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Conservation de la charge
Démonstration à 1 dimension

Revenons sur un des postulats fondamentaux en physique :

la conservation
de la charge

.

Celui implique une relation entre la densité de courant volumique j⃗, lié au
déplacement des charges, et la densité de charge volumique ρ, liée au
stockage des charges. Il s’agit d’une équation aux dérivées spatiales et
temporelles nommées

équation de conservation de la charge.

Nous allons démontrer cette équation à partir d’un modèle simple.
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Conservation de la charge
Démonstration à 1 dimension

Considérons un conducteur cylindrique de section S et d’axe (Oz) parcouru
par une densité de courant volumique j⃗ = jz e⃗z uniforme sur toute la
section.



Conservation de la charge
Démonstration à 1 dimension

Considérons un conducteur cylindrique de section S et d’axe (Oz) parcouru
par une densité de courant volumique j⃗ = jz e⃗z uniforme sur toute la
section.

Nous allons établir une méthode de bilan que l’on va appliquer aux
charges électriques, mais que nous pourront appliquer plus tard pour des
bilans de matière ou d’énergie.



Conservation de la charge
Démonstration à 1 dimension

Comme on veut établir une équation aux dérivées spatiales et temporelles
on va raisonner sur ces deux aspects

spatial : on étudie un volume de contrôle mésoscopique dτ : une
tranche de cylindre comprise entre z et z + dz du grand cylindre
temporel : on étudie entre deux instants t et t + dt, soit sur une durée
infinitésimale dt, la quantité de charges qui passent dans le volume de
contrôle. À un instant t, la quantité de charges totales dans le volume
est dQ(t).
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Conservation de la charge
Démonstration à 1 dimension

On souhaite savoir quelle sera la quantité de charge totale dans le volume à
la fin de la durée d’étude dt, soit que vaut dQ(t + dt) ?

dQ(t + dt) =

dQ(t)

+

dQe

+

− dQs

.
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la fin de la durée d’étude dt, soit que vaut dQ(t + dt) ?

dQ(t + dt) = dQ(t) +

dQe

+

− dQs

.

On sait que la quantité de charge finale dépend de la quantité de
charge initiale dQ(t).
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On souhaite savoir quelle sera la quantité de charge totale dans le volume à
la fin de la durée d’étude dt, soit que vaut dQ(t + dt) ?

dQ(t + dt) = dQ(t) + dQe +

− dQs

.

De plus, on sait qu’il y a une certaine quantité de charges qui est entrée
en z dans le volume durant la durée dt. On peut l’exprimer grâce à j⃗ :

dQe =
¨

S
j⃗(z, t) · dSe⃗zdt = jz(z, t)Sdt.



Conservation de la charge
Démonstration à 1 dimension

On souhaite savoir quelle sera la quantité de charge totale dans le volume à
la fin de la durée d’étude dt, soit que vaut dQ(t + dt) ?

dQ(t + dt) = dQ(t) + dQe + − dQs.

Enfin, on sait qu’il y a aussi une certaine quantité de charges qui est
sortie en z + dz du volume durant la durée ddt. On peut l’exprimer
grâce à j⃗ :

dQs = −
¨

S
j⃗(z + dz, t) · dSe⃗zdt = −jz(z + dz, t)Sdt.
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Démonstration à 1 dimension

On souhaite savoir quelle sera la quantité de charge totale dans le volume à
la fin de la durée d’étude dt, soit que vaut dQ(t + dt) ?

dQ(t + dt) = dQ(t) + jz(z, t)Sdt − jz(z + dz, t)Sdt.

On peut exprimer les quantités de charges à t et t + dt en fonction de la
densité de charges volumiques

dQ(t) = ρ(z, t)dτ = ρ(z, t)Sdz

dQ(t + dt) = ρ(z, t + dt)dτ = ρ(z, t + dt)Sdz.



Conservation de la charge
Démonstration à 1 dimension

On souhaite savoir quelle sera la quantité de charge totale dans le volume à
la fin de la durée d’étude dt, soit que vaut dQ(t + dt) ?

ρ(z, t + dt)Sdz = ρ(z, t)Sdz + jz(z, t)Sdt − jz(z + dz, t)Sdt.



