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Introduction

Cas introductif

On compare l’atténua-
tion de la lumière
par des lunettes so-
laires non polarisées (à
gauche) et des lunettes
polarisées (à droite).

Source : MSEI

Pourquoi les lunettes solaires polarisées sont-elles plus efficaces ?

https://www.msei.ca/les-lunettes-polarisees-comment-ca-marche/
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Équations de propagations
Équation de propagation du champ électrique

On a vu dans la leçon précédente, comment obtenir l’équation de
d’Alembert ou équation d’onde du champ électrique à partir des équations
de Maxwell dans un espace vide de toute charge ρ = 0 et de tout
courant j⃗ = 0⃗.

On applique l’opérateur rotationnel sur l’équation de Maxwell-Faraday

−→rot E⃗(M) = −∂B⃗(M)
∂t

−→rot
(−→rot E⃗(M)

)
= −→rot

(
−∂B⃗(M)

∂t

)
−−→grad

(
div E⃗(M)

)
− ∆E⃗(M) = − ∂

∂t

(−→rot B⃗(M)
)

.
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Équations de propagations
Équation de propagation du champ électrique

−−→grad
(
div E⃗(M)

)
− ∆E⃗(M) = − ∂

∂t

(−→rot B⃗(M)
)

.

On utilise l’équation de Maxwell-Gauss pour ρ = 0 : div E⃗(M) = 0
et l’équation de Maxwell-Ampère pour j⃗ = 0 : rot B⃗(M) = µ0ε0

∂E⃗(M)
∂t .

−∆E⃗(M) = −µ0ε0
∂2E⃗(M)

∂t2

∆E⃗(M) − µ0ε0
∂2E⃗(M)

∂t2 = 0.

On reconnaît l’équation de d’Alembert ou l’équation d’onde
∆E⃗(M) − 1

v2
∂2E⃗(M)

∂t2 = 0. Le champ électrique est donc une onde qui
se propage à la vitesse v = 1√

µ0ε0
, soit la célérité d’une onde

électromagnétique dans le vide c0.
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Équations de propagations
Équation de propagation du champ magnétique

On a vu dans la leçon précédente, comment obtenir l’équation de
d’Alembert ou équation d’onde du champ magnétique à partir des équations
de Maxwell dans un espace vide de toute charge ρ = 0 et de tout
courant j⃗ = 0⃗.

On applique l’opérateur rotationnel sur l’équation de Maxwell-Ampère pour
j⃗ = 0⃗
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Équations de propagations
Équation de propagation du champ magnétique

Ainsi on a prouvé qu’une onde électromagnétique est composé de deux
parties : une partie électrique E⃗(M) et une partie magnétique B⃗(M).
Ces deux parties composent l’onde électromagnétique qui se propagent à la
célérité c0 = 1√

µ0ε0
dans le vide.



Équations de propagations
Domaines du spectre des ondes électromagnétiques

On peut classer les ondes électromagnétiques (EM) en fonction de leur
fréquence f ou de leur longueur d’onde dans le vide λ0 = c0

f .
Selon la gamme de fréquences les applications de ces ondes sont différentes.



Équations de propagations
Domaines du spectre des ondes électromagnétiques

Les ondes radiophoniques de la bande FM correspondent à une gamme de
fréquence de l’ordre 100 MHz.



Équations de propagations
Domaines du spectre des ondes électromagnétiques

La TNT exploite des ondes EM comprises entre 470 MHz et 790 MHz.
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La téléphonie mobile exploite des ondes EM de l’ordre du GHz.



Équations de propagations
Domaines du spectre des ondes électromagnétiques

Le réseau WiFi exploite des ondes EM soit à 2,4 GHz soit à 5 GHz.



Équations de propagations
Domaines du spectre des ondes électromagnétiques

Les rayons X et rayons γ sont qualifiés de rayonnements ionisants,
c’est-à-dire à même d’arracher un électron à un atome.
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Domaines du spectre des ondes électromagnétiques

Les rayons X et rayons γ sont qualifiés de rayonnements ionisants,
c’est-à-dire à même d’arracher un électron à un atome.
L’emploi de rayons X est l’une des principales techniques d’imagerie
médicale, également utilisée pour l’étude de la matière à l’échelle atomique.



