## AL6 - Isométries d'un espace euclidien

Isométries d'un espace euclidien et matrices orthogonales

Inspiré de CCINP 2019. On note  $E = S_2(\mathbb{R})$  l'espace des matrices symétriques réelles de taille 2. Pour  $M = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$  et  $M' = \begin{pmatrix} a' & b' \\ b' & c' \end{pmatrix} \in E$ , on pose

$$\langle M, M' \rangle = aa' + 2bb' + cc'$$

On considère l'application f sur E par :  $\forall M = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \in E,$ 

$$f(M) = \begin{pmatrix} \frac{a+c}{2} - b & \frac{a-c}{2} \\ \frac{a-c}{2} & \frac{a+c}{2} + b \end{pmatrix}$$

- 1. Vérifier que  $\langle \cdot, \cdot \rangle$  est un produit scalaire.
- 2. Montrer que f est un endomorphisme de E. Ne pas oublier de vérifier que  $f(E) \subset E$ .
  - 3. Montrer que f est une isométrie de E.
- 4. On considère la famille  $\mathcal{B} = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$ .
  - a) Montrer que  $\mathcal{B}$  est une base orthonormée de E.
  - b) Déterminer la matrice A de f dans la base  $\mathcal{B}$ .
  - c) Retrouver que f est une isométrie.
- **2** -Soit  $n \in \mathbb{N}^*$ . Déterminer les matrices triangulaires supérieures de  $O_n(\mathbb{R})$ .
- 3  $\star$  Montrer que l'ensemble des matrices orthogonales de  $O_n(\mathbb{R})$  à coefficients entiers est fini, et déterminer son cardinal.
- $\boxed{\mathbf{4}} \bigstar$  Soit E un espace euclidien de dimension n et  $f \in O(E)$ .
- 1. Soit  $\lambda \in Sp(f)$  une valeur propre (réelle) de f. Montrer que  $\lambda \in \{-1,1\}$ .
- 2. Montrer que  $\det(f^{-1} \operatorname{Id}_E) = \det(f \operatorname{Id}_E)$ .

- 3. On suppose que f est directe et que n est impair. Montrer que 1 est valeur propre de f.
- 4. On suppose que f est indirecte. Montrer que -1 est valeur propre de f.
- $\fbox{\bf 5}$   $\bigstar$  Soit E un espace euclidien de dimension net oit  $u\in O(E).$  On note  $v=\mathrm{Id}_E-u.$  Montrer que

$$\ker(v) = (\operatorname{Im} v)^{\perp}.$$

- $\fbox{6}$  Déterminer la matrice dans la base canonique de  $\mathbb{R}^2$  des isométries suivantes :
- a) la rotation vectorielle d'angle  $\theta = \frac{\pi}{6}$
- b) la symétrie orthogonale d'axe dirigé par le vecteur u = (1, 2).
- $\boxed{7}$ -Déterminer la matrice dans la base canonique de  $\mathbb{R}^2$  des isométries suivantes :
- a) la rotation vectorielle d'angle  $\theta = \arccos(-1/4)$
- b) la symétrie orthogonale d'axe dirigé par le vecteur u = (3, 4).
- 8 Pour chacune des matrices suivantes :
- i) Vérifier qu'elle est dans  $O_2(\mathbb{R})$  et préciser si l'isométrie est directe ou indirecte ;
- ii) Préciser les éléments caractéristiques de l'endomorphisme f de  $\mathbb{R}^2$  canoniquement associé.

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \qquad B = \frac{1}{2} \begin{pmatrix} \sqrt{3} & 1 \\ 1 & -\sqrt{3} \end{pmatrix}$$

9 -Mêmes consignes que l'exercice précédent avec

1

$$C = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \qquad D = \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3}\\ -\sqrt{3} & 1 \end{pmatrix}$$

## Isométries vectorielles de $\mathbb{R}^3$



 $\bigcirc$  - Déterminer la matrice dans la base canonique de  $\mathbb{R}^3$  des isométries vectorielles suivantes:

- a) la rotation vectorielle d'axe dirigé par Vect(1,1,1) et d'angle  $\theta = \pi/6$ .
- b) la réflexion par rapport au plan d'équation x + 2y z = 0.

