TELEEXERCICES01-T05

Enoncé

Exercice 01

Soit la série $\sum_{n\geqslant 2}\frac{(-1)^n}{n(n-1)}.$

- 1. Étudier sa convergence.
- 2. Déterminer a et b tels que : $\frac{1}{n(n-1)} = \frac{a}{n} + \frac{b}{n-1}$.
- 3. On admet que $\ln 2 = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}$.

En déduire la somme de $\sum_{n\geq 2} \frac{(-1)^n}{n(n-1)}$.

Indications:

- 1. On montrera que $\sum |u_n|$ converge (avec $u_n = \frac{(-1)^n}{n(n-1)}$.)
- 2. On mettra $\frac{a}{n} + \frac{b}{n-1}$ sous le même dénominateur.
- 3. On posera $S_N = \sum_{n=2}^N \frac{(-1)^n}{n(n-1)}$. Puis on utilisera 2. ce qui décompose S_N en la somme de deux sigmas.

On fera un glissement d'indice dans le deuxième sigma et on fera tendre N vers $+\infty$ après. On utilisera enfin $\ln 2 = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}$.

Exercice 02

Soient a et b deux réels distincts et $F = \{P \in \mathbb{R}_n[X], P(a) = P(b) = 0\}.$

Soit $\phi : \mathbf{R}_n[X] \to \mathbf{R}_n[X]$, $P \mapsto P(a)X + P(b)$, n étant un entier naturel supérieur ou égal à 2. On considère enfin les familles de polynômes $\mathcal{F} = \{(X - a)(X - b)X^k, k \in [0, n - 2]\}$ et $\mathcal{B} = \{1, X\} \cup \mathcal{F}$.

- 1. Vérifier que les familles \mathcal{F} et \mathcal{B} sont des familles libres de $\mathbf{R}_n[X]$.
- 2. Vérifier que F est un sous-espace vectoriel de $\mathbf{R}_n[X]$. Montrer que \mathcal{F} est une base de F. Quelle est sa dimension?
- 3. Montrer que \mathcal{B} est une base de $\mathbf{R}_n[X]$.
- 4. Vérifier que ϕ est un endomorphisme de $\mathbf{R}_n[X]$. Déterminer $\operatorname{Ker} \phi$ et $\operatorname{rg} \phi$.
- 5. On suppose ici n = 2. Écrire la matrice de ϕ dans la base \mathcal{B} . Déterminer le polynôme caractéristique $\chi_{\phi}(t)$. ϕ est-elle diagonalisable?

Indications:

- 1. On sait que des polynômes tous de degré différents sont libres.
- 2. Il faudra pour montrer que F est un sous-espace vectoriel de $\mathbf{R}_n[X]$ que si P et Q sont deux polynômes de F alors $P + \alpha Q$ l'est aussi.
- **3.** On se rappellera la dimension de $\mathbf{R}_n[X]$.
- **4.** On comparera F et $\operatorname{Ker} \phi$. On sait aussi que $\operatorname{rg} \phi = \dim \mathbf{R}_n[X] \dim \operatorname{Ker} \phi$.
- **5.** On calcule $\phi(1)$, $\phi(X)$ et $\phi((X-a)(X-b))$ en fonction d'eux et cela donne les colonnes de la matrice de ϕ dans la base \mathcal{B} .

Correction

Exercice 01

1. On montre facilement que $\sum |u_n|$ converge (avec $u_n = \frac{(-1)^n}{n(n-1)}$.)

Il suffit de remarquer que $|u_n| \sim \frac{1}{n^2}$ quand n tend vers $+\infty$ et comme $\sum_{n\geqslant 1} \frac{1}{n^2}$ converge, la série $\sum u_n$ est absolument convergente donc convergente.