Équations de propagations
Domaines du spectre des ondes électromagnétiques

Les rayons X et rayons γ sont qualifiés de rayonnements ionisants,
c’est-à-dire à même d’arracher un électron à un atome.
Les rayons γ sont produits par la désintégration de noyaux radioactifs. Ils
sont également exploités en imagerie médicale et en spectroscopie, mais
peuvent provoquer de graves lésions qui peuvent menées à des cancers.
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Ondes planes
Modèles des ondes planes

Une des solutions de l’équation de d’Alembert pour la partie électrique ou
magnétique d’une onde EM : les ondes planes.

Une onde est plane si elle ne dépend que du temps et d’une seule
dimension spatiale cartésienne :

E⃗(M, t) = E⃗(x, t) et B⃗(M, t) = B⃗(x, t).



Ondes planes
Modèles des ondes planes

Rappel : une onde plane est une onde pour laquelle les surfaces d’onde
sont des plans.

Rappel :

une surface d’onde sont les lieux où le champ est constant à un
instant fixé.

Comment réaliser une onde plane ?

Si on observe une onde sphérique à une
grande distance de la source, on peut approximer une partir de l’onde
sphérique à une onde plane ?
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Ondes planes
Modèles des ondes planes

Une onde plane se propageant
selon le sens des x croissants
d’un axe (Ox) a pour équa-
tion (représentation spatial :
on prend une photo à un ins-
tant t fixé)

E⃗(x, t) = s(x − ct)e⃗p

avec e⃗p un vecteur unitaire perpendiculaire à l’axe (Ox).



Ondes planes
Modèles des ondes planes

Une onde plane se propageant
selon le sens des x croissants
d’un axe (Ox) a pour équation
(représentation temporelle : on
suit les variations en un point
x fixé)

E⃗(x, t) = s(t − x

c
)e⃗p

avec e⃗p un vecteur unitaire perpendiculaire à l’axe (Ox).
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Une onde plane se propageant selon le sens des x décroissants d’un axe
(Ox) a pour équation (représentation spatial : on prend une photo à un
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Ondes planes
Modèles des ondes planes

Une onde plane se propageant selon le sens des x décroissants d’un axe
(Ox) a pour équation (représentation temporelle : on suit les variations en
un point x fixé)

E⃗(x, t) = f(t + x

c
)e⃗p

avec e⃗p un vecteur unitaire perpendiculaire à l’axe (Ox).



Ondes planes
Modèles des ondes planes

On retiendra que toute onde plane, solution de l’équation de d’Alembert
cartésienne à une dimension s’écrit comme la superposition de deux OPP se
propageant en des sens opposés

E⃗(x, t) = s(x − ct)e⃗p + f(x + ct)e⃗p.



Ondes planes
Ondes planes progressives harmonique (OPPH)

Une onde plane progressive est dite harmonique (OPPH) ou sinusoïdale
ou monochromatique (OPPM) si sa dépendance en temps est sinusoïdale
en tout point de l’espace

E⃗(x, t) = E0 cos (ωt ± kx − φ) u⃗p

avec ω la pulsation unique de l’onde, k = 2π
λ la pulsation spatiale qui

s’exprime en rad · m−1 et φ la phase à l’origine.

On appelle vecteur d’onde d’une OPPH le vecteur de norme 2π
λ de même

direction et même sens que la propagation

k⃗ = 2π

λ
u⃗

avec u⃗ la direction de propagation perpendiculaire à la direction des champs
électrique et magnétique.
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Ondes planes
Ondes planes progressives harmonique (OPPH)

On peut généraliser l’expression d’une OPPH à partir du vecteur d’onde

E⃗(M, t) = E0 cos
(
ωt − k⃗ · O⃗M − φ

)
u⃗p .



Ondes planes
Structure des ondes planes progressives harmoniques OPPH

Pour obtenir la relation de structure entre les parties électrique E⃗(M, t)
et magnétique B⃗(M, t) d’une OPPH dans le vide, on utilise les équations de
Maxwell locales sans charge et sans courant en écriture complexe.

Pour cela on doit étudier à quoi correspond les opérateurs dérivée
temporelle, divergence et rotationnel en complexe.
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Ondes planes
Structure des ondes planes progressives harmoniques OPPH

On commence par écrire la dérivée temporelle en complexe pour un
champ électrique complexe tel que

E⃗(M, t) = E0ei(ωt−k⃗·O⃗M−φ)u⃗p.

