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Conservation de la charge

Démonstration a 1 dimension

Revenons sur un des postulats fondamentaux en physique :
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Démonstration a 1 dimension

Revenons sur un des postulats fondamentaux en physique : la conservation
de la charge.

Celui implique une relation entre la densité de courant volumique j lié au
déplacement des charges, et la densité de charge volumique p, liée au
stockage des charges. |l s'agit d'une équation aux dérivées spatiales et
temporelles nommées



Conservation de la charge

Démonstration a 1 dimension

Revenons sur un des postulats fondamentaux en physique : la conservation
de la charge.

Celui implique une relation entre la densité de courant volumique j lié au
déplacement des charges, et la densité de charge volumique p, liée au
stockage des charges. |l s'agit d'une équation aux dérivées spatiales et
temporelles nommées équation de conservation de la charge.

Nous allons démontrer cette équation a partir d'un modéle simple.



Conservation de la charge

Démonstration a 1 dimension

Considérons un conducteur cylindrique de section S et d'axe (Oz) parcouru

par une densité de courant volumique j = j,€, uniforme sur toute la
section.
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Conservation de la charge

Démonstration a 1 dimension

Considérons un conducteur cylindrique de section S et d'axe (Oz) parcouru

par une densité de courant volumique j = j,€, uniforme sur toute la
section.
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Nous allons établir une méthode de bilan que I'on va appliquer aux

charges électriques, mais que nous pourront appliquer plus tard pour des
bilans de matiére ou d'énergie.
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Comme on veut établir une équation aux dérivées spatiales et temporelles
on va raisonner sur ces deux aspects
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Démonstration a 1 dimension
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Comme on veut établir une équation aux dérivées spatiales et temporelles
on va raisonner sur ces deux aspects

@ spatial : on étudie un volume de controle mésoscopique dr : une
tranche de cylindre comprise entre z et z 4+ dz du grand cylindre



Conservation de la charge

Démonstration a 1 dimension
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Comme on veut établir une équation aux dérivées spatiales et temporelles
on va raisonner sur ces deux aspects

@ spatial : on étudie un volume de controle mésoscopique dr : une
tranche de cylindre comprise entre z et z 4+ dz du grand cylindre

@ temporel : on étudie entre deux instants ¢ et ¢t + d, soit sur une durée
infinitésimale dt, la quantité de charges qui passent dans le volume de
controle. A un instant ¢, la quantité de charges totales dans le volume

est dQ(t).



Conservation de la charge

Démonstration a 1 dimension
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On souhaite savoir quelle sera la quantité de charge totale dans le volume a
la fin de la durée d'étude dt, soit que vaut dQ(t +dt)?

dQ(t + dt) = + 4+



Conservation de la charge

Démonstration a 1 dimension
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On souhaite savoir quelle sera la quantité de charge totale dans le volume a
la fin de la durée d'étude dt, soit que vaut dQ(¢ + dt)?

dQ(t +dt) =dQ(t) + +

@ On sait que la quantité de charge finale dépend de la quantité de
charge initiale dQ(t).



Conservation de la charge

Démonstration a 1 dimension
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On souhaite savoir quelle sera la quantité de charge totale dans le volume a
la fin de la durée d'étude dt, soit que vaut dQ(¢ + dt)?

dQ(t +dt) =dQ(t) + dQ. +

@ De plus, on sait qu'il y a une certaine quantité de charges qui est entrée
en z dans le volume durant la durée dt. On peut |'exprimer grace a j :

dQ. = // j(z,t) - dSe.dt = j.(z,t)Sdt.
S



Conservation de la charge

Démonstration a 1 dimension
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On souhaite savoir quelle sera la quantité de charge totale dans le volume a
la fin de la durée d'étude dt, soit que vaut dQ(¢ + dt)?
dQ(t + dt) = dQ(t) + dQ. + — dQs.
@ Enfin, on sait qu'il y a aussi une certaine quantité de charges qui est
sortie en z + dz du volume durant la durée ddt. On peut I'exprimer

grace a j :

dQ, = — // J(2+dz,t) - dSEdt = —j.(z + dz, H)Sdt.
S



Conservation de la charge

Démonstration a 1 dimension
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On souhaite savoir quelle sera la quantité de charge totale dans le volume a
la fin de la durée d'étude dt, soit que vaut dQ(t + dt)?

dQ(t + dt) = dQ(t) + j.(2,)Sdt — j.(z + dz,t)Sdt.

