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Introduction

Cas introductif

On compare I'atténua-
tion de la lumiere
par des lunettes so-
laires non polarisées (a
gauche) et des lunettes
polarisées (a droite).

Sans lunettes polarisées Avec lunettes polarisées

Source : MSEI
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https://www.msei.ca/les-lunettes-polarisees-comment-ca-marche/

Introduction

Cas introductif

On compare I'atténua-
tion de la lumiere
par des lunettes so-
laires non polarisées (a
gauche) et des lunettes
polarisées (a droite).

Sans lunettes polarisées Avec lunettes polarisées

Source : MSEI

Pourquoi les lunettes solaires polarisées sont-elles plus efficaces?
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Equations de propagations

Equation de propagation du champ électrique

On a vu dans la lecon précédente, comment obtenir I'équation de
d'Alembert ou équation d’onde du champ électrique a partir des équations

de Maxwell dans un espace vide de toute charge p = 0 et de tout
courant j =0.



Equations de propagations

Equation de propagation du champ électrique

On a vu dans la lecon précédente, comment obtenir I'équation de
d'Alembert ou équation d’onde du champ électrique a partir des équations

de Maxwell dans un espace vide de toute charge p = 0 et de tout
courant j =0.

On applique I'opérateur rotationnel sur I'équation de Maxwell-Faraday

rot (M) = _833(27\4)
e a— _ — ( 9B(M)
rot (rotE(M)) =rot | — T )

grad (div EQM)) — AE(M) = — 0 (rot B(a)) .



Equations de propagations

Equation de propagation du champ électrique

grad (divE(M)) ~ AE(M) =



Equations de propagations
Equation de propagation du champ électrique
— R = 01— 5
grad (div E(M)) = AE(M) = — 5 (vot B(M)).
On utilise I'équation de Maxwell-Gauss pour p = 0 : div E(M) = 0

et I'équation de Maxwell-Ampére pour j = 0 : rot E(M) = lpEo 8Ea(fw).

q PE(M)
—~AE(M) = —pipgg———2
(M) = —poeo 50
. 2E(M
AE(]W)—,U,OEO8 ( ) = 0.

ot?



Equations de propagations

Equation de propagation du champ électrique

grad (divE(M)) ~ AE(M) = —% (rot B(M)) .

On utilise I'équation de Maxwell-Gauss pour p = 0 : div E(M) = 0

et I'équation de Maxwell-Ampére pour j = 0 : rot E(M) = lpEo 8%(?4).
. OPE(M)
“AE(M) = —pgeg——s—?
(M) = —poeo 50
, O*E(M
AE(M)—,U,()EO ( ) = 0.

ot?

On reconnait I'équation de d’Alembert ou I'équation d'onde

- 2 5
AE(M) — U%a gt(j”) = 0. Le champ électrique est donc une onde qui
se propage a la vitesse v = \/ﬁ, soit la célérité d’une onde
électromagnétique dans le vide cj.




Equations de propagations

Equation de propagation du champ magnétique

On a vu dans la lecon précédente, comment obtenir I'équation de
d'Alembert ou équation d'onde du champ magnétique a partir des équations

de Maxwell dans un espace vide de toute charge p = 0 et de tout
courant ] =0.



Equations de propagations

Equation de propagation du champ magnétique

On a vu dans la lecon précédente, comment obtenir I'équation de
d'Alembert ou équation d'onde du champ magnétique a partir des équations

de Maxwell dans un espace vide de toute charge p = 0 et de tout
courant ] =0.

On applique I'opérateur rotationnel sur I'équation de Maxwell-Ampere pour
J=0

ot B(M) = jioeo 220D
ot
o (5t 500) = et 2201



Equations de propagations

Equation de propagation du champ magnétique

grad (divB(M)) ~ AB(M) = Mogogt (rol £(0)) .



Equations de propagations
Equation de propagation du champ magnétique

arad (aiv B(M)) — AB(M) = ,m&-o% (E% E(M)).

On utilise I'équation de Maxwell-flux : div B(M) = 0

et I'équation de Maxwell-Faraday : rot E(M) = —838(5\4)-

= PB(M
—AB(M) = _/’I’Ogoat(Q)

S O?*B(M)

AB(M) — ,LL()EOT =0.



Equations de propagations

Equation de propagation du champ magnétique
— S S 0 -
grad (div B(M)) — AB(M) = o0 5 (vot E(M)).

On utilise I'équation de Maxwell-flux : div B(M) = 0

et I'équation de Maxwell-Faraday : rot E(M) = —8§8(tM).
- 92B(M)
—AB(M) = — —_—
(M) = —pogo——7.3
- 2B(M
AB(]\J)—,U,()EO8 ( ) =0.

ot?

On reconnait I'équation de d’Alembert ou I'équation d'onde

= 253
AB(M) — U%a gt(QM) = 0. Le champ magnétique est donc une onde qui
se propage a la vitesse v = \/ﬁ, soit la célérité d’une onde
électromagnétique dans le vide cj.




Equations de propagations

Equation de propagation du champ magnétique

Ainsi on a prouvé qu'une onde électromagnétique est composé de deux
parties : une partie électrique E(M) et une partie magnétique B(M).
Ces deux parties composent |'onde électromagnétique qui se propagent a la

célérité ¢y = \/‘% dans le vide.




Equations de propagations

Domaines du spectre des ondes électromagnétiques

HE H I 1 H
o ! I H
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On peut classer les ondes électromagnétiques (EM) en fonction de leur

fréquence f ou de leur longueur d'onde dans le vide \g = CTO

Selon la gamme de fréquences les applications de ces ondes sont différentes.