∂E⃗(M, t)
∂t

=

iωE⃗(M, t)

∂

∂t
⇐⇒ iω
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Ondes planes
Structure des ondes planes progressives harmoniques OPPH
On écrit la divergence en complexe pour un champ électrique complexe
tel que

E⃗(M, t) = E0ei(ωt−k⃗·O⃗M−φ)u⃗p

= E0,xei(ωt−kxx−kyy−kzz−φ)u⃗x

+ E0,yei(ωt−kxx−kyy−kzz−φ)u⃗y

+ E0,zei(ωt−kxx−kyy−kzz−φ)u⃗z.

div E⃗(M, t) =

∂Ex

∂x
+

∂Ey

∂y
+ ∂Ez

∂z

div E⃗(M, t) =

− ikxEx − ikyEy − ikzEz

div E⃗(M, t) =

− ik⃗ · E⃗(M, t)

div ⇐⇒ −ik⃗ ·
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tel que

E⃗(M, t) = E0ei(ωt−k⃗·O⃗M−φ)u⃗p

= E0,xei(ωt−kxx−kyy−kzz−φ)u⃗x

+ E0,yei(ωt−kxx−kyy−kzz−φ)u⃗y

+ E0,zei(ωt−kxx−kyy−kzz−φ)u⃗z.

div E⃗(M, t) = ∂Ex

∂x
+

∂Ey

∂y
+ ∂Ez

∂z

div E⃗(M, t) = − ikxEx − ikyEy − ikzEz

div E⃗(M, t) =

− ik⃗ · E⃗(M, t)

div ⇐⇒ −ik⃗ ·
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Ondes planes
Structure des ondes planes progressives harmoniques OPPH

Si on étudie le rotationnel en complexe pour un champ électrique
complexe tel que

E⃗(M, t) = E0ei(ωt−k⃗·O⃗M−φ)u⃗p

= E0,xei(ωt−kxx−kyy−kzz−φ)u⃗x

+ E0,yei(ωt−kxx−kyy−kzz−φ)u⃗y

+ E0,zei(ωt−kxx−kyy−kzz−φ)u⃗z

on peut montrer que pour une OPPH

−→rot E⃗(M, t) = −ik⃗ ∧ E⃗(M, t)
−→rot ⇐⇒ −ik⃗ ∧
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Ondes planes
Structure des ondes planes progressives harmoniques OPPH

À partir de ces expressions des opérateurs dérivées temporelles, divergence
et rotationnel en complexe, on peut récrire les équations de Maxwell dans
le vide en complexe

(M.G.) div E⃗(M, t) = 0 ⇐⇒

− ik⃗ · E⃗(M, t) = 0

(M.f.) div B⃗(M, t) = 0 ⇐⇒

− ik⃗ · B⃗(M, t) = 0

(M.F.) −→rot E⃗(M, t) = −∂B⃗(M, t)
∂t

⇐⇒

− ik⃗ ∧ E⃗(M, t) = −iωB⃗(M, t)

(M.A.) −→rot B⃗(M, t) = µ0ε0
∂E⃗(M, t)

∂t
⇐⇒

− ik⃗ ∧ B⃗(M, t) = iωµ0ε0E⃗(M, t).
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Ainsi d’après les équations de Maxwell, dans le vide sans charge et sans
courant, les parties électrique et magnétiques de l’OPPH sont toutes deux
perpendiculaires à la direction de propagation de l’onde EM donnée par le
vecteur d’onde k⃗

k⃗ · E⃗(M, t) = 0 et k⃗ · B⃗(M, t) = 0.

Les trois vecteur k⃗, E⃗ et B⃗ forme un trièdre direct telle que

ωB⃗(M, t) = k⃗ ∧ E⃗(M, t)

B⃗(M, t) = k⃗ ∧ E⃗(M, t)
ω

.
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Structure des ondes planes progressives harmoniques OPPH

Dans le vide sans charge l’OPPH a pour structure

B⃗(M, t) = k⃗ ∧ E⃗(M, t)
ω



Ondes planes
Structure des ondes planes progressives harmoniques OPPH
On peut généraliser ce résultat aux OPP, soit des ondes avec plusieurs
fréquences ou plusieurs pulsations. Il faut donc enlever la dépendance en ω
de la relation de structure

B⃗(M, t) = k⃗ ∧ E⃗(M, t)
ω

= k⃗ ∧ E⃗(M, t)
kc0

B⃗(M, t) = u⃗ ∧ E⃗(M, t)
c0

en utilisant la relation c0 = ω
k et avec u⃗ le vecteur unitaire porté par le

vecteur d’onde k⃗ = ku⃗.