Conservation de la charge
Démonstration à 1 dimension

On souhaite savoir quelle sera la quantité de charge totale dans le volume à
la fin de la durée d’étude dt, soit que vaut dQ(t + dt) ?

En regroupant les termes en ρ et jz, et en divisant par Sdzdt de chaque
côté, il vient que

ρ(z, t + dt) − ρ(z, t)
dt

= −jz(z + dz, t) − jz(z, t)
dz

.

En faisant tendre les éléments de longueur dz et de temps dt, ces taux
d’accroissement tendent vers des dérivées.
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Démonstration à 1 dimension

On souhaite savoir quelle sera la quantité de charge totale dans le volume à
la fin de la durée d’étude dt, soit que vaut dQ(t + dt) ?

∂ρ(z, t)
∂t

= −∂jz(z, t)
∂z

.



Conservation de la charge
Démonstration à 1 dimension

On souhaite savoir quelle sera la quantité de charge totale dans le volume à
la fin de la durée d’étude dt, soit que vaut dQ(t + dt) ?

Dans un système à une dimension la conservation de la charge se traduit
localement par l’équation de conservation de la charge

∂ρ(z, t)
∂t

+ ∂jz(z, t)
∂z

= 0.



Conservation de la charge
Démonstration à 1 dimension

On souhaite savoir quelle sera la quantité de charge totale dans le volume à
la fin de la durée d’étude dt, soit que vaut dQ(t + dt) ?

Dans un système à trois dimensions la conservation de la charge se
généralise localement par l’équation de conservation de la charge

∂ρ(x, y, z, t)
∂t

+ ∂jx(x, y, z, t)
∂x

+ ∂jy(x, y, z, t)
∂y

+ ∂jz(x, y, z, t)
∂z

= 0

∂ρ(M, t)
∂t

+ div j⃗(M, t) = 0.
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Equations de Maxwell
Maxwell-Gauss

La première équation sous forme locale est l’équation de Maxwell-Gauss

div E⃗(M, t) = ρ(M, t)
ε0

avec ρ la densité volumique de charges au point M à l’instant tt et ε0 la
permittivité du vide (on considère que le milieu considéré est le vide).

Cette équation permet de faire le lien entre le champ électrique E⃗(M, t) et
la source de ce dernier : la densité volumique de charge ρ(M, t).
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Equations de Maxwell
Maxwell-Gauss

Afin d’obtenir l’équation de Maxwell-Gauss sous forme intégrale il faut
intégrer l’équation sur un volume V

˚
V

div E⃗(M, t)dτ =
˚

V

ρ(M, t)
ε0

dτ

avec dτ le volume infinitésimale d’intégration.



Equations de Maxwell
Maxwell-Gauss

On va ici utiliser le théorème de Green-
Ostrogradski (qui vous sera toujours donné) afin
de récrire l’intégrale volumique de l’opérateur di-
vergence

˚
V

div A⃗(M, t)dτ =
‹

S
A⃗ · d⃗S

avec S la surface fermée orientée vers l’extérieur
délimitant le volume V utilisé.



Equations de Maxwell
Maxwell-Gauss

Ainsi, l’équation de Maxwell-Gauss sous forme intégrale se récrit
‹

S
E⃗(M, t) · d⃗S =

˚
V

ρ(M, t)
ε0

dτ

‹
S

E⃗(M, t) · d⃗S = Qint
ε0

avec Qint la charge électrique contenue dans le volume V.

On reconnaît le théorème de Gauss qui n’est autre que la forme intégrale
de l’équation de Maxwell-Gauss.
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Equations de Maxwell
Maxwell-Gauss

On sait qu’une charge positive crée un champ
orienté vers l’extérieur de cette charge. On peut
visualiser cela comme si la charge était une source
de champ électrique : le champ provient de la
charge. Ce qui se traduit par une divergence
positive du champ électrique : les lignes de
champ semblent être produit par la charge. 3Blue1Brown

De manière inverse, une charge négative crée un champ orienté vers cette
charge. On peut visualiser cela comme si la charge était un puits de champ
électrique : le champ est orienté vers la charge. Ce qui se traduit par une
divergence négative du champ électrique : les lignes de champ
convergent vers la charge.