Equations de propagations

Domaines du spectre des ondes électromagnétiques
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Les ondes radiophoniques de la bande FM correspondent a une gamme de
fréquence de |'ordre 100 MHz.
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Equations de propagations

Domaines du spectre des ondes électromagnétiques

énergie dun
photon
E(eV)

rEyons

ondes radio

fréquence
v (Hz)

1 1 1 1 1 1 1 1
Cadttaadsit | 3i0®

R

8

3107 3.10

longueur

d'onde
A ()

La TNT exploite des ondes EM comprises entre 470 MHz et 790 MHz.
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Equations de propagations

Domaines du spectre des ondes électromagnétiques

énergie dun
photon
E(eV)

rEyons

ondes radio

fréquence
v (Hz)

1 1 1 1 1 1 1 1
Cadttaadsit | 3i0®

R

8

3107 3.10

longueur

d'onde
A ()

La téléphonie mobile exploite des ondes EM de I'ordre du GHz.
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Equations de propagations

Domaines du spectre des ondes électromagnétiques

énergie dun
photon
E(eV)

rEyons

ondes radio

fréquence
v (Hz)

1 1 1 1 1 1 1 1
Cadttaadsit | 3i0®

R

8

3107 3.10

longueur

d'onde
A ()

Le réseau WiFi exploite des ondes EM soit a 2,4 GHz soit a 5 GHz.



Equations de propagations

Domaines du spectre des ondes électromagnétiques

I i 1 1 H
H ; P H
' ' ' [ ' '
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Les rayons X et rayons ~y sont qualifiés de rayonnements ionisants,
c'est-a-dire 3 méme d’arracher un électron a un atome.



Equations de propagations

Domaines du spectre des ondes électromagnétiques
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Les rayons X et rayons « sont qualifiés de rayonnements ionisants,
c'est-a-dire a méme d'arracher un électron a un atome.

L'emploi de rayons X est I'une des principales techniques d'imagerie
médicale, également utilisée pour I'étude de la matiére a |'échelle atomique.



Equations de propagations

Domaines du spectre des ondes électromagnétiques
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Les rayons X et rayons « sont qualifiés de rayonnements ionisants,
c'est-a-dire 3 méme d’arracher un électron a un atome.

Les rayons  sont produits par la désintégration de noyaux radioactifs. lls
sont également exploités en imagerie médicale et en spectroscopie, mais
peuvent provoquer de graves lésions qui peuvent menées a des cancers.
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Ondes planes

Modeles des ondes planes

Une des solutions de I'équation de d'Alembert pour la partie électrique ou
magnétique d'une onde EM : les ondes planes.

Une onde est plane si elle ne dépend que du temps et d'une seule
dimension spatiale cartésienne :

E(M,t) = E(z,t) et B(M,t)=B(z,t). ¢



Ondes planes

Modeles des ondes planes

Rappel : une onde plane est une onde pour laquelle les surfaces d'onde
sont des plans.

Rappel :

Comment réaliser une onde plane?



Ondes planes

Modeles des ondes planes

Rappel : une onde plane est une onde pour laquelle les surfaces d'onde
sont des plans.

Rappel : une surface d’onde sont les lieux ot le champ est constant a un
instant fixé.

Comment réaliser une onde plane?



Ondes planes

Modeles des ondes planes

Rappel : une onde plane est une onde pour laquelle les surfaces d'onde
sont des plans.

Rappel : une surface d’onde sont les lieux ot le champ est constant a un
instant fixé.

Comment réaliser une onde plane? Si on observe une onde sphérique a une
grande distance de la source, on peut approximer une partir de I'onde
sphérique a une onde plane?




Ondes planes

Modeles des ondes planes

1.0
Une onde plane se propageant
selon le sens des x croissants , 93
d'un axe (Ox) a pour équa- = .
tion (représentation spatial 3
on prend une photo a un ins- -0.5

tant ¢ fixé) 10
= 0.00 0.02 0.04 0.06 0.08 0.10 0.12 9%,
/

E(z,t) = s(xz — ct)e, X (m)

avec €, un vecteur unitaire perpendiculaire a I'axe (Ox).



Ondes planes
Modeles des ondes planes

Une onde plane se propageant 1.0
selon le sens des x croissants ]
1 7 . }Q\OS
d'un axe (Ox) a pour équation X
(représentation temporelle : on 50-0 |74 v
suit les variations en un point  ~_g 5
x fixé)
-1.q]
_ T,
E(z,t) =s(t——)ep §3? 0.020.070.120170220.270.32037
C N t(ms

avec €, un vecteur unitaire perpendiculaire a I'axe (Ox).



Ondes planes

Modeles des ondes planes

Une onde plane se propageant selon le sens des x décroissants d'un axe

(Ox) a pour équation (représentation spatial : on prend une photo a un
instant ¢ fixé)

E(z,t) = f(z + ct)e,

avec €, un vecteur unitaire perpendiculaire a I'axe (Ox).



Ondes planes

Modeles des ondes planes

Une onde plane se propageant selon le sens des x décroissants d'un axe
(Oz) a pour équation (représentation temporelle : on suit les variations en
un point z fixé)

E(m,t) = f(t+ %)e}}

avec €, un vecteur unitaire perpendiculaire a I'axe (Ox).



Ondes planes

Modeles des ondes planes

On retiendra que toute onde plane, solution de I'équation de d’Alembert
cartésienne a une dimension s'écrit comme la superposition de deux OPP se
propageant en des sens opposés '

—

E(z,t) = s(x —ct)ep + f(x + ct)ép. '



Ondes planes
Ondes planes progressives harmonique (OPPH)

Une onde plane progressive est dite harmonique (OPPH) ou sinusoidale
ou monochromatique (OPPM) si sa dépendance en temps est sinusoidale
en tout point de I'espace '

E(x,t) = Eycos (wt + ka — @) Uy .

avec w la pulsation unique de l'onde, k = 27” la pulsation spatiale qui
s'exprime en rad - m~! et ¢ la phase a I'origine.