On peut exprimer les quantités de charges a t et t + dt¢ en fonction de la
densité de charges volumiques
dQ(t) = p(z,t)dr = p(z,t)S5dz
dQ(t + dt) = p(z,t + dt)dr = p(z,t + dt)Sd=.



Conservation de la charge

Démonstration a 1 dimension
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On souhaite savoir quelle sera la quantité de charge totale dans le volume a
la fin de la durée d'étude dt, soit que vaut dQ(t +dt)?

p(z,t +dt)Sdz = p(z,t)Sdz + j.(z,t)Sdt — j.(z + dz,t)Sdt.



Conservation de la charge

Démonstration a 1 dimension
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On souhaite savoir quelle sera la quantité de charge totale dans le volume a
la fin de la durée d'étude dt, soit que vaut dQ(¢ + dt)?

En regroupant les termes en p et j., et en divisant par Sdzdt de chaque
coté, il vient que

p(z,t—i—dt)—,o(z,t) jZ(Z+dZ7t) —jZ(Z,t)

dt dz '




Conservation de la charge

Démonstration a 1 dimension

dQ
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On souhaite savoir quelle sera la quantité de charge totale dans le volume a
la fin de la durée d'étude dt, soit que vaut dQ(¢ + dt)?

En regroupant les termes en p et j., et en divisant par Sdzdt de chaque
coté, il vient que

plz,t+dt) —p(zt) _ j.(2+dzt) —ja(2,1)

dt dz '

En faisant tendre les éléments de longueur dz et de temps dt, ces taux
d’accroissement tendent vers des dérivées.



Conservation de la charge

Démonstration a 1 dimension
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On souhaite savoir quelle sera la quantité de charge totale dans le volume a
la fin de la durée d'étude dt, soit que vaut dQ(t + dt)?

Op(=,t) _ 9ji(z1)

ot 0z




Conservation de la charge

Démonstration a 1 dimension
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On souhaite savoir quelle sera la quantité de charge totale dans le volume a
la fin de la durée d'étude dt, soit que vaut dQ(t + dt)?

Dans un systeme a une dimension la conservation de la charge se traduit
localement par I'équation de conservation de la charge

Op(z,t)  0jz(z,t)
TR e 4



Conservation de la charge

Démonstration a 1 dimension
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On souhaite savoir quelle sera la quantité de charge totale dans le volume a
la fin de la durée d'étude dt, soit que vaut dQ(¢ + dt)?

Dans un systeme a trois dimensions la conservation de la charge se
généralise localement par I'équation de conservation de la charge

ap(x7y727t) + ajx(l’vva?t) + ajy($7y727t) + 8jz(x7yaz7t)
ot Oz y 0z

ap(a]\f’t) +divj(M,t)=0. ¢

=0
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Equations de Maxwell

Maxwell-Gauss

La premiére équation sous forme locale est I'équation de Maxwell-Gauss
= Mt
div B, 1) = POLY o
€0

avec p la densité volumique de charges au point M a l'instant tt et g9 la
permittivité du vide (on considére que le milieu considéré est le vide).



Equations de Maxwell

Maxwell-Gauss

La premiére équation sous forme locale est I'équation de Maxwell-Gauss

div E(M,t) = p(]g,t) '
0

avec p la densité volumique de charges au point M a l'instant tt et g9 la
permittivité du vide (on considére que le milieu considéré est le vide).
Cette équation permet de faire le lien entre le champ électrique E(M, t) et
la source de ce dernier : la densité volumique de charge p(M, ).



Equations de Maxwell

Maxwell-Gauss

Afin d'obtenir I'équation de Maxwell-Gauss sous forme intégrale il faut
intégrer I'équation sur un volume V

///dlvEMt // Mt

avec d7 le volume infinitésimale d'intégration.



Equations de Maxwell

Maxwell-Gauss

On va ici utiliser le théoreme de Green-
Ostrogradski (qui vous sera toujours donné) afin
de récrire I'intégrale volumique de I'opérateur di-
vergence

///vdivff(M, tydr = #SA’. ds

avec S la surface fermée orientée vers |'extérieur
délimitant le volume V' utilisé.