On remarque que les parties magnétique et électrique d’une OPP dans le
vide sont en phase et que leur norme sont telles que

∥B⃗(M, t)∥ = ∥E⃗(M, t)∥
c0

.
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Aspects énergétiques
Densité volumique d’énergie électromagnétique

On définit la densité volumique d’énergie électromagnétique
instantanée uem portée par une onde est

uem = ue + um

uem = 1
2ε0E2(M, t) + 1

2
B2(M, t)

µ0

avec ue et um les densités volumiques d’énergie électrique et magnétique
exprimée en J · m3.



Aspects énergétiques
Densité volumique d’énergie électromagnétique

Application : on considère une OPPH se propagent selon les x positifs et
ayant pour équation de son champ électrique

E⃗(M, t) = E0 cos (ωt − kx) u⃗y.

Quelle est l’expression de sa densité volumique de charge uem et de la
valeur moyenne de cette dernière ⟨uem⟩ ?



Aspects énergétiques
Densité volumique d’énergie électromagnétique

On cherche d’abord l’expression du champ magnétique à partir de la
relation de structure d’une OPP

B⃗(M, t) = u⃗ ∧ E⃗(M, t)
c0

= u⃗x ∧ E0 cos (ωt − kx) u⃗y

c0

B⃗(M, t) = E0
c0

cos (ωt − kx) u⃗z.
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B2(M, t)
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uem = 1
2ε0E2

0 cos2 (ωt − kx) + 1
2

E2
0

µ0c2
0

cos (ωt − kx) .

Or µ0ε0 = 1
c2

0
donc

uem = 1
2ε0E2

0 cos2 (ωt − kx) + 1
2µ0ε0

E2
0

µ0
cos (ωt − kx)

uem = ε0E2
0 cos2 (ωt − kx) .

Pour une OPPH la densité volumique d’énergie électromagnétique est
équirépartie entre les formes électrique et magnétique

ue = um = 1
2ε0E2

0 cos2 (ωt − kx) .
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Aspects énergétiques
Densité volumique d’énergie électromagnétique
La moyenne temporelle de la densité volumique d’énergie EM est alors

⟨uem⟩ = ⟨ue⟩ + ⟨um⟩

⟨uem⟩ = 2
〈1

2ε0E2
0 cos2 (ωt − kx)

〉

⟨uem⟩ = ε0E2
0

〈
cos2 (ωt − kx)

〉
⟨uem⟩ = 1

2ε0E2
0 .

On peut récrire cette expression en fonction de la norme du champ
magnétique en se rappelant que pour une OPP : B0 = E2

0
c0

, soit

⟨uem⟩ = 1
2ε0c2

0B2
0 = 1

2ε0
1

µ0ε0
B2

0

⟨uem⟩ = 1
2

B2
0

µ0
.
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Aspects énergétiques
Vecteur de Poynting

On définit le vecteur densité de courant d’énergie électromagnétique
ou vecteur de Poynting Π⃗ tel que

Π⃗ = E⃗(M, t) ∧ B⃗(M, t)
µ0

.



Aspects énergétiques
Vecteur de Poynting

On a vu précédemment que pour un vecteur d’onde k⃗ = ku⃗x et
E⃗(M, t) = E0 cos (ωt − kx) u⃗y alors B⃗(M, t) = E0

c0
cos (ωt − kx) u⃗z ainsi

Π⃗ = E⃗(M, t) ∧ B⃗(M, t)
µ0

=

E2
0 cos2 (ωt − kx)

c0µ0
u⃗x

or 1
µ0

= ε0c2
0 donc

Π⃗ = ε0c0E2
0 cos2 (ωt − kx) u⃗x.

La moyenne temporelle du vecteur de Poynting est donc〈
Π⃗
〉

= 1
2ε0c0E2

0 u⃗x.
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Vecteur de Poynting

〈
Π⃗
〉

= 1
2ε0c0E2

0 u⃗x.

On constate que le vecteur de Poynting d’une OPPH est orienté selon le
vecteur d’onde k⃗.

