TELEEXERCICES01-T07

Enoncé

Exercice 01

1. Résoudre dans $[-\pi, 0]$ et $[0, \pi]$:

$$y''(x) + y(x) = |\sin x|.$$

2. A-t-on des solutions sur $[-\pi, \pi]$? sur **R**?

Indications:

1. On cherche les solutions de l'équation homogène y''(x) + y(x) = 0. Puis on prend x < 0 et on cherche une solution particulière de la forme $y_{p_1}(x) = ax \cos x$ car sin est impaire. On en déduit l'ensemble des solutions sur $]-\pi,0]$. Puis on fait de même sur $]0,\pi]$ en cherchant une solution particulière de la forme $y_{p_2}(x) = bx \cos x$

2. Une solution sur $[-\pi, \pi]$ est de classe C^2 en 0.

Exercice 02

Soit une suite (P_n) de polynômes définie par :

$$P_0 = 2, P_1 = X \text{ et } \forall n \in \mathbb{N}, P_{n+2} = XP_{n+1} - P_n.$$

1. Si $n \ge 1$, montrer que P_n est un polynôme unitaire de degré n.

2. Montrer:
$$\forall z \in \mathbf{C}^*$$
, $P_n\left(z + \frac{1}{z}\right) = z^n + \frac{1}{z^n}$.

3. Déterminer les racines de P_n .

Indications:

1. On fait une récurrence. On montre que la proposition est vraie pour n=1 et n=2. Puis, on suppose

$$P_k = X^k + Q_k$$
, avec $Q_k \in \mathbf{R}_{k-1}[X]$

pour tout k entier entre 1 et n+1. On montre que c'est vrai pour k=n+2.

- 2. On fait encore une récurrence en montrant que c'est vrai pour n=0 et n=1. 3. On commencera par résoudre dans $\mathbf{C}: z^n + \frac{1}{z^n} = 0$, c'est-à-dire :

$$z^{2n} = -1.$$