machine à eau pétillante 

Une machine à eau pétillante permet aux consommateurs de transformer facilement l’eau du robinet 
en eau pétillante en quelques secondes. Elle permet également de transformer une boisson sucrée 
quelconque en soda. 
Ces machines offrent une alternative économique et écologique à la consommation de boissons 
gazeuses en bouteilles plastiques à usage unique. 
L’eau pétillante est obtenue par dissolution de dioxyde de carbone sous haute pression dans l’eau 
initialement plate (sans gaz). Le dioxyde de carbone est stocké dans une bonbonne métallique sous 
haute pression. Les données relatives à la partie II sont indiquées ci-après.  
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