Lorsqu’il n’y a pas de charge électrique, il n’y a pas de source ou de perte
du champ électrique, ce dernier reste le même, il ne semble ni être produit
ni être absorbé : la divergence du champ électrique est nul.

https://www.youtube.com/watch?v=rB83DpBJQsE


Equations de Maxwell
Maxwell-Gauss

On sait qu’une charge positive crée un champ
orienté vers l’extérieur de cette charge. On peut
visualiser cela comme si la charge était une source
de champ électrique : le champ provient de la
charge. Ce qui se traduit par une divergence
positive du champ électrique : les lignes de
champ semblent être produit par la charge. 3Blue1Brown
De manière inverse, une charge négative crée un champ orienté vers cette
charge. On peut visualiser cela comme si la charge était un puits de champ
électrique : le champ est orienté vers la charge. Ce qui se traduit par une
divergence négative du champ électrique : les lignes de champ
convergent vers la charge.

Lorsqu’il n’y a pas de charge électrique, il n’y a pas de source ou de perte
du champ électrique, ce dernier reste le même, il ne semble ni être produit
ni être absorbé : la divergence du champ électrique est nul.

https://www.youtube.com/watch?v=rB83DpBJQsE


Equations de Maxwell
Maxwell-Gauss

On sait qu’une charge positive crée un champ
orienté vers l’extérieur de cette charge. On peut
visualiser cela comme si la charge était une source
de champ électrique : le champ provient de la
charge. Ce qui se traduit par une divergence
positive du champ électrique : les lignes de
champ semblent être produit par la charge. 3Blue1Brown
De manière inverse, une charge négative crée un champ orienté vers cette
charge. On peut visualiser cela comme si la charge était un puits de champ
électrique : le champ est orienté vers la charge. Ce qui se traduit par une
divergence négative du champ électrique : les lignes de champ
convergent vers la charge.

Lorsqu’il n’y a pas de charge électrique, il n’y a pas de source ou de perte
du champ électrique, ce dernier reste le même, il ne semble ni être produit
ni être absorbé : la divergence du champ électrique est nul.

https://www.youtube.com/watch?v=rB83DpBJQsE


Equations de Maxwell
Maxwell-flux (ou Maxwell-Thomson)

La deuxième équation sous forme locale est l’équation de Maxwell-flux (ou
Maxwell-Thomson)

div B⃗(M, t) = 0.

Cette équation permet d’obtenir la structure du champ magnétique
B⃗(M, t). On verra comment cela se traduit sous forme intégrale.
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Equations de Maxwell
Maxwell-flux (ou Maxwell-Thomson)

Afin d’obtenir l’équation de Maxwell-flux sous forme intégrale il faut
intégrer l’équation sur un volume V

˚
V

div B⃗(M, t)dτ = 0

avec dτ le volume infinitésimale d’intégration.



Equations de Maxwell
Maxwell-flux (ou Maxwell-Thomson)

D’après le théorème de Grenn-Ostrogradski, l’équation de Maxwell-flux sous
forme intégrale se récrit

‹
S

B⃗(M, t) · d⃗S = 0.

On reconnaît le flux du champ magnétique. Ce dernier est constamment
nul : on dit que le champ magnétique est à flux conservatif.



Equations de Maxwell
Maxwell-flux (ou Maxwell-Thomson)

D’après le théorème de Grenn-Ostrogradski, l’équation de Maxwell-flux sous
forme intégrale se récrit

‹
S

B⃗(M, t) · d⃗S = 0.

On reconnaît le flux du champ magnétique. Ce dernier est constamment
nul : on dit que le champ magnétique est à flux conservatif.



Equations de Maxwell
Maxwell-flux (ou Maxwell-Thomson)

Comme on l’a vu pour une région sans charge
électrique, la divergence du champ électrique est
nul dans ce cas.

3Blue1Brown
Dans le cas du champ magnétique cela est toujours vrai, un peu comme si
pour chaque pôle magnétique nord (terme source du champ magnétique,
analogue à une charge positive) il y a avait forcément un pôle magnétique
sud associé à lui (terme puits du champ magnétique, analogue à une charge
négative).