2. On met $\frac{a}{n} + \frac{b}{n-1}$ sous le même dénominateur. On identifie à $\frac{1}{n(n-1)}$ et on trouve :

$$\frac{1}{n(n-1)} = \frac{-1}{n} + \frac{1}{n-1}.$$

3. On pose $S_N = \sum_{n=2}^N \frac{(-1)^n}{n(n-1)}$. Puis on utilise **2.** ce qui décompose S_N en la somme de deux sigmas :

$$S_N = \sum_{n=2}^N \frac{(-1)^n}{n(n-1)} = -\sum_{n=2}^N \frac{(-1)^n}{n} + \sum_{n=2}^N \frac{(-1)^n}{n-1} = -\sum_{n=2}^N \frac{(-1)^n}{n} + \sum_{n=1}^{N-1} \frac{(-1)^{n+1}}{n}.$$

Cela donne :

$$S_N = \sum_{n=2}^{N} \frac{(-1)^{n+1}}{n} + \sum_{n=1}^{N-1} \frac{(-1)^{n+1}}{n}.$$

Soit:

$$S_N = 2\sum_{n=1}^N \frac{(-1)^{n+1}}{n} - 1.$$

On fait tendre N vers $+\infty$ et on utilise enfin $\ln 2 = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}$. Alors $:\sum_{n=2}^{+\infty} \frac{(-1)^n}{n(n-1)} = 2\ln 2 - 1$.

Exercice 02

- 1. $\mathcal{F} = \{(X-a)(X-b)X^k, k \in [0, n-2]\}$ et on sait que des polynômes tous de degré différents sont libres. C'est le cas ici car le degré de $(X-a)(X-b)X^k$ est k+2 pour k variant de 0 à n-2. De même, $\mathcal{B} = \{1, X\} \cup \mathcal{F}$ est libre car on ajoute deux polynômes encore de degré différents.
- **2.** Il faut pour montrer que F est un sous-espace vectoriel de $\mathbb{R}_n[X]$ que si P et Q sont deux polynômes de F alors $P + \alpha Q$ l'est aussi. On a :

$$P(a) = P(b) = 0$$
 et $Q(a) = Q(b) = 0 \Rightarrow (P + \alpha Q)(a) = (P + \alpha Q)(b) = 0$.

Donc $P + \alpha Q \in F$.

On voit que P est dans F si et seulement si P = (X - a)(X - b)Z, avec $Z \in \mathbf{R}_{n-2}[X]$ car a et b sont des racines de P.

Alors P est bien une combinaison lineaire des polynômes de \mathcal{F} .

Comme ils sont libres, c'est une base de F.

Et:

$$\dim F = n - 1.$$

3. On se rappelle que la dimension de $\mathbf{R}_n[X]$ est n+1. Comme le cardinal de \mathcal{B} est n+1 et comme ce sont des polynômes de $\mathbf{R}_n[X]$ et comme cette famille est libre, c'est une base de $\mathbf{R}_n[X]$.

4. On écrit:

$$\phi: \mathbf{R}_n[X] \to \mathbf{R}_n[X], P \mapsto P(a)X + P(b).$$

Et donc,

$$\phi(P + \lambda Q) = ((P + \lambda Q)(a))X + (P + \lambda Q)(b) = P(a)X + P(b) + \lambda(Q(a)X + Q(b)) = \phi(P) + \lambda\phi(Q).$$

On remarque que $\operatorname{Ker} \phi = F$.

On sait aussi que rg $\phi = \dim \mathbf{R}_n[X] - \dim \operatorname{Ker} \phi$. Donc :

$$\operatorname{rg} \phi = n + 1 - (n - 1) = 2.$$

5. On calcule $\phi(1)$, $\phi(X)$ et $\phi((X-a)(X-b))$ en fonction d'eux et cela donne les colonnes de la matrice de ϕ dans la base \mathcal{B} .

On a:
$$\phi(1) = X + 1 = 1 + X$$
, $phi(X) = b + aX$ et $\phi((X - a)(X - b)) = 0$.

La matrice cherchée est :

$$A = \left(\begin{array}{ccc} 1 & b & 0 \\ 1 & a & 0 \\ 0 & 0 & 0 \end{array}\right).$$

Puis
$$\chi_A(t) = \begin{vmatrix} t-1 & -b & 0 \\ -1 & t-a & 0 \\ 0 & 0 & t \end{vmatrix} = t \begin{vmatrix} t-1 & -b \\ -1 & t-a \end{vmatrix}.$$

$$\chi_A(t) = t(t^2 - (a+1)t + a - b).$$

Il resteà étudier le Δ . Si $\Delta > 0$ et $a \neq b$, il y a trois valeurs propres distinctes et A est diagonalisable.