De plus, on sait que uem = ε0E2
0 cos2 (ωt − kx) et ⟨uem⟩ = 1

2ε0E2
0 , on

peut donc récrire

Π⃗ = uemc0u⃗ et
〈
Π⃗
〉

= ⟨uem⟩ c0u⃗

avec u⃗ le vecteur unitaire porté par k⃗.



Aspects énergétiques
Vecteur de Poynting

Le vecteur de Poynting ou vecteur densité de courant d’énergie EM est

Π⃗ = uemc0u⃗.

Faisons le parallèle avec le vecteur densité de courant électrique

j⃗ = ρv⃗

ce dernier illustre le fait que les charges électriques de densité volumique ρ
se déplacent à la vitesse v.

De même, le vecteur de Poynting illustre le fait que l’énergie EM de densité
volumique uem se propagent à la vitesse c0 dans la direction de propagation
de l’onde.



Aspects énergétiques
Vecteur de Poynting

Si on calcule le flux du vecteur de Poynting moyen d’une onde EM au
travers d’une surface S il vient que

¨
S

〈
Π⃗
〉

· d⃗S =
¨

S
⟨uem⟩ c0u⃗ · d⃗S.

En étudiant les unités du terme de droite on voit

[uem] × [c0] × [dS] = J · m−3 × m · s−1 × m2 = J · s−1 = W.

Le flux du vecteur de Poynting moyen correspond à une puissance et
le vecteur de Poynting moyen correspond à une puissance surfacique
orientée d’unité W · m−2.



Aspects énergétiques
Vecteur de Poynting

On a déjà vu la puissance surfacique d’une onde EM auparavant, il s’agit de
la grandeur que l’on a nommée éclairement et notée E . Ainsi

E =
〈
Π⃗
〉

· u⃗ = 1
2ε0c0E2

0 u⃗ · u⃗ = 1
2ε0c0E2

0 .

Dans la leçon portant sur le modèle scalaire de la lumière, on avait posé

E = 1
2KE2

0

avec K une constante à définir. On montre enfin ici que cette constante
K = ε0c0.
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2ε0c0E2

0 .

Dans la leçon portant sur le modèle scalaire de la lumière, on avait posé

E = 1
2KE2

0

avec K une constante à définir. On montre enfin ici que cette constante
K = ε0c0.



Aspects énergétiques
Vecteur de Poynting
Attention : les moyennes temporelles des grandeurs énergétiques se
calculent avec des expressions réelles

⟨uem⟩ = 1
2ε0

〈
E2(M, t)

〉
+ 1

2

〈
B2(M, t)

µ0

〉

⟨Π⟩ =

〈
E⃗(M, t) ∧ B⃗(M, t)

〉
µ0

.

On peut utiliser la représentation complexe mais dans ce cas là les
expressions sont différentes

⟨uem⟩ = 1
2ε0 Re

(1
2E⃗(M, t) · E⃗∗(M, t)

)
+ 1

2
Re
(

1
2B⃗(M, t) · B⃗∗(M, t)

)
µ0

⟨Π⟩ = Re
(

1
2

E⃗(M, t) ∧ B⃗∗(M, t)
µ0

)
.



Aspects énergétiques
Bilan d’énergie

De la même manière qu’on l’a fait pour obtenir l’équation de conservation
de la charge, nous allons faire le bilan de l’énergie électromagnétique uem(t)
dans un petit volume de contrôle dτ durant un durée infinitésimale dt.

Considérons un conducteur cylindrique de section S et d’axe (Oz) parcouru
par une onde EM de densité de courant d’énergie Π⃗ uniforme sur toute la
section.

Nous allons utiliser la méthode de bilan que l’on a appliqué aux charges
électriques, mais cette fois pour l’énergie EM dUem.



Aspects énergétiques
Bilan d’énergie

On veut savoir quelle est la quantité d’énergie dUem dans le volume de
contrôle dτ après la durée d’étude dt

dUem(z, t + dt) =

dUem(z, t)

+

dUent

+

− dUsort

.
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On veut savoir quelle est la quantité d’énergie dUem dans le volume de
contrôle dτ après la durée d’étude dt

dUem(z, t + dt) = dUem(z, t) +

dUent

+

− dUsort

.

Cette quantité d’énergie dUem(z, t + dt) dépend d’abord de la quantité
d’énergie au début de l’étude, soit dUem(z, t).



Aspects énergétiques
Bilan d’énergie
On veut savoir quelle est la quantité d’énergie dUem dans le volume de
contrôle dτ après la durée d’étude dt

dUem(z, t + dt) = dUem(z, t) + dUent +

− dUsort

.