Comme il y a toujours un terme source qui est compensé par un terme de
perte du champ magnétique, on dit alors que le champ magnétique est à
flux conservatif.
On peut aussi dire qu’il n’existe pas de monopôle magnétique : il faut
toujours qu’un pôle sud soit associé à un pôle nord (si on coupe en deux un
aimant, on obtient deux aimants avec chacun des pôles nord et sud.)

https://www.youtube.com/watch?v=rB83DpBJQsE
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Equations de Maxwell
Maxwell-Ampère

La troisième équation sous forme locale est l’équation de Maxwell-Faraday

−→rot E⃗(M, t) = −∂B⃗(M, t)
∂t

.

Cette équation permet de faire le lien entre le champ électrique E⃗(M, t) et
le champ magnétique B⃗(M, t). En ce sens, le champ magnétique apparaît
comme une source du champ électrique.

On donne la définition du rotationnel d’un vecteur en coordonnées
cartésiennes

−→rot A⃗(M, t) =


∂

∂x
∂

∂y
∂
∂z

 ∧

Ax

Ay

Az

 =


∂Az
∂y − ∂Ay

∂z
∂Ax
∂z − ∂Az

∂x
∂Ay

∂x − ∂Ax
∂y

 .
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Equations de Maxwell
Maxwell-Ampère

Afin d’obtenir l’équation de Maxwell-Ampère sous forme intégrale il faut
intégrer l’équation sur une surface S

¨
S

−→rot E⃗(M, t) · d⃗S =
¨

S
−∂B⃗(M, t)

∂t
· d⃗S

avec d⃗S l’élément de surface orientée infinitésimale.



Equations de Maxwell
Maxwell-Ampère

On va ici utiliser le théorème de Stokes (qui vous
sera toujours donné) afin de récrire l’intégrale
surfacique de l’opérateur rotationnel

¨
S

−→rot A⃗(M, t) · d⃗S =
˛

L
A⃗ · d⃗ℓ

avec L le contour fermé sur lequel s’appuie la
surface S et orienté selon la règle de la main
droite par rapport à la normale de la surface n⃗.



Equations de Maxwell
Maxwell-AmpèreAinsi, l’équation de Maxwell-Faraday sous forme intégrale se récrit˛

L
E⃗(M, t) · d⃗ℓ =

¨
S

−∂B⃗(M, t)
∂t

· d⃗S

˛
L

E⃗(M, t) · d⃗ℓ = −∂Φ
∂t

f.é.m. = −∂Φ
∂t

avec Φ la flux du champ magnétique au travers de la surface S.
On se rappelle qu’en électrostatique˛

L
E⃗(M, t) · d⃗ℓ = 0.

Ce n’est plus le cas en régime variable. Dans ce cas le champ électrique
n’est plus à circulation conservative : sa circulation est égale à une tension
nommée force électromotrice. Elle est due à la variation du flux magnétique.

On reconnaît la loi de Faraday qui n’est autre que la forme intégrale de
l’équation de Maxwell-Gauss.



Equations de Maxwell
Maxwell-AmpèreAinsi, l’équation de Maxwell-Faraday sous forme intégrale se récrit˛

L
E⃗(M, t) · d⃗ℓ =

¨
S

−∂B⃗(M, t)
∂t

· d⃗S

˛
L

E⃗(M, t) · d⃗ℓ = −∂Φ
∂t

f.é.m. = −∂Φ
∂t

avec Φ la flux du champ magnétique au travers de la surface S.
On se rappelle qu’en électrostatique˛

L
E⃗(M, t) · d⃗ℓ = 0.

Ce n’est plus le cas en régime variable. Dans ce cas le champ électrique
n’est plus à circulation conservative : sa circulation est égale à une tension
nommée force électromotrice. Elle est due à la variation du flux magnétique.
On reconnaît la loi de Faraday qui n’est autre que la forme intégrale de
l’équation de Maxwell-Gauss.



Equations de Maxwell
Maxwell-Ampère

La dernière équation sous forme locale est l’équation de Maxwell-Ampère

−→rot B⃗(M, t) = µ0j⃗(M, t) + µ0ε0
∂E⃗(M, t)

∂t

avec ε0 la perméabilité du vide.