11 -Déterminer la matrice dans la base canonique de  $\mathbb{R}^3$  des isométries vectorielles suivantes:

- a) la rotation vectorielle d'axe dirigé par Vect(1,1,0) et d'angle  $\theta = \pi/4$ .
- b) la réflexion par rapport au plan d'équation x + y + z = 0.



- Extrait de CCINP 2019. On considère la matrice

$$A = \frac{1}{2} \begin{pmatrix} 1 & -\sqrt{2} & 1\\ \sqrt{2} & 0 & -\sqrt{2}\\ 1 & \sqrt{2} & 1 \end{pmatrix}$$

- 1. Montrer que  $A \in O_3(\mathbb{R})$ .
- 2. L'isométrie associée à la matrice A est-elle directe ou indirecte?
- 3. Démontrer que  $\ker(A-I_3)$  est une droite vectorielle dont on donnera un vecteur directeur  $\overrightarrow{u}$ .

4. Soit 
$$\overrightarrow{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
. Calculer  $\det(\overrightarrow{u}, \overrightarrow{j}, A\overrightarrow{j})$ .

- 5. Déterminer les caractéristiques de l'isométrie associée à A dans  $\mathbb{R}^3$ .
- 6. Calculer  $A^{13}$ .



- Pour chacune des matrices suivantes :

- i) Vérifier qu'elle est dans  $O_3(\mathbb{R})$  et préciser si l'isométrie est directe ou indirecte;
- ii) Préciser les éléments caractéristiques de l'endomorphisme f de  $\mathbb{R}^3$  canoniquement associé.

$$B = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \quad C = \frac{1}{4} \begin{pmatrix} -1 & 3 & -\sqrt{6} \\ 3 & -1 & -\sqrt{6} \\ \sqrt{6} & \sqrt{6} & 2 \end{pmatrix}$$

14 -Même consignes avec

$$D = \frac{1}{9} \begin{pmatrix} 1 & -8 & 4 \\ 4 & 4 & 7 \\ -8 & 1 & 4 \end{pmatrix} \quad E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Applications du théorème spectral



15 Soit  $n \in \mathbb{N}^*$ .

- 1. Soit  $M \in S_n(\mathbb{R})$  une matrice symétrique et nilpotente (=il existe  $p \in \mathbb{N}$  tel que  $M^p = 0$ ). Montrer que M = 0.
- 2. Application : soit  $A \in \mathcal{M}_n(\mathbb{R})$ . On suppose qu'il existe  $p \in \mathbb{N}$  tel que  $(A + A^T)^p = 0$ . Montrer que A est antisymétrique.

16 ★ - Démonstration en dimension 2. Dans cet exercice, on va démontrer le théorème spectral en dimension 2. On considère alors une matrice symétrique

$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \in S_2(\mathbb{R})$$

et on veut montrer qu'elle est diagonalisable dans une base orthonormée.

- 1. Calculer  $\chi_A$  et vérifier que le discriminant  $\Delta$  de  $\chi_A$  vaut  $(a-c)^2+4b^2$ .
- 2. Traiter le cas  $\Delta = 0$ .
- 3. On traite le cas  $\Delta > 0$ .
  - a) Justifier que A possède deux valeurs propres distinctes.
  - b) Montrer que les sous-espaces propres sont orthogonaux.
  - c) Conclure.

2

 $[17] \star$  - Soit  $n, p \in \mathbb{N}^*$ . Soit  $M \in S_n(\mathbb{R})$  telle que  $M^p = I_n$ . Que vaut  $M^2$ ?