Puis elle dépend de la quantité d’énergie entrante au cours de la durée dt,
telle que

dUent =
¨

S
Π⃗(z, t) · d⃗Sdt = Πz(z, t)Sdt.
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Bilan d’énergie
On veut savoir quelle est la quantité d’énergie dUem dans le volume de
contrôle dτ après la durée d’étude dt

dUem(z, t + dt) = dUem(z, t) + dUent + − dUsort.

Et enfin elle dépend de la quantité d’énergie sortante au cours de la durée
dt, telle que

dUsort =
¨

S
Π⃗(z + dz, t) · d⃗Sdt = Πz(z + dz, t)Sdt.
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Bilan d’énergie

On obtient l’équation bilan

dUem(z, t + dt) = dUem(z, t) + Πz(z, t)Sdt − Πz(z + dz, t)Sdt.

On peut exprimer les quantités d’énergies aux instants t et dt, en fonction
des densités volumiques d’énergie

dUem(t) =

uem(z, t)dτ = uem(z, t)Sdz

dUem(t + dt) =

uem(z, t + dt)dτ = uem(z, t + dt)Sdz.
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On obtient l’équation bilan

uem(z, t + dt)Sdz = uem(z, t)Sdz + Πz(z, t)Sdt − Πz(z + dz, t)Sdt.

On peut exprimer les quantités d’énergies aux instants t et dt, en fonction
des densités volumiques d’énergie

dUem(t) = uem(z, t)dτ = uem(z, t)Sdz

dUem(t + dt) = uem(z, t + dt)dτ = uem(z, t + dt)Sdz.
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On peut séparer les variables uem et Π et diviser de chaque côté par Sdzdt

uem(z, t + dt)Sdz = uem(z, t)Sdz + Πz(z, t)Sdt − Πz(z + dz, t)Sdt

uem(z, t + dt) − uem(z, t)
dt

= −Πz(z + dz, t) − Πz(z, t)
dz

.
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uem(z, t + dt)Sdz = uem(z, t)Sdz + Πz(z, t)Sdt − Πz(z + dz, t)Sdt

uem(z, t + dt) − uem(z, t)
dt

= −Πz(z + dz, t) − Πz(z, t)
dz

.



Aspects énergétiques
Bilan d’énergie

À l’ordre 1, c’est deux taux d’accroissement correspondent à des dérivées
partielles

uem(z, t + dt) − uem(z, t)
dt

= −Πz(z + dz, t) − Πz(z, t)
dz

∂uem(z, t)
dt

= −∂Πz(z, t)
∂z

ou ∂uem(z, t)
dt

+ ∂Πz(z, t)
∂z

= 0.

On retrouve une équation bilan de la même forme que la conservation de la
charge électrique, il s’agit de l’équation de la conservation de l’énergie
électromagnétique pour une OPP se propageant dans le vide.
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On peut généraliser le résultat à 3 dimensions

∂uem(M, t)
dt

+ ∂Πx(M, t)
∂x

+ ∂Πy(M, t)
∂y

+ ∂Πz(M, t)
∂z

= 0

∂uem(M, t)
dt

+ div Π⃗(M, t) = 0.
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Aspects énergétiques
Bilan d’énergie
On appelle polarisation d’une OPP la direction du vecteur champ électrique
E⃗(M, t) de l’onde.

Dans le cas de l’exemple utilisé précédemment

le champ électrique E⃗(M, t) est orienté selon

u⃗y.

Mais la direction peut varier au cours du temps et donner des polarisations
particulière mais elle est toujours perpendiculaire à la direction de
propagation.
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On appelle polarisation d’une OPP la direction du vecteur champ électrique
E⃗(M, t) de l’onde.

Dans le cas de l’exemple utilisé précédemment

le champ électrique E⃗(M, t) est orienté selon u⃗y.

Mais la direction peut varier au cours du temps et donner des polarisations
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Aspects énergétiques
Bilan d’énergie

Quelques types de polarisations
(chaîne Youtube : meyavuz)

https://www.youtube.com/watch?v=CLv3SkF_Eag


Aspects énergétiques
Bilan d’énergie

Nous nous intéresserons uniquement aux OPP avec une polarisation
rectiligne : une onde électromagnétique est polarisé rectilignement si son
vecteur E⃗(M, t) ou B⃗(M, t) garde une direction fixe dans un plan d’onde,
soit

E⃗(M, t) = E0 cos (ωt − kz) (cos αu⃗x + sin αu⃗y) .