Cette équation permet de faire le lien entre le champ magnétique B⃗(M, t)
et les sources de ce champ : la densité de courant j⃗ et le champ électrique
E⃗(M, t).
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Equations de Maxwell
Maxwell-Ampère

Afin d’obtenir l’équation de Maxwell-Ampère sous forme intégrale il faut
intégrer l’équation sur une surface S
¨

S

−→rot B⃗(M, t) · d⃗S = µ0

¨
S

j⃗(M, t) · d⃗S + µ0ε0

¨
S

∂E⃗(M, t)
∂t

· d⃗S

avec d⃗S l’élément de surface orientée infinitésimale.



Equations de Maxwell
Maxwell-Ampère

En utilisant le théorème de Stokes, l’équation de Maxwell-Ampère sous
forme intégrale se récrit

˛
L

B⃗(M, t) · d⃗ℓ = µ0

¨
S

j⃗(M, t) · d⃗S + µ0ε0

¨
S

∂E⃗(M, t)
∂t

· d⃗S

˛
L

B⃗(M, t) · d⃗ℓ = µ0Ient + µ0ε0

¨
S

∂E⃗(M, t)
∂t

· d⃗S.

À un terme près, On reconnaît le théorème d’Ampère qui n’est autre que
la forme intégrale de l’équation de Maxwell-Ampère. Mais pourquoi a-t-on
un terme dépendant de E⃗(M, t) en plus ?
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Equations de Maxwell
Maxwell-Ampère
Appliquons l’opérateur div sur l’équation de Maxwell-Ampère

div
(−→rot B⃗(M, t)

)
= µ0div j⃗(M, t) + µ0ε0

∂div E⃗(M, t)
∂t

on peut faire rentrer le div dans la dérivée partielle temporelle car les
variables de temps et d’espace sont indépendantes.

0 = µ0div j⃗(M, t) + µ0ε0
∂

∂t

(
ρ(M, t)

ε0

)

car div −→rot = 0 et d’après Maxwell-Gauss div E⃗(M, t) = ρ(M,t)
ε0

.

0 = div j⃗(M, t) + ∂ρ(M, t)
∂t

on reconnaît l’équation de conservation de la charge.
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Equations de Maxwell
Maxwell-Ampère
Le terme µ0ε0

∂E⃗(M,t)
∂t a été rajouté par Maxwell dans l’équation de

Maxwell-Ampère afin de satisfaire la conservation de la charge. Ainsi

−→rot B⃗(M, t) = µ0j⃗(M, t) + µ0ε0
∂E⃗(M, t)

∂t
.

Par analogie on nomme le courant dû à la variation du champ électrique le
courant de déplacement tel que j⃗d(M, t) = ε0

∂E⃗(M,t)
∂t , différent du

courant de conduction j⃗(M, t).

Si l’on se place en régime stationnaire : c’est-à-dire que toute les dérivées
temporelles sont prises nulles car toutes les grandeurs sont uniformes alors
dans ce cas l’équation de Maxwell-Ampère devient sous forme locale et
intégrale

−→rot B⃗(M, t) = µ0j⃗(M, t) et
˛

L
B⃗(M, t) · d⃗ℓ = µ0Ient.

On retrouve le théorème d’Ampère de la magnétostatique.
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Propagation du champ électromagnétique
Relation qualitative

Les équations de Maxwell-Gauss et de Maxwell-Ampère permettent de relier
les champs électrique et magnétique à leur source : la densité de charge
électrique ρ(M, t) et la densité volumique de courant j⃗(M, t).

Les équations de Maxwell-Faraday et de Maxwell-Ampère permettent de
montrer le couplage entre les champs électrique et magnétique : une
variation temporelle d’un champ apparaît comme une source pour l’autre
champ.
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variation temporelle d’un champ apparaît comme une source pour l’autre
champ.

−→rot E⃗ = −∂B⃗

∂t
M.F.