Equations de Maxwell

Maxwell-Gauss

Ainsi, I'équation de Maxwell-Gauss sous forme intégrale se récrit

%E(M,t)-d@:///vp(zﬁdf

# E(M,t)-dS = Qint Vv
S

€0

avec Qint la charge électrique contenue dans le volume V.



Equations de Maxwell

Maxwell-Gauss

Ainsi, I'équation de Maxwell-Gauss sous forme intégrale se récrit

%E(M,t)-d@z///vp(];’ﬂdT

# E(M,t)-dS = Qint L
S

€0

avec Qint la charge électrique contenue dans le volume V.

On reconnait le théoréeme de Gauss qui n'est autre que la forme intégrale
de I'équation de Maxwell-Gauss.



Equations de Maxwell

Maxwell-Gauss

On sait qu'une charge positive crée un champ
orienté vers I'extérieur de cette charge. On peut
visualiser cela comme si la charge était une source
de champ électrique : le champ provient de la
charge. Ce qui se traduit par une divergence
positive du champ électrique : les lignes de
champ semblent étre produit par la charge.

3BluelBrown


https://www.youtube.com/watch?v=rB83DpBJQsE

Equations de Maxwell

Maxwell-Gauss

On sait qu'une charge positive crée un champ
orienté vers I'extérieur de cette charge. On peut
visualiser cela comme si la charge était une source
de champ électrique : le champ provient de la
charge. Ce qui se traduit par une divergence
positive du champ électrique : les lignes de
champ semblent étre produit par la charge. 3BluelBrown

De maniere inverse, une charge négative crée un champ orienté vers cette
charge. On peut visualiser cela comme si la charge était un puits de champ
électrique : le champ est orienté vers la charge. Ce qui se traduit par une
divergence négative du champ électrique : les lignes de champ
convergent vers la charge.


https://www.youtube.com/watch?v=rB83DpBJQsE

Equations de Maxwell

Maxwell-Gauss

On sait qu'une charge positive crée un champ
orienté vers I'extérieur de cette charge. On peut
visualiser cela comme si la charge était une source
de champ électrique : le champ provient de la
charge. Ce qui se traduit par une divergence
positive du champ électrique : les lignes de
champ semblent étre produit par la charge. 3BluelBrown

De maniere inverse, une charge négative crée un champ orienté vers cette
charge. On peut visualiser cela comme si la charge était un puits de champ
électrique : le champ est orienté vers la charge. Ce qui se traduit par une
divergence négative du champ électrique : les lignes de champ
convergent vers la charge.

Lorsqu'il n'y a pas de charge électrique, il n'y a pas de source ou de perte
du champ électrique, ce dernier reste le méme, il ne semble ni étre produit
ni étre absorbé : la divergence du champ électrique est nul.


https://www.youtube.com/watch?v=rB83DpBJQsE

Equations de Maxwell

Maxwell-flux (ou Maxwell-Thomson)

La deuxieme équation sous forme locale est I'équation de Maxwell-flux (ou
Maxwell-Thomson)

divB(M,t)=0. ¢



Equations de Maxwell

Maxwell-flux (ou Maxwell-Thomson)

La deuxieme équation sous forme locale est I'équation de Maxwell-flux (ou
Maxwell-Thomson)

divB(M,t)=0. ¢

Cette équation permet d'obtenir la structure du champ magnétique

—

B(M,t). On verra comment cela se traduit sous forme intégrale.



Equations de Maxwell

Maxwell-flux (ou Maxwell-Thomson)

Afin d’obtenir I'équation de Maxwell-flux sous forme intégrale il faut
intégrer I'équation sur un volume V

///vdivé(M,t)dT =0

avec dr le volume infinitésimale d'intégration.



Equations de Maxwell

Maxwell-flux (ou Maxwell-Thomson)

D’apres le théoreme de Grenn-Ostrogradski, I'équation de Maxwell-flux sous
forme intégrale se récrit

#E(M,t) ds=0. ¢
S



Equations de Maxwell

Maxwell-flux (ou Maxwell-Thomson)

D’apres le théoreme de Grenn-Ostrogradski, I'équation de Maxwell-flux sous
forme intégrale se récrit

#E(M,t) ds=0. ¢
S

On reconnait le flux du champ magnétique. Ce dernier est constamment
nul : on dit que le champ magnétique est a flux conservatif.



Equations de Maxwell

Maxwell-flux (ou Maxwell-Thomson)

Comme on I'a vu pour une région sans charge
électrique, la divergence du champ électrique est
nul dans ce cas.