Dans cet exemple la propagation est selon

u⃗z

et
le vecteur E⃗(M, t) est orienté selon

une droite fai-
sant un angle α avec l’axe (Ox) lorsqu’on regarde
l’onde arriver.
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Nous nous intéresserons uniquement aux OPP avec une polarisation
rectiligne : une onde électromagnétique est polarisé rectilignement si son
vecteur E⃗(M, t) ou B⃗(M, t) garde une direction fixe dans un plan d’onde,
soit
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sant un angle α avec l’axe (Ox) lorsqu’on regarde
l’onde arriver.



Aspects énergétiques
Bilan d’énergie

Application : quelles sont les direction de propagation et de polarisation
des ondes décrites par les champs électriques suivants

E⃗1 = E0 cos (ωt − kx) u⃗y et E⃗2 = E0ei(ωt−kz)
( 1√

2
u⃗x + 1√

2
u⃗y

)
.

E⃗1 se propage selon u⃗x et est polarisé rectilignement selon u⃗y.

E⃗2 se propage selon u⃗z et est polarisé rectilignement avec un angle α par
rapport à l’axe (Ox) tel que cos α = 1√

2 , soit α = π
4 .
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Aspects énergétiques
Bilan d’énergie

La lumière “ordinaire”, par exemple celle venant du Soleil est en général non
polarisée car le champ électrique est orientée de manière arbitraire dans une
direction durant des intervalles de temps trop faibles pour être mesuré. On
parle de polarisation aléatoire.



Aspects énergétiques
Bilan d’énergieOn peut polariser rectilignement une onde polarisée aléatoirement à l’aide
d’un polariseur rectiligne. C’est un instrument d’optique permettant de
construire une onde polarisée rectilignement dans une direction choisie,
appelée axe passant du polariseur.

Le polariseur projette le champ entrant selon le vecteur unitaire donnant
l’axe du polariseur n⃗, ainsi

E⃗sortant =
(
E⃗entrant · n⃗

)
· n⃗.
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Réflexions d’une OPPM
Réflexion d’une onde plane sur un conducteur parfait

Dans un conducteur parfait les champs sont nuls à l’échelle macroscopique

E⃗int = 0⃗ et B⃗int = 0⃗.

Les charges et les courants ne sont localisés qu’en surface du conducteur et
se caractérisent par leurs densité surfacique de charge σ (C · m−2) et
densité surfacique de courant j⃗S (A · m−1).



Réflexions d’une OPPM
Réflexion d’une onde plane sur un conducteur parfait
Que se passe-t-il lorsqu’une OPPH arrive en incidence normale sur un
conducteur parfait ?

Considérons un conducteur
parfait dans le vide occupant
le demi-espace z > 0 et une
OPPH incidente polarisée rec-
tilignement selon u⃗x, soit

E⃗i(z, t) = E0ei(ωt−kz)u⃗x.

Cette onde incidente génère alors les charges et les courants de surface σ et
j⃗S sur la surface du conducteur. Ces charges et ces courants produisent
ainsi un champ électromagnétique réfléchi E⃗r(z, t) et B⃗r(z, t) dans le vide
devant le conducteur : cette onde réfléchi est aussi une OPPH de même
pulsation que l’onde incidente.
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Réflexions d’une OPPM
Réflexion d’une onde plane sur un conducteur parfait

Comment obtenir l’expression du champ électrique de l’onde réfléchie ?

On sait que dans le conducteur le
champ électrique est nul, c’est-à-
dire qu’à sa surface aussi la somme
des champs incident et réfléchi est
nulle :

E⃗i(z = 0, t) + E⃗r(z = 0, t) = 0⃗.

Le champ réfléchi en z = 0 est donc

E⃗r(z = 0, t) = −E⃗i(z = 0, t) = −E0ei(ωt)u⃗x.
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Comment obtenir l’expression du champ électrique de l’onde réfléchie ?

On sait que dans le conducteur le
champ électrique est nul, c’est-à-
dire qu’à sa surface aussi la somme
des champs incident et réfléchi est
nulle :

E⃗i(z = 0, t) + E⃗r(z = 0, t) = 0⃗.

