Programme de khôlle. Semaine 6

Description des thèmes

An2 - Intégration sur un intervalle quelconque

- 1) Intégration d'une fonction continue sur un intervalle.
 - (a) Définition pour un intervalle de type [a, b] ou [a, b]: Exemple de $\frac{1}{\sqrt{t}}$ et $\frac{1}{t}$ sur]0,1]. Si $f:[a,b[\to\mathbb{R}]$ est continue et se prolonge par continuité en b, l'intégrale $\int_a^b f(t)dt$ existe. Exemple de $\frac{\ln(1+t)}{t}$ sur]0,1].
 - (b) Définition pour un intervalle de type $]-\infty,a]$ ou $[a,+\infty[$: Définition. Notation. Exemple de $\frac{1}{t^2}$ et $\frac{1}{t}$ sur $[1, +\infty[$. Si $f: [a, +\infty[\to \mathbb{R}$ est continue, si $\lim_{t\to+\infty} f(t)$ existe et si $\int_a^{+\infty} f(t)dt$ converge, alors $f(t)\to 0$. La réciproque est
 - (c) Cas des fonctions positives en $+\infty$: si $f \geq 0$, $\int_a^{+\infty} f(t)dt$ converge si et seulement si $x \mapsto \int_a^x f(t)dt$ est bornée. Comparaison de fonctions positives en $+\infty$: si $0 \leq f \leq g$, si $\int_a^{+\infty} g(t)dt$ converge alors $\int_a^{+\infty} g(t)dt$ converge. Ce résultat est valable uniquement dans le cas positif.
 - (d) Définition sur un intervalle I quelconque : Définition. Notation. Il faut traiter les bornes séparément. Extension aux fonctions à valeurs complexes.
 - (e) Exemples de références.
 - Intégrales de Riemann en 0^+ et $+\infty$.

 - $\int_0^1 \ln(t) dt$. $\int_0^{+\infty} e^{-\alpha t} dt$.
- 2) Propriétés de l'intégrale généralisée
 - (a) Propriétés usuelles : linéarité, positivité, croissance, relation de Chasles.
 - (b) Comparaison pour les fonctions à valeurs positives.
 - Si $0 \le f \le g$ sur I, alors $\int g$ converge $\implies \int_I f$ converge.
 - Corollaires : cas $f, g \ge 0$ sur I = [a, b[, avec f(x) = O(g(x)) quand $x \to b$, f(x) = o(q(x)).
 - Corollaire important : cas $f,g \geq 0$ sur I = [a,b[et $f \sim g$ au voisinage de $b,\int_a^b f$ et $\int_a^b g$ ont même nature.
 - (c) Changement de variable.
 - (d) Intégration par parties : rien est au programme. Il faut tout prouver à la main en se ramenant sur un segment. Exemple de $\int_0^1 \ln(t)^2 dt$.
- 3) Intégrabilité d'une fonction continue sur un intervalle
 - Définition d'une intégrale absolument convergente, d'une fonction intégrable.
 - ullet L'ensemble des fonctions intégrables est un sous-espace vectoriel de $C^0(I)$ et l'intégrale est une forme linéaire positive.
 - La convergence absolue implique la convergence. Exemple de $\int_1^{+\infty} \sin(t)/t^2 dt$.

- L'inégalité triangulaire. $\left| \int_{I} f \right| \leq \int_{I} |f|$.
- Lien entre intégrabilité et relation de comparaison. Si f(x) = O(q(x)) quand $x \to b$, $f(x) \sim g(x), f(x) = o(g(x)),$ alors l'intégrabilité de g au voisinage de b implique celle de f.
- 4) Méthode d'étude d'une intégrale impropre
 - (a) Principes généraux. $f: I \to \mathbb{C}$, étude de la convergence de $\int_I f$.
 - On sépare les problèmes de convergence pour chacune des bornes de l'intervalle.
 - Pour une borne finie, on commence par vérifier si f est bien définie (et continue) ou si elle se prolonge par continuité pour se débarrasser des intégrales faussement impropres.
 - \bullet Si f est de signe non constant, on commence par regarder l'intégrabilité : on étudie $\int |f|$.
 - Pour étudier une intégrale de signe constant, on utilise des outils de comparaison (trouver un équivalent, majorer) aux intégrales de référence.
 - (b) Méthode du $t^{\alpha}f(t)$. Permet de se ramener aux intégrales de Riemann. On doit la reprouver à chaque fois à partir des résultats de comparaison sur les fonctions positives en 0 ou en $+\infty$.
 - (c) Exemples pour illustrer les méthodes.

 - $\int_{1}^{+\infty} \frac{\sin(t)t^{3}}{1+t^{2}} e^{-t} dt.$ $\int_{0}^{+\infty} \frac{(1+t^{2})e^{-t^{2}}}{\sqrt{t}} dt.$ $\int_{0}^{+\infty} \frac{\sin(t)}{t} dt.$

Questions de cours

Le kholleur fera son marché dans l'un des paniers suivants :

- Panier 1 : Intégrales de Riemann. Soit $\alpha \in \mathbb{R}$.
 - 1. Rappeler le critère de convergence de $\int_0^1 \frac{dt}{t^{\alpha}}$ et le démontrer.
 - 2. Rappeler le critère de convergence de $\int_1^{+\infty} \frac{dt}{t^{\alpha}}$ et le démontrer.
- Panier 2 : Deux intégrales de référence.
 - 1. Montrer que pour tout a > 0, $\int_0^{+\infty} e^{-at} dt$ converge et calculer sa valeur.
 - 2. Montrer que $\int_0^1 \ln(t)dt$ converge et calculer sa valeur.
- Panier 3 : Étudier la nature de l'intégrale suivante :

$$\int_0^{+\infty} \frac{\sin(t)}{t} dt$$

• Panier 4 : Étudier la nature de l'intégrale suivante :

$$\int_0^{+\infty} \frac{1+t^2}{\sqrt{t}} e^{-t^2} dt$$

Exercice(s) au choix

Au choix du colleur, sur le chapitre de la semaine.