3BluelBrown
Dans le cas du champ magnétique cela est toujours vrai, un peu comme si

pour chaque pdle magnétique nord (terme source du champ magnétique,

A

analogue a une charge positive) il y a avait forcément un pdle magnétique

7\

sud associé a lui (terme puits du champ magnétique, analogue a une charge
négative).


https://www.youtube.com/watch?v=rB83DpBJQsE
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Maxwell-flux (ou Maxwell-Thomson)

Comme on I'a vu pour une région sans charge
électrique, la divergence du champ électrique est
nul dans ce cas.

3BluelBrown

Dans le cas du champ magnétique cela est toujours vrai, un peu comme si
pour chaque pdle magnétique nord (terme source du champ magnétique,
analogue a une charge positive) il y a avait forcément un pdle magnétique
sud associé a lui (terme puits du champ magnétique, analogue a une charge
négative).

Comme il y a toujours un terme source qui est compensé par un terme de
perte du champ magnétique, on dit alors que le champ magnétique est a

flux conservatif.
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Equations de Maxwell

Maxwell-flux (ou Maxwell-Thomson)

Comme on I'a vu pour une région sans charge
électrique, la divergence du champ électrique est
nul dans ce cas.

3BluelBrown

Dans le cas du champ magnétique cela est toujours vrai, un peu comme si
pour chaque pdle magnétique nord (terme source du champ magnétique,
analogue a une charge positive) il y a avait forcément un pdle magnétique
sud associé a lui (terme puits du champ magnétique, analogue a une charge
négative).

Comme il y a toujours un terme source qui est compensé par un terme de
perte du champ magnétique, on dit alors que le champ magnétique est a

flux conservatif.

On peut aussi dire qu'il n’existe pas de monopéle magnétique : il faut
toujours qu'un pdle sud soit associé a un pdle nord (si on coupe en deux un
aimant, on obtient deux aimants avec chacun des pdles nord e* sud.)


https://www.youtube.com/watch?v=rB83DpBJQsE

Equations de Maxwell

Maxwell-Ampére

La troisieme équation sous forme locale est I'équation de Maxwell-Faraday

rot B(M,t) = —w(aj\f’t). ¥



Equations de Maxwell

Maxwell-Ampére

La troisieme équation sous forme locale est I'équation de Maxwell-Faraday

_aé(M,t)_ v,

rot B(M,t) = o

Cette équation permet de faire le lien entre le champ électrique E(M, t) et
le champ magnétique B(M,t). En ce sens, le champ magnétique apparait
comme une source du champ électrique.



Equations de Maxwell

Maxwell-Ampeére

La troisieme équation sous forme locale est I'équation de Maxwell-Faraday

_aé(M,t)_ v,

rot B(M,t) = o

Cette équation permet de faire le lien entre le champ électrique E(M, t) et
le champ magnétique B(M,t). En ce sens, le champ magnétique apparait
comme une source du champ électrique.

On donne la définition du rotationnel d'un vecteur en coordonnées
cartésiennes

0 A 94, _ 04y
— %a: T 0 0z
rot AM,t) =[5 | AN |Ay | = %_%

0z z or Oy



Equations de Maxwell

Maxwell-Ampére

Afin d’obtenir I'équation de Maxwell-Ampére sous forme intégrale il faut
intégrer I'équation sur une surface &

— — EM .
//E%E(M,t)-dsz//—‘w-ds

avec dS I'élément de surface orientée infinitésimale.



Equations de Maxwell

Maxwell-Ampére

On va ici utiliser le théoreme de Stokes (qui vous
sera toujours donné) afin de récrire I'intégrale
surfacique de I'opérateur rotationnel

//mamt).@rg:yﬁg.d@
S L

avec L le contour fermé sur lequel s'appuie la
surface S et orienté selon la régle de la main
droite par rapport a la normale de la surface 7.



Equations de Maxwell

Maxwell-Ampére
Ainsi, I'AéqBann de Maxwell-Faraday sous forme intégrale se récrit

%EM% ﬂanMt .dS

ygEMt dE——a—(I)
ot

avec ® la flux du champ magnétique au travers de la surface S.