L’onde réfléchie se propage, par définition, dans le sens opposé à l’onde
incidente, on peut donc obtenir son expression pour tout point z < 0

E⃗r(z, t) = −E0ei(ωt+kz)u⃗x.



Réflexions d’une OPPM
Réflexion d’une onde plane sur un conducteur parfait

Du côté des z < 0, il y a donc deux ondes qui cohabitent : l’onde incidente
E⃗i(z, t) et l’onde réfléchie E⃗r(z, t). La superposition des deux donne

E⃗tot(z, t) = E⃗i(z, t) + E⃗r(z, t)
= E0ei(ωt−kz)u⃗x − E0ei(ωt+kz)u⃗x

= E0eiωt
(
e−ikz − eikz

)
u⃗x

= −2iE0eiωt sin (kz) u⃗x = 2ei(ωt− π
2 ) sin (kz) u⃗x

Soit en réel

E⃗tot(z, t) = 2E0 cos
(

ωt − π

2

)
sin (kz) u⃗x

= 2E0 sin (ωt) sin (kz) u⃗x.
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Application : à partir de l’expression du champ électrique total pour z < 0,
montrer que le champ magnétique total est

B⃗tot(z, t) = 2E0
c0

cos (ωt) cos (kz) u⃗y.

On montrera ainsi que le champ électrique et le champ magnétique d’une
onde EM stationnaire sont en quadrature de phase (différence de phase de
π/2) : lorsqu’un champ atteint un extremum, l’autre s’annule et
inversement.



Réflexions d’une OPPM
Réflexion d’une onde plane sur un conducteur parfait
Ainsi, l’onde résultante de l’onde incident et de l’onde réfléchi est une onde
électromagnétique stationnaire

E⃗(z, t) = 2E0 sin (ωt) sin (kz) u⃗x

B⃗(z, t) = 2E0
c0

cos (ωt) cos (kz) u⃗y.

L’onde stationnaire se caractérise par un
découplage spatio-temporel. Elle admet
des nœuds de vibration se caractérisant,à
t donné, par une amplitude nulle, et des
ventres de vibration se caractérisant par
des maximas d’amplitude.



Réflexions d’une OPPM
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Comment obtenir la distance entre deux nœuds ou deux ventres de l’onde
stationnaire ?

On étudie la condition d’annulation du champ,
par exemple électrique, pour un instant t
donné, un exemple facile : pour t = 0, dans
ce cas le champ magnétique est

B⃗(z, 0) = 2E0

c0
cos (0) cos (kz) u⃗y = 2E0

c0
cos (kz) u⃗y.

Le champ B⃗(z, 0) s’annule pour cos (kz) = 0, soit kzp = (2p + 1)π
2 , soit

zp = (2p+1)π
2k = (2p+1)π

4π λ0.

La distance entre deux noœuds est donc

zp+1 − zp = (2(p + 1) + 1)
4 λ0 − (2p + 1)

4 λ0 = 2
4λ0 = 1

2λ0.
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Calculons maintenant la moyenne temporelle du vecteur de Poynting de
l’onde stationnaire

〈
Π⃗(z, t)

〉
=
〈

E⃗(z, t) ∧ B⃗(z, t)
µ0

〉

= 2E2
0

µ0c0
sin (kz) cos (kz) ⟨sin (ωt) cos (ωt)⟩ .

Or la moyenne temporelle d’un produit de sinus et cosinus est nulle ainsi〈
Π⃗(z, t)

〉
= 0⃗.

Ce qui témoigne du fait que l’énergie électro-magnétique ne se propage pas,
ce qui cohérent avec une onde stationnaire qui ne se propage pas.



Réflexions d’une OPPM
Réflexion d’une onde plane sur un conducteur parfait

Calculons maintenant la moyenne temporelle du vecteur de Poynting de
l’onde stationnaire

〈
Π⃗(z, t)

〉
=
〈

E⃗(z, t) ∧ B⃗(z, t)
µ0

〉

= 2E2
0

µ0c0
sin (kz) cos (kz) ⟨sin (ωt) cos (ωt)⟩ .

Or la moyenne temporelle d’un produit de sinus et cosinus est nulle ainsi〈
Π⃗(z, t)

〉
= 0⃗.

Ce qui témoigne du fait que l’énergie électro-magnétique ne se propage pas,
ce qui cohérent avec une onde stationnaire qui ne se propage pas.
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