Ondes planes
Ondes planes progressives harmonique (OPPH)

Une onde plane progressive est dite harmonique (OPPH) ou sinusoidale
ou monochromatique (OPPM) si sa dépendance en temps est sinusoidale

en tout point de I'espace '

E(x,t) = Eycos (wt + ka — @) Uy .

avec w la pulsation urquue de I'onde, k = 27” la pulsation spatiale qui
s'exprime en rad - m™ "~ et ¢ la phase a I'origine.
On appelle vecteur d’onde d'une OPPH le vecteur de norme 27” de méme

direction et méme sens que la propagation '

avec i la direction de propagation perpendiculaire a la direction des champs
électrique et magnétique.



Ondes planes
Ondes planes progressives harmonique (OPPH)

On peut généraliser I'expression d'une OPPH a partir du vecteur d’'onde

—

E(M,t) = Eqcos (wt—E-OYW—w) Uy .



Ondes planes

Structure des ondes planes progressives harmoniques OPPH

Pour obtenir la relation de structure entre les parties électrique E(M, t)
et magnétique B(M,t) d'une OPPH dans le vide, on utilise les équations de
Maxwell locales sans charge et sans courant en écriture complexe.



Ondes planes

Structure des ondes planes progressives harmoniques OPPH

Pour obtenir la relation de structure entre les parties électrique E(M, t)
et magnétique B(M,t) d'une OPPH dans le vide, on utilise les équations de
Maxwell locales sans charge et sans courant en écriture complexe.

Pour cela on doit étudier a quoi correspond les opérateurs dérivée
temporelle, divergence et rotationnel en complexe.



Ondes planes

Structure des ondes planes progressives harmoniques OPPH

On commence par écrire la dérivée temporelle en complexe pour un
champ électrique complexe tel que

E(M,t) = Eyell«t-FOM—)g

OE(M, 1)
ot



Ondes planes

Structure des ondes planes progressives harmoniques OPPH

On commence par écrire la dérivée temporelle en complexe pour un
champ électrique complexe tel que

E(M,t) = Eyell«t-FOM—)g

LD iwEory @



Ondes planes

Structure des ondes planes progressives harmoniques OPPH

On commence par écrire la dérivée temporelle en complexe pour un
champ électrique complexe tel que

E(M,t) = Eyell«t-FOM—)g

LY —wBor)

0 .
a@lw '



Ondes planes

Structure des ondes planes progressives harmoniques OPPH , .
n écrit la divergence en complexe pour un champ électrique complexe

tel que

T i(wt—k-OM—¢) -
E(M,t) = Eye'( °)i,
— EO xei(wtszxfkyyszzfgo)ﬁx
t(wt—ker—kyy—k.z—p) =

+ Eoye oo Uy

+ EO Zei(wt—kﬁx—kyy—kzz—cp)l—b‘z‘

div E(M, t) =
div E(M, t) =
div E(M, t) =



Ondes planes

Structure des ondes planes progressives harmoniques OPPH , .
n écrit la divergence en complexe pour un champ électrique complexe

tel que

(wt—E-OM—go) ﬁp

i(wtszxfkyyszzfgo)ﬁx

E(M,t) = Egé’
= E()@e
+ Eo’yei(wtszszyyszzfcp),L—L»y

+ EO Zei(wt—kﬁx—kyy—kzz—cp)l—b‘z‘

. 0E, OB, OE.
div E(M, ) = or Dy s
div E(M, t) =

div E(M, t) =




Ondes planes

Structure des ondes planes progressives harmoniques OPPH , .
n écrit la divergence en complexe pour un champ électrique complexe

tel que

(wt—E-OM—go) ﬁp

i(wtszxfkyyszzfgo)ﬁx

E(M,t) = Egé’
= E()@e
+ Eo’yei(wtszszyyszzfcp),L—L»y

+ EO Zei(wt—kﬁx—kyy—kzz—cp)l—b‘z‘

- OF OE oF
divE(M,t) = 8:; + a*yy + a*;

divE(M,t) = — ik, E, — ikyE, — ik.E,

div E(M, t) =



Ondes planes

Structure des ondes planes progressives harmoniques OPPH , .
n écrit la divergence en complexe pour un champ électrique complexe

tel que

T i(wt—k-OM—¢) -
E(M,t) = Eye'( °)i,
— EO xei(wtszxfkyyszzfap)ﬁx
t(wt—ker—kyy—k.z—p) =

+ Eoye oo Uy

+ EO Zei(wt—kﬁx—kyy—kzz—cp)ﬁz‘

- OF OE oF
divE(M,t) = 8*; + 87 + a*;

divE(M,t) = — ik, E, — ikyE, — ik.E,
divE(M,t) = —ik-E(M,t) ¢
div < —ik- ¢




Ondes planes

Structure des ondes planes progressives harmoniques OPPH

Si on étudie le rotationnel en complexe pour un champ électrique
complexe tel que

7 i(wt—k-OM—y)
E(M,t) = Eye'l ?) i,

_ Eo’zei(wt—kxac—kyy—kzz—go),L—L»I
+ Eo’yei(wt—k’zx—k’yy—kzz—go)ﬁy

+ E07Zez(wt7kzx7kyyszzftp)l—[z



Ondes planes

Structure des ondes planes progressives harmoniques OPPH

Si on étudie le rotationnel en complexe pour un champ électrique
complexe tel que

7 i(wt—k-OM—¢) =

E(M,t) = Epe'(* ?) i,

_ EO’Iei(wt—kxac—kyy—kzz—gﬂ)ﬁz

+ Eo’yez(wt—k’zx—k’yy—kzz—go)ﬁy

+ E07Zez(wt7kzszyyszzftp)l—[z

on peut montrer que pour une OPPH

rot B(M,t) = —ik ANE(M,t) €@

rot = —ikn €@



Ondes planes

Structure des ondes planes progressives harmoniques OPPH

A partir de ces expressions des opérateurs dérivées temporelles, divergence
et rotationnel en complexe, on peut récrire les équations de Maxwell dans
le vide en complexe