On se rappelle qu’en électrostatique

%Ewmyﬂzu
L

Ce n’est plus le cas en régime variable. Dans ce cas le champ électrique
n'est plus a circulation conservative : sa circulation est égale a une tension
nommeée force électromotrice. Elle est due a la variation du flux magnétique.



Equations de Maxwell

Maxwell-Ampére
Ainsi, I'AéqBann de Maxwell-Faraday sous forme intégrale se récrit

%EM% ﬂanMt .dS

ygEMt dE——a—(I)
ot

avec ® la flux du champ magnétique au travers de la surface S.

On se rappelle qu’en électrostatique

%Ewmyﬂzu
L

Ce n’est plus le cas en régime variable. Dans ce cas le champ électrique
n'est plus a circulation conservative : sa circulation est égale a une tension
nommeée force électromotrice. Elle est due a la variation du flux magnétique.

On reconnait la loi de Faraday qui n’est autre que la forme intégrale de
|"équation de Maxwell-Gauss.



Equations de Maxwell

Maxwell-Ampére

La derniere équation sous forme locale est I'équation de Maxwell-Ampere

OE(M, 1) O

— = -
rot B(M, 1) = p0j (M, t) + poco—,

avec gg la perméabilité du vide.



Equations de Maxwell

Maxwell-Ampére

La derniere équation sous forme locale est I'équation de Maxwell-Ampere

OE(M, 1) O

— = -
rot B(M, 1) = p0j (M, t) + poco—,

avec gg la perméabilité du vide.
Cette équation permet de faire le lien entre le champ magnétique B(M,t)
et les sources de ce champ : la densité de courant j et le champ électrique

—

E(M,1).



Equations de Maxwell

Maxwell-Ampére

Afin d’obtenir I'équation de Maxwell-Ampére sous forme intégrale il faut
intégrer I'équation sur une surface &

5 X - - E(M,t)
//HB(MJ)'dSZ,UO//j(Mat)'dS—FMoSo//w-dS
S S S ot

avec dS I'élément de surface orientée infinitésimale.



Equations de Maxwell

Maxwell-Ampére

En utilisant le théoreme de Stokes, I'équation de Maxwell-Ampére sous
forme intégrale se récrit

§£B(Mt de—ﬂo// (M, 1) dS—l—uoeo//aEMt 5

DE(M,t) -
%B(M t) - dl = pioLens + o0 // 45 €@
L



Equations de Maxwell

Maxwell-Ampére

En utilisant le théoreme de Stokes, I'équation de Maxwell-Ampére sous
forme intégrale se récrit

§£B(Mt de—ﬂo// (M, 1) dS—l—uoeo//aEMt 5

DE(M,t) -
%B(M t) - dl = pioLens + o0 // 45 €@
L
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Maxwell-Ampére



Equations de Maxwell

Maxwell-Ampére
Appliquons |'opérateur div sur I'équation de Maxwell-Ampére

adiv E(M, t)
ot

on peut faire rentrer le div dans la dérivée partielle temporelle car les
variables de temps et d'espace sont indépendantes.

div (rot B(M, 1)) = podiv (M, 1) + poco



Equations de Maxwell

Maxwell-Ampére
Appliquons |'opérateur div sur I'équation de Maxwell-Ampére

adiv E(M, t)
ot

on peut faire rentrer le div dans la dérivée partielle temporelle car les
variables de temps et d'espace sont indépendantes.

;(p(gi))

div (rot B(M, 1)) = podiv (M, 1) + poco

0 = podiv j(M, t) + pogo

car divrot =0 et d’aprés Maxwell-Gauss div E(M, t) = p(i\;[’t).




Equations de Maxwell
Maxwell-Ampeére
Appliquons |'opérateur div sur I'équation de Maxwell-Ampére

adiv E(M, t)
ot

on peut faire rentrer le div dans la dérivée partielle temporelle car les
variables de temps et d'espace sont indépendantes.

é?t(p(ﬁt))

div (rot B(M, 1)) = podiv (M, 1) + poco

0 = podiv j(M, t) + pogo

car divrot =0 et d’aprés Maxwell-Gauss div E(M, t) = p(i\;[’t).

0= divj(M,t) + ap%\f’t)

on reconnait I’équation de conservation de la charge.