D’après Maxwell-Faraday, une variation temporelle du champ magnétique
provoque une variation spatial du champ électrique. Il se crée donc une
perturbation du champ électrique. Ce dernier va alors varier dans le temps.
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Les équations de Maxwell-Faraday et de Maxwell-Ampère permettent de
montrer le couplage entre les champs électrique et magnétique : une
variation temporelle d’un champ apparaît comme une source pour l’autre
champ.

−→rot B⃗ = µ0j⃗ + µ0ε0
∂E⃗

∂t
M.A.

D’après Maxwell-Ampère, une variation temporelle du champ électrique
provoque une variation spatial du champ magnétique. Il se crée donc une
perturbation du champ magnétique également. Cette perturbation entraîne
une variation dans le temps qui entraîne de nouveau une variation spatial du
champ électrique, etc.

Ce couplage spatiotemporel entre champ électrique et champ magnétique
provoque le phénomène de propagation d’une onde électromagnétique.



Propagation du champ électromagnétique
Démonstration

Pour établir l’équation de propagation du champ électrique, on considère un
espace vide de toute charge ρ = 0 et de tout courant j⃗ = 0⃗. Dans ce cas les
équations de Maxwell deviennent

M.G. div E⃗(M, t) = 0
M.f. div B⃗(M, t) = 0
M.F. −→rot E⃗(M, t) = −∂B⃗

∂t

M.A. −→rot B⃗(M, t) = µ0ε0
∂E⃗
∂t .
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Propagation du champ électromagnétique
Démonstration
On applique l’opérateur rotationnel à l’équation de Maxwell-Faraday

−→rot
(−→rot E⃗(M, t)

)
= −∂

−→rot B⃗

∂t

on peut introduire l’opérateur rotationnel dans la dérivée temporelle car les
variables spatiales et temporelle sont indépendantes.

On utilise la formule d’analyse vectorielle qui sera toujours fournie
−→rot

(−→rot A⃗(M, t)
)

= −−→grad
(
div A⃗(M, t)

)
− ∆A⃗(M, t)

avec ∆ l’opérateur laplacien qui est définit en coordonnées cartésiennes tel
que

∆A⃗(M, t) = ∂2Ax(M, t)
∂x2 e⃗x + ∂2Ay(M, t)

∂y2 e⃗y + ∂2Az(M, t)
∂z2 e⃗z.
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Propagation du champ électromagnétique
DémonstrationIl vient que

−−→grad
(
div E⃗(M, t)

)
− ∆E⃗(M, t) = −∂

−→rot B⃗(M, t)
∂t

−−→grad
(
div E⃗(M, t)

)
− ∆E⃗(M, t) = − ∂

∂t

(
µ0ε0

∂E⃗(M, t)
∂t

)

−∆E⃗(M, t) = −µ0ε0
∂2E⃗(M, t)

∂t2

∆E⃗(M, t) − µ0ε0
∂2E⃗(M, t)

∂t2 = 0

car div E⃗(M, t) = 0 d’après M.G. et −→rot B⃗ = µ0ε0
∂E⃗(M,t)

∂t .
On reconnaît l’équation de d’Alembert ou équation d’onde du champ
électrique.
Cette équation démontre que le champ électrique se propage comme une
onde de célérité v = 1√

µ0ε0
= c0, soit la vitesse de la lumière dans le

vide.
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DémonstrationOn peut établir l’équation de propagation du champ magnétique en
appliquant l’opérateur rotationnel à l’équation de Maxwell-Ampère
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)
= µ0ε0

∂
−→rot E⃗

∂t

−−→grad
(

div B⃗(M, t)
)

− ∆B⃗(M, t) = µ0ε0
∂

∂t

(
−∂B⃗(M, t)

∂t

)
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On reconnaît l’équation de d’Alembert ou équation d’onde du champ
magnétique.
Cette équation démontre que le champ magnétique se propage comme une
onde de célérité v = 1√

µ0ε0
= c0, soit la vitesse de la lumière dans le

vide.
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Champs statiques
Equations locales

Nous allons établir les équations de Maxwell dans le cas où les champs sont
statiques : leur dérivée temporelle est nulle. Dans ce cas

M.G. div E⃗(M, t) = ρ
ε0

M.f. div B⃗(M, t) = 0
M.F. rot E⃗(M, t) = 0
M.A. rot B⃗(M, t) = µ0j⃗(M, t)
c.c. div j⃗(M, t) = 0.