(M.G) divE(M,t)=0 <+

(M) divB(M,t) =0 <+

(M.F.) ot E(M,t) = —

(MA)) rot B(M, t) = pozo



Ondes planes

Structure des ondes planes progressives harmoniques OPPH

A partir de ces expressions des opérateurs dérivées temporelles, divergence

et rotationnel en complexe, on peut récrire les équations de Maxwell dans
le vide en complexe

(M.G.) divE(M,t)

=0 <« —ik-E(M,t)=0
(M) divB(M,t) =0 <+

(M.F.) ot E(M,t) = —

(MA)) rot B(M, t) = pozo



Ondes planes

Structure des ondes planes progressives harmoniques OPPH

A partir de ces expressions des opérateurs dérivées temporelles, divergence

et rotationnel en complexe, on peut récrire les équations de Maxwell dans
le vide en complexe

(M.G.) divE(M,t)

=0 <« —ik-E(M,t)=0
(M) divB(M,t) =0 <= —ik-B(M,t)=0
(M.F.) E)%E(M,t):—gw(;f’ﬂ =
. E(M
(M.A) E%B(M,t):meoa(a’t)

t



Ondes planes

Structure des ondes planes progressives harmoniques OPPH

A partir de ces expressions des opérateurs dérivées temporelles, divergence

et rotationnel en complexe, on peut récrire les équations de Maxwell dans
le vide en complexe

(M.G.) divE(M,t)

=0 <« —ik-E(M,t)=0
(M) divB(M,t) =0 <= —ik-B(M,t)=0
(M.F.) 1ot B(M,t) = —aég\fﬂ =

— ik N E(M,t) = —iwB(M,t)
(M.A.) ot B(M,t) = ,uge(]%

ot



Ondes planes

Structure des ondes planes progressives harmoniques OPPH

A partir de ces expressions des opérateurs dérivées temporelles, divergence

et rotationnel en complexe, on peut récrire les équations de Maxwell dans
le vide en complexe

(M.G.) divE(M,t)

=0 <« —ik-E(M,t)=0
(M) divB(M,t) =0 <= —ik-B(M,t)=0
(M.F.) 1ot B(M,t) = —83(8];4’75) =

— ik N E(M,t) = —iwB(M,t)
(M.A.) ot B(M,t) = ,uge(]%

ot
— ik A B(M, t) = iw,uOEOE(M, t).



Ondes planes

Structure des ondes planes progressives harmoniques OPPH

Ainsi d'aprés les équations de Maxwell, dans le vide sans charge et sans
courant, les parties électrique et magnétiques de 'OPPH sont toutes deux

perpendiculaires a la direction de propagation de I'onde EM donnée par le
vecteur d'onde k

—

k-E(M,t)=0 et k-B(M,t)=0.

Les trois vecteur k, E et BB forme un triddre direct telle que

—

wB(M,t) =k AE(M,t)
N



Ondes planes

Structure des ondes planes progressives harmoniques OPPH

Dans le vide sans charge I'OPPH a pour structure

Bt — E/\EUEM,t) O



Ondes planes

Structure des ondes planes progressives harmoniques OPPH
On peut généraliser ce résultat aux OPP, soit des ondes avec plusieurs

fréquences ou plusieurs pulsations. Il faut donc enlever la dépendance en w
de la relation de structure
_ kN E(M,t)

B(M,t) = "



Ondes planes

Structure des ondes planes progressives harmoniques OPPH
On peut généraliser ce résultat aux OPP, soit des ondes avec plusieurs

fréquences ou plusieurs pulsations. Il faut donc enlever la dépendance en w
de la relation de structure

. EANE(M,t) kAE(M,t
B0 = En L _EnEQns



Ondes planes

Structure des ondes planes progressives harmoniques OPPH

On peut généraliser ce résultat aux OPP, soit des ondes avec plusieurs
fréquences ou plusieurs pulsations. Il faut donc enlever la dépendance en w
de la relation de structure

B(MJ)ZIC/\ (M,t) _ kAE(M,t)
w kco
. i AE(M,t
B,y = INEULY o
o

en utilisant la relation ¢y = 7 et avec i le vecteur unitaire porté par le

vecteur d'onde k = kii.



Ondes planes

Structure des ondes planes progressives harmoniques OPPH
On peut généraliser ce résultat aux OPP, soit des ondes avec plusieurs

fréquences ou plusieurs pulsations. Il faut donc enlever la dépendance en w
de la relation de structure

E(M7t):k/\ (M,t) _ kAE(M,t)
w kco
. i AE(M,t
B,y = INEULY o
o

en utilisant la relation ¢y = 7 et avec i le vecteur unitaire porté par le

vecteur d'onde k = kii.

On remarque que les parties magnétique et électrique d'une OPP dans le
vide sont en phase et que leur norme sont telles que

; £, o)
IBr.p) =
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Aspects énergétiques

Densité volumique d’énergie électromagnétique

On définit la densité volumique d’énergie électromagnétique
instantanée u.,, portée par une onde est

Uem = Ue T Um '

1 1 B?(M,t
Uem = §€0E2(M, t) + 2(#0)

\ 4

avec U, et u,, les densités volumiques d'énergie électrique et magnétique
exprimée en J - m?



Aspects énergétiques

Densité volumique d’énergie électromagnétique

Application : on considére une OPPH se propagent selon les x positifs et
ayant pour équation de son champ électrique

E(M,t) = Eqcos (wt — k) Uy.

Quelle est I'expression de sa densité volumique de charge ue,, et de la
valeur moyenne de cette derniére (uep,) ?