Equations de Maxwell

Maxwell-Ampere
Le terme pg@% a été rajouté par Maxwell dans I'équation de

Maxwell-Ampére afin de satisfaire la conservation de la charge. Ainsi

OE(M, 1)

— 3 -
rot B(M,t) = poj(M,t) + poso 5t

Par analogie on nomme le courant dii a la variation du champ électrique le
courant de déplacement tel que fd(M, t) =¢o 8E53]7\;"’t) , différent du
courant de conduction j(M,1).




Equations de Maxwell

Maxwell-Ampeére

Le terme uge(]% a été rajouté par Maxwell dans I'équation de

Maxwell-Ampére afin de satisfaire la conservation de la charge. Ainsi

OE(M, 1)

— 3 -
rot B(M,t) = poj(M,t) + poso 5t

Par analogie on nomme le courant dii a la variation du champ électrique le

OE(M.Y) jiterent du

courant de déplacement tel que fd(M, t) = co—g;

courant de conduction j(M,1).

Si I'on se place en régime stationnaire : c'est-a-dire que toute les dérivées
temporelles sont prises nulles car toutes les grandeurs sont uniformes alors
dans ce cas I'équation de Maxwell-Ampére devient sous forme locale et
intégrale

(Ot B, ) = pof(M.0) et b BOLE) -0 = ol
L

On retrouve le théoréme d’Ampeére de la magnétestatique.
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Propagation du champ électromagnétique

Relation qualitative

Les équations de Maxwell-Gauss et de Maxwell-Ampére permettent de relier
les champs électrique et magnétique a leur source : la densité de charge
électrique p(M,t) et la densité volumique de courant j(M,t).
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variation temporelle d'un champ apparait comme une source pour |'autre
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Relation qualitative

Les équations de Maxwell-Faraday et de Maxwell-Ampére permettent de
montrer le couplage entre les champs électrique et magnétique : une

variation temporelle d'un champ apparait comme une source pour |'autre
champ.

D’aprés Maxwell-Faraday, une variation temporelle du champ magnétique
provoque une variation spatial du champ électrique. Il se crée donc une
perturbation du champ électrique. Ce dernier va alors varier dans le temps.



Propagation du champ électromagnétique

Relation qualitative

Les équations de Maxwell-Faraday et de Maxwell-Ampére permettent de
montrer le couplage entre les champs électrique et magnétique : une
variation temporelle d'un champ apparait comme une source pour |'autre
champ.

rot B = poj + M06oa£ M.A.
ot
D'aprés Maxwell-Ampére, une variation temporelle du champ électrique
provoque une variation spatial du champ magnétique. Il se crée donc une
perturbation du champ magnétique également. Cette perturbation entraine
une variation dans le temps qui entraine de nouveau une variation spatial du
champ électrique, etc.

Ce couplage spatiotemporel entre champ électrique et champ magnétique
provoque le phénomene de propagation d’une onde électromagnétique.
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équations de Maxwell deviennent



Propagation du champ électromagnétique

Démonstration

Pour établir I'équation de propagation du champ electr|que on considére un
espace vide de toute charge p = 0 et de tout courant j = 0. Dans ce cas les
équations de Maxwell deviennent

o M.G. divE(M,t) =0



Propagation du champ électromagnétique

Démonstration

Pour établir I'équation de propagation du champ electr|que on considére un

espace vide de toute charge p = 0 et de tout courant j = 0. Dans ce cas les
équations de Maxwell deviennent

o M.G. divE(M,t) =0
o Mf. divB(M,t)=0



Propagation du champ électromagnétique

Démonstration

Pour établir I'équation de propagation du champ electr|que on considére un

espace vide de toute charge p = 0 et de tout courant j = 0. Dans ce cas les
équations de Maxwell deviennent

o M.G. divE(M,t) =0
o Mf. divB(M,t)=0

o M.F. rot B(M,t) = —98



Propagation du champ électromagnétique

Démonstration

Pour établir I'équation de propagation du champ electr|que on considére un
espace vide de toute charge p = 0 et de tout courant j = 0. Dans ce cas les
équations de Maxwell deviennent

o M.G. divE(M,t) =0

o Mf. divB(M,t)=0

o M.F. rot B(M,t) = —98

M.A. HE(MJ}) = 080%?.



Propagation du champ électromagnétique

Démonstration

On applique I'opérateur rotationnel a I'équation de Maxwell-Faraday

—
. drot B
ot (vot (M, 1)) = - rgt

on peut introduire I'opérateur rotationnel dans la dérivée temporelle car les
variables spatiales et temporelle sont indépendantes.