On constate que les champs électrique et magnétique ne sont plus couplés.



Champs statiques
Equations locales

Nous allons établir les équations de Maxwell dans le cas où les champs sont
statiques : leur dérivée temporelle est nulle. Dans ce cas

M.G. div E⃗(M, t) = ρ
ε0

M.f. div B⃗(M, t) = 0
M.F. rot E⃗(M, t) = 0
M.A. rot B⃗(M, t) = µ0j⃗(M, t)
c.c. div j⃗(M, t) = 0.

On constate que les champs électrique et magnétique ne sont plus couplés.



Champs statiques
Equations locales

Nous allons établir les équations de Maxwell dans le cas où les champs sont
statiques : leur dérivée temporelle est nulle. Dans ce cas

M.G. div E⃗(M, t) = ρ
ε0

M.f. div B⃗(M, t) = 0

M.F. rot E⃗(M, t) = 0
M.A. rot B⃗(M, t) = µ0j⃗(M, t)
c.c. div j⃗(M, t) = 0.

On constate que les champs électrique et magnétique ne sont plus couplés.



Champs statiques
Equations locales

Nous allons établir les équations de Maxwell dans le cas où les champs sont
statiques : leur dérivée temporelle est nulle. Dans ce cas

M.G. div E⃗(M, t) = ρ
ε0

M.f. div B⃗(M, t) = 0
M.F. rot E⃗(M, t) = 0

M.A. rot B⃗(M, t) = µ0j⃗(M, t)
c.c. div j⃗(M, t) = 0.

On constate que les champs électrique et magnétique ne sont plus couplés.



Champs statiques
Equations locales

Nous allons établir les équations de Maxwell dans le cas où les champs sont
statiques : leur dérivée temporelle est nulle. Dans ce cas

M.G. div E⃗(M, t) = ρ
ε0

M.f. div B⃗(M, t) = 0
M.F. rot E⃗(M, t) = 0
M.A. rot B⃗(M, t) = µ0j⃗(M, t)

c.c. div j⃗(M, t) = 0.

On constate que les champs électrique et magnétique ne sont plus couplés.



Champs statiques
Equations locales

Nous allons établir les équations de Maxwell dans le cas où les champs sont
statiques : leur dérivée temporelle est nulle. Dans ce cas

M.G. div E⃗(M, t) = ρ
ε0

M.f. div B⃗(M, t) = 0
M.F. rot E⃗(M, t) = 0
M.A. rot B⃗(M, t) = µ0j⃗(M, t)
c.c. div j⃗(M, t) = 0.

On constate que les champs électrique et magnétique ne sont plus couplés.



Champs statiques
Equations locales

Nous allons établir les équations de Maxwell dans le cas où les champs sont
statiques : leur dérivée temporelle est nulle. Dans ce cas

M.G. div E⃗(M, t) = ρ
ε0

M.f. div B⃗(M, t) = 0
M.F. rot E⃗(M, t) = 0
M.A. rot B⃗(M, t) = µ0j⃗(M, t)
c.c. div j⃗(M, t) = 0.

On constate que les champs électrique et magnétique ne sont plus couplés.



Champs statiques
Equations intégrales

Dans le cas où les champs sont statiques, les équations intégrales sont

M.G.
‚

S E⃗(M, t) · d⃗S = Qint
ε0

, théorème de Gauss (inchangé)

M.f.
‚

S B⃗(M, t) · d⃗S = 0, conservation du flux magnétique (inchangé)
M.F.

¸
L E⃗(M, t) · d⃗ℓ = 0, conservation de la circulation du champ

électrique sur une boucle fermée (différent du cas variable)
M.A.

¸
L B⃗(M, t) · d⃗ℓ = µ0Ient, théorème d’Ampère (différent du cas

variable)
c.c.
‚

S j⃗(M, t) · d⃗S = 0, soit
∑

i Ii = 0, loi des mailles.

Dans le cas statique, on retrouve la conservation de la circulation du champ
électrique sur une boucle fermée, le théorème d’Ampère et la loi des mailles
vus en électrostatique et magnétostatique.
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