Aspects énergétiques

Densité volumique d’énergie électromagnétique

On cherche d'abord I'expression du champ magnétique a partir de la
relation de structure d'une OPP
_ i A E(M,t
B,y = TNEQLY
co



Aspects énergétiques

Densité volumique d’énergie électromagnétique

On cherche d'abord I'expression du champ magnétique a partir de la
relation de structure d'une OPP

B(M,t) = @NE(M,t) i, A Egcos (wt — ka)

Co €o
. E
B(M,t) = cT()) cos (wt — kx) .



Aspects énergétiques

ensité volumlq e d'énergie électrom tiq
a densité Vol umique energlealgm est donc

1 B*(M, t)

1
Uem = 2€0E2(M t) I



Aspects énergétiques

nsité volymique d'énergie, électrom ique

I?_% densite voTumlque energlealgmtest donc
1 1 B%(M,t
Uem = §€0E2(M7 t) =+ 2(/~LO)

= _goF? 2( t—k:)—l—f—02 (wt — kx)
Uu £ COS™ (W xr COS (W xX).
em 2 0 2 ch



Aspects énergétiques

ensité volumlq e d'énergie électrom tiq
a densité Vol umique energlealgm est donc

1B*(M,t
Uen, = 250E2(M t)+ (,U[))
1 1 ES
Uem = §€OE§ cos? (wt — kx) §’u0—g cos (wt — kx) .
Or poeg = % donc
1, 1 Eg
Uem = 550EO cos” (wt — kz) + 5#050% cos (wt — kx)

Uem = E()Eg cos? (wt — kx).

Pour une OPPH la densité volumique d'énergie électromagnétique est
équirépartie entre les formes électrique et magnétique '

1
Ue = Uy, = §€0Eg cos? (wt — kx).



Aspects énergétiques

Densité volumique d’énerﬁie électromagnétique ) ., )
La moyenne temporelle de la densité volumique d'énergie EM est alors

(Uem) = (ue) + (um)
(Uem) = 2 <;€0E§ cos? (wt — l{:x)>



Aspects énergétiques
Densité volumique d’énerﬁie électromagnétique ) ) )
La moyenne temporelle de la densité volumique d'énergie EM est alors

(Uem) = (ue) + (um)
(Uem) = 2 <;€0E§ cos? (wt — l{:x)>

(Uem) = €0 F2 <C082 (wt — kx)>

1
<uem> = igoEg.



Aspects énergétiques

Densité volumique d’énerﬁie électromagnétique ) ., )
La moyenne temporelle de la densité volumique d'énergie EM est alors

(Uem) = (ue) + (um)
(Uem) = 2 <;€0E§ cos? (wt — lm)>

(Uem) = €0 F2 <C082 (wt — kx)>
1

<uem> = igoEg.

On peut récrire cette expression en fonction de la norme du champ

- E2 .
magnétique en se rappelant que pour une OPP : By = =, soit

= Z¢oc2B? = —¢g———B
(Uem) 250(30 0 2€0M0€0 0
1 B2

<Uem> = 5 100 .



Aspects énergétiques
Vecteur de Poynting

On définit le vecteur densité de courant d’énergie électromagnétique
ou vecteur de Poynting II tel que

E(M,t) A B(M,t)
Ho '

=



Aspects énergétiques
Vecteur de Poynting

On a vu précédemment que pour un vecteur d'onde k = kil et
E(M,t) = Egcos (wt — kx) i, alors B(M,t) = EO cos (wt — kx) i, ainsi

E(M,t) ANB(M,t)
Ho

=




Aspects énergétiques
Vecteur de Poynting

On a vu précédemment que pour un vecteur d'onde k = kil et
E(M,t) = Egcos (wt — kx) i, alors B(M,t) = EO cos (wt — kx) i, ainsi

_ E(M,t) AB(M,t) EO cos? (wt — kx) _,
H = uaz
Ho CoHo

1 _
or o= eocd donc
T _ 2 .2 -
IT = egpco Ef cos” (wt — kx) iy

La moyenne temporelle du vecteur de Poynting est donc

<ﬁ> = %5000Egﬁm.



Aspects énergétiques
Vecteur de Poynting

. 1 .
<H> = §€OCOE3U;E.
On constate que le vecteur de Poynting d'une OPPH est orienté selon le

vecteur d’onde k. '

De plus, on sait que e, = e0Fg cos? (wt — kx) et (Uepm) = %a)Eg, on
peut donc récrire

—

II = uemecot et <ﬁ> = (Uem) CoU '

avec i le vecteur unitaire porté par k.



Aspects énergétiques
Vecteur de Poynting
Le vecteur de Poynting ou vecteur densité de courant d'énergie EM est
= Uemn CoU.
Faisons le parallele avec le vecteur densité de courant électrique
j=pv

ce dernier illustre le fait que les charges électriques de densité volumique p
se déplacent a la vitesse v.

De méme, le vecteur de Poynting illustre le fait que I'énergie EM de densité
volumique u,, se propagent a la vitesse ¢y dans la direction de propagation

de I'onde. .



Aspects énergétiques
Vecteur de Poynting

Si on calcule le flux du vecteur de Poynting moyen d'une onde EM au
travers d'une surface S il vient que

//S<ﬁ>'d79= //S (o) €l - dS.

En étudiant les unités du terme de droite on voit
[tem] X [co] x [dS] =J-m3 xm-stxm?=J.s1=W.

Le flux du vecteur de Poynting moyen correspond a une puissance et
le vecteur de Poynting moyen correspond a une puissance surfacique

orientée d’unité W - m—2, '



Aspects énergétiques
Vecteur de Poynting

On a déja vu la puissance surfacique d’'une onde EM auparavant, il s’agit de
la grandeur que I'on a nommée éclairement et notée £. Ainsi

~ 1 1
&= <H> U= 58060E(2]ﬁ- U= 58000E[2).



