Réduction

■ Valeurs et vecteurs propres d'un endomorphisme ou d'une matrice

Exercice 01

Soit $f \in \mathcal{L}(E)$ avec E de dimension finie tel que $f^3 - 5f^2 + 6f = 0$. Déterminer les valeurs propres possibles de f.

Starter

On posera $f(\vec{x}) = \lambda \vec{x}$.

Exercice 02

Déterminer l'ensemble des matrices $A \in \mathcal{M}_2(\mathbf{R})$ telles que $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$ en soit un vecteur propre associé à la valeur propre -2.

■ Conditions de diagonalisation

Exercice 03

Réduire, lorsque cela est possible, dans $\mathcal{M}_2(\mathbf{R})$:

$$A_1 = \begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & -2 \\ 3 & 2 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}, A_4 = \begin{pmatrix} m+1 & 1 \\ 2 & m \end{pmatrix}.$$

Exercice 04

Réduire, lorsque cela est possible, dans $\mathcal{M}_2(\mathbf{C})$:

$$A_{1} = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}, A_{2} = \begin{pmatrix} -1 & 2i \\ -2i & 2 \end{pmatrix}, A_{3} = \begin{pmatrix} -1+i & -1 \\ 1 & 1+i \end{pmatrix}, A_{4} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

Exercice 05

On considère
$$A = \begin{pmatrix} 13 & -5 & -2 \\ -2 & 7 & -8 \\ -5 & 4 & 7 \end{pmatrix}$$
.

- 1. Calculer $(A 9I_3)^3$. En déduire que A n'est pas diagonalisable.
- 2. Notons $f \in \mathcal{L}(\mathbf{R}^3)$ canoniquement associé à A et $g = f 9\mathrm{Id}_E$, montrer que $g^2 \neq 0$. Si \vec{u}_3 est un vecteur tel que $g^2(\vec{u}_3) \neq 0$, on pose $\vec{u}_2 = g(\vec{u}_3)$ et $\vec{u}_1 = g(\vec{u}_2)$. Montrer que $(\vec{u}_1, \vec{u}_2, \vec{u}_3)$ est une base de \mathbf{R}^3 . Que peut-on dire de la matrice de f dans cette base?

Exercice 06

Soit
$$A = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ 4 & 8 & -12 \end{pmatrix}$$
.

- 1. Calculer le rang de A. En déduire sans calcul le polynôme caractéristique de A.
- 2. Donner les éléments propres de A. A est-elle diagonalisable?

Starter

1. Comparer les colonnes.

Exercice 07

Déterminer $(a,b,c)\in \mathbf{R}^3$ pour que $A=\left(\begin{array}{ccc} 1 & a & 1\\ 0 & 1 & b\\ 0 & 0 & c \end{array}\right)$ soit diagonalisable.

Starter

On commencera par mettre $\chi_A(X)$ sous forme factorisée.

Exercice 08

Pour $M \in \mathcal{M}_n(\mathbf{C})$, on pose $f(M) = M^T$.

Montrer que f est un endomorphisme et déterminer son spectre et ses sous-espaces propres.

L'endomorphisme f est-il diagonalisable?

Déterminer alors Det(f) et Tr(f).

Exercice 09

On considère l'application f définie sur $\mathbf{R}_2[X]$ par $f(P) = (2X+1)P - (X^2-1)P'$.

- 1. Vérifier que f est un endomorphisme (en particulier que $f(P) \in \mathbf{R}_n[X]$.)
- 2. Déterminer sa matrice A dans sa base canonique et réduire A.
- 3. En déduire une base de $\mathbf{R}_2[X]$ formée de vecteurs propres de f et résoudre $f(P) = 1 + X^2$ en utilisant cette base.

■ Trigonalisation

Exercice 10

Montrer que

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

est trigonalisable mais non diagonalisable puis donner une base qui trigonalise A.

Starter

Au programme, il est dit que c'est bien de donner une indication. Il faut prendre une base dont les deux premiers vecteurs sont une base de $E_1(A)$ et le dernier par exemple (0,0,1).

