CONCOURS BLANC BIS 2020. 2TSI

MODELISATION. Partie math

Soit la matrice:

$$M = \left(\begin{array}{ccc} 0 & 0 & 1\\ 0 & -4 & 1\\ -10 & -10 & -2 \end{array}\right).$$

1. Calculer et factoriser le polynôme caractéristique χ de M. On pourra remarquer que $\chi(-2) = 0$. La matrice M est-elle diagonalisable dans $\mathcal{M}_3(\mathbf{R})$? dans $\mathcal{M}_3(\mathbf{C})$?

Dans la suite, on cherche les solutions du système différentiel homogène (1) suivant :

$$\frac{dY}{ds}(s) = MY(s),$$

où l'inconnu est $Y: \mathbf{R} \to \mathcal{M}_{3,1}(\mathbf{C})$. Pour cela, on considère les deux matrices :

$$R = \begin{pmatrix} 1 & 0 & 5 \\ -1 & -4 & 3 \\ -2 & -20 & -10 \end{pmatrix} \text{ et } Q = \frac{\sqrt{2}}{2} \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & i \\ 0 & i & 1 \end{pmatrix}.$$

On note \overline{Q} la matrice dont tous les coefficients sont les conjugués de ceux de Q et I_3 est la matrice identité de dimension 3.

2. Montrer que R est inversible. Le calcul de R^{-1} n'est pas demandé. Vérifier que $\overline{Q}Q = I_3$. En déduire que Q est inversible et exprimer Q^{-1} . Montrer que P = RQ est inversible et exprimer P^{-1} en fonction de R^{-1} et Q^{-1} .

On pose maintenant $D = P^{-1}MP$ et on admet alors que $D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 + 4i & 0 \\ 0 & 0 & -2 - 4i \end{pmatrix}$.

Soit le système différentiel (2) suivant d'inconnu $Z: \mathbf{R} \to \mathcal{M}_{3,1}(\mathbf{C}), \frac{dZ}{ds}(s) = DZ(s).$

- 3. Soient $Z : \mathbf{R} \to \mathcal{M}_{3,1}(\mathbf{C})$ une fonction vectorielle dérivable et Y = PZ. Montrer que Z est solution de (2) si et seulement si Y est solution de (1).
- 4. Montrer que les solutions à valeurs complexes de (2) sont de la forme

$$Z(s) = E_2(s)Z_{0s}$$

où
$$Z_0 \in \mathcal{M}_{3,1}(\mathbf{C})$$
 et $: E_2(s) = e^{-2s} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{4is} & 0 \\ 0 & 0 & e^{-4is} \end{pmatrix}$.

Calculer pour tout $s \in \mathbf{R}$, $E_1(s) = QE_2(s)Q^{-1}$ en fonction de $V(s) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(4s) & \sin(4s) \\ 0 & -\sin(4s) & \cos(4s) \end{pmatrix}$.

Vérifier alors que, pour tout $s \in \mathbf{R}$, $E_1(s)$ est à coefficients réels.

Montrer que V(s) est la matrice d'une isométrie vectorielle que l'on caractérisera.

5. Montrer que les solutions à valeurs complexes de (1) peuvent s'écrire sous la forme :

$$Y(s) = N(s)Y_0$$

avec $Y_0 \in \mathcal{M}_{3,1}(\mathbf{C})$ et, pour tout $s \in \mathbf{R}$, $N(s) = RE_1(s)R^{-1}$. Le calcul explicite de N(s) n'est pas nécessaire.

6. Soient $Y_0 \in \mathcal{M}_{3,1}(\mathbf{C})$ et $Y: s \mapsto N(s)Y_0$. Montrer que Y est à valeurs réelles si et seulement si $Y_0 \in \mathcal{M}_{3,1}(\mathbf{R})$. En déduire l'ensemble des solutions à valeurs réelles de (1).