Aspects énergétiques
Vecteur de Poynting

On a déja vu la puissance surfacique d’'une onde EM auparavant, il s’agit de
la grandeur que I'on a nommée éclairement et notée £. Ainsi

~ 1 1
&= <H> U= 58060E(2]ﬁ- U= iaocoEg.

Dans la legon portant sur le modéle scalaire de la lumiére, on avait posé
1
£ =-KEj
5 1+ Fo

avec K une constante a définir. On montre enfin ici que cette constante
K= £0C0-



Aspects énergétiques
Vecteur de Poynting

Attention : les moyennes temporelles des grandeurs énergétiques se
calculent avec des expressions réelles

(Uem) = %80 <E2(M,t)> 4 % <B(M’t)>

Ho
<E(M, ) A B(M, t)>

Ho

(I) =

On peut utiliser la représentation complexe mais dans ce cas la les
expressions sont différentes

1 Re (3B(M,t)- B*(M, 1))
2 Ho

1 1= -
(Uem) = 550 Re <2E(M, t)- E*(M, t)) + 5

1E(M,t)A§*(M,t)>

(IT) = Re (2 o



Aspects énergétiques

Bilan d'énergie

De la méme maniére qu'on I'a fait pour obtenir I'équation de conservation
de la charge, nous allons faire le bilan de I'énergie électromagnétique uen, (t)
dans un petit volume de contréle d7 durant un durée infinitésimale dt.

Considérons un conducteur cylindrique de section S et d'axe (Oz) parcouru
par une onde EM de densité de courant d'énergie II uniforme sur toute la
section.

AUgpm
Ti(z t) i(z + dz,t)

z z+dz

Nous allons utiliser la méthode de bilan que I'on a appliqué aux charges
électriques, mais cette fois pour |'énergie EM dU.,,.



Aspects énergétiques

Bilan d'énergie

On veut savoir quelle est la quantité d'énergie dU,,,, dans le volume de
controle d7 apres la durée d'étude dt

AUem (2, t + dt) = + +

AUgpm
Ti(z t) i(z + dz,t)

z z+dz



Aspects énergétiques

Bilan d'énergie

On veut savoir quelle est la quantité d'énergie dU,,,, dans le volume de
controle d7 apres la durée d'étude dt

AUem (2, t + dt) = dUen (2, t) + +
AUgy,
Ti(z,t) i(z + dz,t)
z+dz

Cette quantité d'énergie dUs,(2,t + dt) dépend d'abord de la quantité
d’énergie au début de I'étude, soit AU, (2, t).



Aspects énergétiques

Bilan d'énergie

On veut savoir quelle est la quantité d'énergie dU,,,, dans le volume de
contrble dr apres la durée d'étude dt

AQUem (2, + dt) = AU (2, 1) + AUeps +

dU,p,
ﬁ(z, t)

ﬁ(z +dz,t)

z z+dz

Puis elle dépend de la quantité d’'énergie entrante au cours de la durée dt,
telle que

AUps = // T(z,t) - dSdt = IL, (2, t)Sdt.
S



Aspects énergétiques

Bilan d'énergie

On veut savoir quelle est la quantité d'énergie dU,,,, dans le volume de
contrble dr apres la durée d'étude dt

AUem (2, + dt) = AUem (2, 1) + dUent + — dUsons.

dU,p,
ﬁ(z, t)

ﬁ(z +dz,t)

z z+dz

Et enfin elle dépend de la quantité d'énergie sortante au cours de la durée
dt, telle que

dUsort = // ﬁ(Z + dZ,t) . d_S’dt = HZ(Z + dZ,t)Sdt.
S



Aspects énergétiques

Bilan d'énergie

On obtient I'équation bilan
AUem (z,t + dt) = dUein (2, t) + (2, t)Sdt — 11, (z + dz, t)Sdt.

On peut exprimer les quantités d'énergies aux instants ¢ et d¢, en fonction
des densités volumiques d'énergie

AU (t) =
AUepm (t + dt) =



Aspects énergétiques

Bilan d'énergie

On obtient I'équation bilan

Uem (2,1 4+ dt)Sdz = Uem (z,1)Sdz + 11, (2, t)Sdt — 11, (2 + dz,t)Sdt.

On peut exprimer les quantités d'énergies aux instants ¢ et d¢, en fonction
des densités volumiques d'énergie

AUem (t) = tem (2, 6)dT = tem(z,t)Sdz
AUep (t + dt) = tem (2, t + dt)dT = Uem (2, t + dt)Sdz.



Aspects énergétiques

Bilan d'énergie

On peut séparer les variables ue,, et II et diviser de chaque coté par Sdzdt

Uem (2, + dt)Sdz = Uem (2, t)Sdz + 11, (2, t)Sdt — I1,(z + dz, t)Sdt



Aspects énergétiques

Bilan d'énergie

On peut séparer les variables ue,, et II et diviser de chaque coté par Sdzdt

Uem (2, + dt)Sdz = Uem (2, t)Sdz + 11, (2, t)Sdt — I1,(z + dz, t)Sdt
Uem (2, +dt) —uem(2,t) (2 +dz,t) — H.(z,¢)

dt dz




Aspects énergétiques

Bilan d'énergie

A I'ordre 1, c’est deux taux d'accroissement correspondent a des dérivées
partielles

Uem (2,1 + dt) — tem(z,1)
dt

(2 +dz, t) — (2,1
dz




Aspects énergétiques

Bilan d'énergie

A l'ordre 1, c'est deux taux d'accroissement correspondent a des dérivées
partielles

Uem (2, t + dt) — uem (2, 1)

(2 +dz, t) — (2,1

dt dz
Quem(z,t)  OlL(z,t)
dt N 32
8uem(z,t) oI, (
ou T 8 =0. '