Propagation du champ électromagnétique

Démonstration

On applique I'opérateur rotationnel a I'équation de Maxwell-Faraday

—
. drot B
E&G&Ewmnz—r&

on peut introduire I'opérateur rotationnel dans la dérivée temporelle car les
variables spatiales et temporelle sont indépendantes.

On utilise la formule d’analyse vectorielle qui sera toujours fournie
ot (rot A(M, 1)) = grad (div A(M, 1)) — AA(M, 1)

avec A l'opérateur laplacien qui est définit en coordonnées cartésiennes tel
que

- AL (M, t) .,  0%A,(M,t
ad,p) = T giﬂ )

0?A,(M,t) '

€y + 0.2 €.



Propagation du champ électromagnétique

émonstration
vient que

~ orot B(M, 1)

— . - -
grad (leE(M, t)) — AE(M,t) = ot

grad (dlvE(M, t)) — AE(M,t) = — 5 <M050‘TE(8]\5W>

_AE:(M¢ t) = — Moo o2

-
AE(M,t) - Moﬁoaﬁgw -0 @

car div E(M,t) = 0 d’aprés M.G. et rot B = uoaang}f’t).

On reconnait I’équation de d’Alembert ou équation d’onde du champ

électrique. '
Cette équation démontre que le champ électrique se propage comme une

uloao = ¢g, soit la vitesse de la lumiére dans le

onde de célérité v =
vide



Propagation du champ électromagnétique

Démonstratjon, . ., . . -
On peut &tablir | équation de propagation du champ magnétique en

appliquant I'opérateur rotationnel a I'équation de Maxwell-Ampere

—_ -
— (A Orot B
rot (rot B(M, t)) = Mogorgit
orad (div B 5 - o ( OB(M,t)
gra (leB(M, t)) — AB(M,t) = MO&O& <_8t>
5 ?B(M, 1)
—AB(M,t) = —Hofo—p 5
5 9?B(M, 1)
AB(M,1) = pogo——p 5 =0 |
car leB(M’ t) =0 d'aprés M.f. et RE_: — _83((3];4715)

On reconnait I’équation de d’Alembert ou équation d’onde du champ

magnétique. '
Cette équation démontre que le champ magnétique se propage comme une

onde de célérité v = ,}050 = ¢g, soit la vitesse de la lumiére dans le

vide
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Nous allons établir les équations de Maxwell dans le cas ou les champs sont
statiques : leur dérivée temporelle est nulle. Dans ce cas

o M.G. divE(M,t) = 2

o Mf. divB(M,t)=0

o M.F. rot E(M,t) =0

e M.A. rot E(M,t) = MOE(M, t)
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Equations locales

Nous allons établir les équations de Maxwell dans le cas ou les champs sont
statiques : leur dérivée temporelle est nulle. Dans ce cas

o M.G. divE(M,t) = 2

M.f. div B(M,t) = 0

M.F. rot E(M,t) = 0

M.A. rot B(M,t) = poj(M,t)
c.c. divj(M,t) = 0.



Champs statiques

Equations locales

Nous allons établir les équations de Maxwell dans le cas ou les champs sont
statiques : leur dérivée temporelle est nulle. Dans ce cas

o M.G. divE(M,t) = 2

M.f. div B(M,t) = 0

M.F. rot E(M,t) = 0

M.A. rot B(M,t) = poj(M,t)
c.c. divj(M,t) = 0.

On constate que les champs électrique et magnétique ne sont plus couplés.
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Champs statiques

Equations intégrales

Dans le cas ol les champs sont statiques, les équations intégrales sont
M.G. gﬁﬁsﬁ M, t) A5 = Q‘“‘ , théoréme de Gauss (inchangé)

°

o M.f. 5@63 -dS = 0, conservation du flux magnétique (inchangé)

o M.F. ﬁﬁ M, ) -dl = 0, conservation de la circulation du champ
électrique sur une boucle fermée (différent du cas variable)

o M.A. ¢, B(M,t) - dl = polens, théoreme d’Ampere (différent du cas

variable)
c.c. fbsj(M,t)-dS =0, soit 32, I; = 0, loi des mailles.

Dans le cas statique, on retrouve la conservation de la circulation du champ
électrique sur une boucle fermée, le théoréeme d'Ampére et la loi des mailles
vus en électrostatique et magnétostatique.
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