Séries entières

■ Détermination de rayon de convergence

Exercice 01

Déterminer le rayon de convergence des séries entières (pour $x \in \mathbf{R}$) :

$$\sum_{n \geqslant 0} \tan \left(n \frac{\pi}{7} \right) x^n, \sum_{n \geqslant 0} \frac{x^n}{n^2 + 1}, \sum_{n \geqslant 1} \frac{x^n}{\sqrt{n}}, \sum_{n \geqslant 0} n^2 x^n,$$

$$\sum_{n\geqslant 1} \left(1 + \frac{1}{n}\right)^n x^n, \sum_{n\geqslant 1} \sin\left(\frac{1}{n}\right) x^n, \sum_{n\geqslant 0} n! x^n$$

Exercice 02

Déterminer le domaine de convergence et étudier la convergence aux bornes $(z \in \mathbf{C})$ pour la série :

$$\sum_{n\geqslant 0} (1+in)z^n$$

Exercice 03

Déterminer le domaine de convergence et étudier la convergence aux bornes $(z \in \mathbf{C})$ pour la série :

$$\sum_{n\geqslant 0} a^{\sqrt{n}} z^n,$$

où a est un réel fixé strictement positif.

Exercice 04

Déterminer le domaine de convergence et étudier la convergence aux bornes $(z \in \mathbf{C})$ pour la série :

$$\sum_{n \ge 0} \frac{e^n - e^{-n}}{e^n + e^{-n}} z^n$$

■ Développement en série entière d'une fonction

Exercice 05

Développer en série entière la fonction $g: x \mapsto \frac{1}{(1+x)^2}$ et préciser le domaine de convergence.

Exercice 06

Développer en série entière la fonction $h: x \mapsto \sin^2 x$ et préciser le domaine de convergence.

Exercice 07

Développer en série entière la fonction $j: x \mapsto \frac{2x-1}{(x-1)(x-2)}$ et préciser le domaine de convergence.

Exercice 08

Développer en série entière la fonction $k: x \mapsto \ln \frac{1+x}{1-x}$ et préciser le domaine de convergence.

Exercice 09

Développement en série entière de $x\mapsto \int_0^x e^{-t^2}\,dt$ et de $x\mapsto \int_0^x \sin(t^2)\,dt$?

■ Détermination de la somme d'une série entière sur son domaine de convergence

Exercice 10

Déterminer le rayon de convergence puis les sommes :

$$\sum_{n=0}^{+\infty} \frac{x^n}{2^n}, \sum_{n=0}^{+\infty} \frac{(-1)^n x^n}{n+1}$$

Exercice 11

Soit la série entière $\sum_{n\geq 2} \frac{x^n}{n(n-1)}$.

- 1. Trouver son intervalle de convergence.
- 2. Quelle est la nature de la série pour les valeurs de x aux bornes du domaine de convergence?
- 3. On pose

$$u_n(x) = \frac{x^n}{n(n-1)},$$

pour $n \geqslant 2$.

Calculer quand elles existent les sommes $\sum_{n=2}^{+\infty} u_n''(x)$ et $\sum_{n=2}^{+\infty} u_n'(x)$.

En déduire
$$\sum_{n=2}^{+\infty} u_n(x)$$
.

Exercice 12

Soit la série entière $\sum_{n=0}^{+\infty} a_n x^n$ définie par la relation :

$$a_0 = 1$$
, $a_1 = 3$ et $\forall n \ge 2$, $a_n = 3a_{n-1} - 2a_{n-2}$

- 1. Trouver son terme général a_n en utilisant le cours sur les suites récurrentes linéaires d'ordre 2.
- 2. Caculer la somme S(x) de la série ainsi que son intervalle de convergence.
- 3. Retrouver S(x) à l'aide de la relation liant a_n , a_{n-1} et a_{n-2} sans expliciter a_n .

Exercice 13

Déterminer le rayon de convergence et la somme de la série de terme général :

$$u_n(x) = (-1)^{n-1}(2n-1)x^{2n-2}$$

avec $x \in \mathbf{R}$ et $n \geqslant 1$.

Exercice 14

Déterminer le rayon de convergence et la somme de la série de terme général :

$$t_n(x) = \frac{\exp(n\theta) - \exp(-n\theta)}{2n} x^n,$$

avec $x \in \mathbf{R}, n \geqslant 1, \theta \in \mathbf{R}_+$ étant fixé.

Exercice 15

Soit
$$P \in \mathbf{R}_2[X]$$
 tel que $P(0)P(-1)P(-2) \neq 0$ et soit $u_n(x) = \frac{P(n)}{n(n+1)(n+2)}x^n$ avec $x \in \mathbf{R}$ et $n \geqslant 1$.

- 1. Déterminer son rayon de convergence.
- 2. Décomposer en éléments simples la fraction rationnelle $\frac{P(n)}{n(n+1)(n+2)}$, en posant

$$P(n) = an^2 + bn + c$$

3. Déterminer $f(x) = \sum_{n=1}^{+\infty} u_n(x)$ à l'intérieur de son domaine de convergence en l'écrivant sous la forme

$$\frac{g(x)\ln(1-x) + h(x)}{x^2},$$

où g et h sont des polynômes de $\mathbf{R}_2[X]$.

Exercice 16

1. Déterminer le rayon de convergence et la somme de la série de terme général

$$u_n(x) = (-1)^{n+1} \frac{x^{2n+1}}{(2n+1)(2n-1)}$$

avec $x \in \mathbf{R}$ et $n \geqslant 1$.

- 2. Si l'on note f(x) la somme de cette série à l'intérieur du disque de convergence, déterminer le domaine de validité de continuité de la fonction f.
- 3. Calculer f(x) pour tout x à l'intérieur du disque de convergence.

On suppose f continue en ± 1 . En déduire la valeur de la somme $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{4n^2-1}$.

Exercice 17

Pour
$$n \ge 1$$
, on pose $a_n = \sum_{k=1}^n \frac{1}{k}$.

1. Déterminer le rayon R de $\sum_{n\geq 1} a_n x^n$.

Pour
$$x \in]-R, R[$$
, on pose : $f(x) = \sum_{n=1}^{+\infty} a_n x^n$.

2. Déterminer $a_n - a_{n-1}$ pour $n \ge 2$ et en déduire une expression simple de f(x).