On retrouve une équation bilan de la méme forme que la conservation de la
charge électrique, il s'agit de I'équation de la conservation de I'énergie
électromagnétique pour une OPP se propageant dans le vide



Aspects énergétiques

Bilan d'énergie

On peut généraliser le résultat a 3 dimensions

OUem (M, t) n Ol (M, t) n Ol (M, t) n Ol (M, t)
dt ox oy 0z

W vdivii(M,t)=0. ¢

=0
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© Polarisation
@ Définition

@ Polarisation rectiligne



Aspects énergétiques

Bilan d'énergie

On appelle polarisation d'une OPP la direction du vecteur champ électrique
E(M,t) de I'onde. '



Aspects énergétiques
Bilan d'énergie

On appelle polarisation d'une OPP la direction du vecteur champ électrique
E(M,t) de I'onde. '

Dans le cas de I'exemple utilisé précédemment

Y I'.:
T\dk'ﬁ"'ﬁol, de
/ @ pro;)"’g;l%’
T
W.’I‘

le champ électrique E(M, t) est orienté selon



Aspects énergétiques

Bilan d'énergie

On appelle polarisation d'une OPP la direction du vecteur champ électrique
E(M,t) de I'onde. '

Dans le cas de I'exemple utilisé précédemment

Y )
T\CILPOC“O“ de
* Prop,
W'T

le champ électrique E(M7 t) est orienté selon .

Mais la direction peut varier au cours du temps et donner des polarisations

particuliere mais elle est toujours perpendiculaire a la direction de
propagation.



Aspects énergétiques

Bilan d'énergie

Quelques types de polarisations
(chaine Youtube : meyavuz)


https://www.youtube.com/watch?v=CLv3SkF_Eag

Aspects énergétiques

Bilan d'énergie

Nous nous intéresserons uniquement aux OPP avec une polarisation
rectiligne : une onde électromagnétique est polarisé rectilignement si son
vecteur E(M,t) ou B(M,t) garde une direction fixe dans un plan d'onde,
soit

E(M,t) = Eqcos (wt — kz) (cos aiil, + sin T '

Dans cet exemple la propagation est selon et
le vecteur E(M,t) est orienté selon



Aspects énergétiques

Bilan d'énergie

Nous nous intéresserons uniquement aux OPP avec une polarisation
rectiligne : une onde électromagnétique est polarisé rectilignement si son
vecteur E(M,t) ou B(M,t) garde une direction fixe dans un plan d'onde,
soit

E(M,t) = Eqcos (wt — kz) (cos aiil, + sin T '

Dans cet exemple la propagation est selon 1, et
le vecteur E(M,t) est orienté selon



Aspects énergétiques

Bilan d'énergie

Nous nous intéresserons uniquement aux OPP avec une polarisation
rectiligne : une onde électromagnétique est polarisé rectilignement si son
vecteur E(M,t) ou B(M,t) garde une direction fixe dans un plan d'onde,
soit

E(M,t) = Eqcos (wt — kz) (cos aiil, + sin T '

y

Dans cet exemple la propagation est selon 1, et
le vecteur E/(M,t) est orienté selon une droite fai-
sant un angle « avec I'axe (Ox) lorsqu'on regarde *
I'onde arriver.

=1




Aspects énergétiques

Bilan d'énergie

Application : quelles sont les direction de propagation et de polarisation
des ondes décrites par les champs électriques suivants

. . . 1 1
E| = Egcos (wt — kx) i, et E,= Eyel@i—k2) (ﬁ + —1 ) .
1 0 ( ) Y =2 0 ﬁ z \/i Y



Aspects énergétiques

Bilan d'énergie

Application : quelles sont les direction de propagation et de polarisation
des ondes décrites par les champs électriques suivants

. . . 1 1
E| = Egcos (wt — kx) i, et E,= Eyel@i—k2) (ﬁ + —1 ) .
1 0 ( ) Y =2 0 ﬁ z \/i Y

E, se propage selon i, et est polarisé rectilignement selon .



Aspects énergétiques

Bilan d'énergie

Application : quelles sont les direction de propagation et de polarisation
des ondes décrites par les champs électriques suivants

— R . 1
Ey = Eycos (wt — kx)u, et E,= Eyelwt—kz) ( iy

1 4>
—=Ug + —=Uy | .
V2 V2
E; se propage selon i, et est polarisé rectilignement selon .

E)5 se propage selon i, et est polarisé rectilignement avec un angle « par

r
rapport a I'axe (Ox) tel que cosa = L, soit o = T

S



Aspects énergétiques

Bilan d'énergie

La lumiére “ordinaire”, par exemple celle venant du Soleil est en général non
polarisée car le champ électrique est orientée de maniére arbitraire dans une
direction durant des intervalles de temps trop faibles pour étre mesuré. On

parle de polarisation aléatoire. .



Aspects énergétiques

%anpde’%ncei)gciﬁariser rectilignement une onde polarisée aléatoirement a I'aide
d'un polariseur rectiligne. C'est un instrument d'optique permettant de
construire une onde polarisée rectilignement dans une direction choisie,

appelée axe passant du polariseur. '

N

\

W

Z

Le polariseur projette le champ entrant selon le vecteur unitaire donnant
I'axe du polariseur 77, ainsi

Esortant = (Eentrant : n) s n.
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@ Réflexion d’une onde plane sur
un conducteur parfait



Réflexions d'une OPPM

Réflexion d’une onde plane sur un conducteur parfait

Dans un conducteur parfait les champs sont nuls a I'échelle macroscopique
Eini =0 et By =0. '

Les charges et les courants ne sont localisés qu'en surface du conducteur et
se caractérisent par leurs densité surfacique de charge o (C-m~2) et

densité surfacique de courant jg (A-m™1). '



Réflexions d'une OPPM

Réflexion d'une onde plane sur un conducteur parfait

Que se passe-t-il lorsqu’'une OPPH arrive en incidence normale sur un
conducteur parfait?