Exercice 11

$$\mathcal{B} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3, \vec{e}_4\} \text{ et } M_{\mathcal{B}}(\phi) = \begin{pmatrix} 7 & 3 & 2 & 5\\ 10 & 7 & 4 & 9\\ 9 & 6 & 4 & 8\\ -15 & -9 & -5 & -12 \end{pmatrix}.$$

- 1. $M_{\mathcal{B}}(\phi)$ est-elle diagonalisable dans **R**?
- 2. On note \vec{V}_1 un vecteur propre associé à la valeur propre la plus petite de $M_{\mathcal{B}}(\phi)$ et on note \vec{V}_2 un vecteur propre associé à sa plus grande valeur propre. On fixera \vec{V}_1 de telle manière que sa première composante soit 3 et on fixera \vec{V}_2 de telle manière que sa dernière composante soit -1. Montrer que $\mathcal{B}' = \{\vec{V}_1, \vec{V}_2, \vec{e}_3, \vec{e}_4\}$ est une base de \mathbf{R}^4 .
- 3. Déterminer la matrice de passage P de \mathcal{B} à la base \mathcal{B}' . Calculer P^{-1} .
- 4. Déterminer $P^{-1}M_{\mathcal{B}}(\phi)P$ et l'écrire en blocs : $\begin{pmatrix} D_1 & C_1 \\ O_2 & B_1 \end{pmatrix}$.
- 5. Déterminer les valeurs propres de B_1 . On notera $\vec{w}_1(a,b)$ un vecteur propre de B_1 associé à la plus petite des valeurs propres de B_1 et de même $\vec{w}_2(c,d)$ un vecteur propre de B_1 associé à la plus grande valeur propre de B_1 . Déterminer ces vecteurs.
- 6. Soit $\vec{V}_3 = (0, 0, a, b)$ et $\vec{V}_4 = (0, 0, c, d)$, montrer que $\mathcal{B}'' = \{\vec{V}_1, \vec{V}_2, \vec{V}_3, \vec{V}_4\}$ est une base de \mathbf{R}^4 .
- 7. Déterminer la matrice $M_{\mathcal{B}''}(\phi)$. Que remarque t-on?

■ Application de la diagonalisation pour calculer des puissances successives

Exercice 12

On considère la matrice $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$.

- 1. A est-elle diagonalisable?
- 2. Montrer que A est semblable à $B=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. En déduire A^n pour tout $n\in \mathbf{N}$.

Starter

2. Ici deux méthodes, on peut par exemple considérer f l'endomorphisme associé à A dans la base canonique (e_1, e_2, e_3) , puis déterminer une base $(\vec{u}_1, \vec{u}_2, \vec{u}_3)$ dans laquelle la matrice de f est A. On peut s'appuyer sur le fait que u_1 et u_2 sont forcément dans $E_1(A)$. Une autre méthode est de poser une matrice P (de passage) telle que ses deux premières colonnes soient \vec{u}_1 et \vec{u}_2 précédents et la troisième colonne de la forme (a, b, c). Enfin, on a : AP = PB. À vous de continuer.

Exercice 13

Soit (u_n) la suite définie par $u_0 = 0$, $u_1 = -1$, $u_2 = 3$ et la relation :

$$\forall n \in \mathbf{N}, u_{n+3} = -2u_n + u_{n+1} + 2u_{n+2}.$$

- 1. On pose $X_n=\left(\begin{array}{c}u_n\\u_{n+1}\\u_{n+2}\end{array}\right)$. Déterminer une matrice A telle que $X_{n+1}=AX_n$.
- 2. Réduire A et en déduire X_n puis u_n en fonction de n.

Exercice 14

Soit
$$A = \begin{pmatrix} -1 & 3 & 2 \\ -2 & 4 & 2 \\ -1 & 3 & 2 \end{pmatrix}$$
.

- 1. Diagonaliser A. On appelle D la matrice diagonale obtenue et P telle que : $D = P^{-1}AP$.
- 2. Déterminer $Y \in \mathcal{M}_3(\mathbf{R})$ telles que $Y^2 = D$. En déduire $X \in \mathcal{M}_3(\mathbf{R})$ telles que $X^2 = A$.

Starter

2. Si $Y^2 = D$ alors Y et D commutent!