Considérons un conducteur
parfait dans le vide occupant
le demi-espace z > 0 et une
OPPH incidente polarisée rec-
tilignement selon i, soit

E,(z,t) = Ege'@tF)g, .




Réflexions d'une OPPM

Réflexion d'une onde plane sur un conducteur parfait
Que se passe-t-il lorsqu’'une OPPH arrive en incidence normale sur un
conducteur parfait?

Considérons un conducteur
parfait dans le vide occupant
le demi-espace z > 0 et une
OPPH incidente polarisée rec-
tilignement selon i, soit

E,(z,t) = Ege'@tF)g, .

Cette onde incidente génére alors les charges et les courants de surface o et
fs sur la surface du conducteur. Ces charges et ces courants produisent
ainsi un champ électromagnétique réfléchi E,(z,t) et B,(z,t) dans le vide
devant le conducteur : cette onde réfléchi est aussi une OPPH de méme
pulsation que |'onde incidente.



Réflexions d'une OPPM

Réflexion d'une onde plane sur un conducteur parfait

Comment obtenir I'expression du champ électrique de I'onde réfléchie ?

On sait que dans le conducteur le
champ électrique est nul, c'est-a-
dire qu'a sa surface aussi la somme
des champs incident et réfléchi est
nulle :

E(z=0,t)+E,(2=0,t)=0.

Le champ réfléchi en z = 0 est donc

=

E (2=0,t) = —E;(z = 0,t) = —Epe'“V i,



Réflexions d'une OPPM

Réflexion d'une onde plane sur un conducteur parfait
Comment obtenir I'expression du champ électrique de I'onde réfléchie ?

On sait que dans le conducteur le
champ électrique est nul, c'est-a-
dire qu'a sa surface aussi la somme
des champs incident et réfléchi est
nulle :

E(z=0,t)+E,(2=0,t) = 0.

L'onde réfléchie se propage, par définition, dans le sens opposé a |'onde
incidente, on peut donc obtenir son expression pour tout point z < 0

ET(Z7t) = 7E0€i(wt+kz)ﬁx’



Réflexions d'une OPPM

Réflexion d’une onde plane sur un conducteur parfait

Du c6té des z < 0, il y a donc deux ondes qui cohabitent : I'onde incidente
E;i(z,t) et I'onde réfléchie E,(z,t). La superposition des deux donne



Réflexions d'une OPPM

Réflexion d'une onde plane sur un conducteur parfait

Du c6té des z < 0, il y a donc deux ondes qui cohabitent : I'onde incidente
E;i(z,t) et I'onde réfléchie E,(z,t). La superposition des deux donne

Etot(za t) = Ei(zv t) + Er(zv t)
_ Eoei(wt_kz)’ljx - Eoei(wt—o—kz)ﬁx
_ Eoeiwt (e—ikz _ eikz) Uy
= —2iEye™sin (kz) i, = 2¢/(“1=%) sin (kz) Uy
Soit en réel
Eiot(2,t) = 2Fg cos (wt - g) sin (kz) i,

= 2FE sin (wt) sin (kz) Uy.
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Application : a partir de I'expression du champ électrique total pour z < 0,
montrer que le champ magnétique total est

= 2F .
Biot(z,t) = 20 cos (wt) cos (kz) iy.
€o
On montrera ainsi que le champ électrique et le champ magnétique d'une
onde EM stationnaire sont en quadrature de phase (différence de phase de
7/2) : lorsqu'un champ atteint un extremum, 'autre s'annule et
inversement.



Réflexions d'une OPPM

Réflexion d'une onde plane sur un conducteur parfait

Ainsi, I'onde résultante de I'onde incident et de I'onde réfléchi est une onde
électromagnétique stationnaire

E(z,t) = 2By sin (wt) sin (kz) i,
_ 2F
B 0

(z,t) = . cos (wt) cos (kz) iy.
0

L'onde stationnaire se caractérise par un
découplage spatio-temporel. Elle admet
des nceuds de vibration se caractérisant,a
t donné, par une amplitude nulle, et des
ventres de vibration se caractérisant par

des maximas d'amplitude. '




Réflexions d'une OPPM

Réflexion d'une onde plane sur un conducteur parfait

Comment obtenir la distance entre deux noeuds ou deux ventres de |'onde
stationnaire ?
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Comment obtenir la distance entre deux nceuds ou deux ventres de |'onde
stationnaire ?

On étudie la condition d'annulation du champ,
par exemple électrique, pour un instant t
donné, un exemple facile : pour t = 0, dans
ce cas le champ magnétique est

_, 2FE 2F
B(z,0) = C—OO cos (0) cos (kz) U = C—OO cos (kz) ty.

Le champ B(z,0) s'annule pour cos (kz) = 0, soit kz, = (2p +1)%, soit
L = @pilr _ @prmy
P 2% —  4m 7O

La distance entre deux noceuds est donc
(2p+1)

(2(pp+1)+1) 2
4 Ao 1 0Ty

1
Zp+l — Zp = )\0 = 5)\0.
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Calculons maintenant la moyenne temporelle du vecteur de Poynting de
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Calculons maintenant la moyenne temporelle du vecteur de Poynting de

['onde stationnaire
< z,t) A B(z, t)>

_ 2E

uo €o

sin (kz) cos (kz) (sin (wt) cos (wt)) .
Or la moyenne temporelle d'un produit de sinus et cosinus est nulle ainsi
(Ti(z,1)) = 0.

Ce qui témoigne du fait que I'énergie électro-magnétique ne se propage pas,
ce qui cohérent avec une onde stationnaire qui ne se propage pas.'
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