On pose:
$$P = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 0 & -3 & -1 \\ 0 & 0 & 3 & -1 \\ 0 & 1 & -1 & 1 \end{pmatrix}, \text{ et on admet que: } P^{-1} = \begin{pmatrix} 1 & \frac{2}{3} & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & \frac{2}{3} & 1 \\ 0 & -\frac{1}{6} & \frac{1}{6} & 0 \\ 0 & -\frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}.$$

- (d) Calculer la matrice $D = P^{-1}MP$.
- (e) Pour tout $n \in \mathbb{N}$, calculer le produit $PD^nP^{-1} \times \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$.

Retour au processus de Moran : On considère le processus de Moran avec : N=3. On rappelle que pour tout $n \in \mathbb{N}$, X_n désigne le nombre d'individus possédant l'allèle A à la n-ième étape du processus. On suppose de Plus qu'à l'instant initial, il n'y a qu'un seul individu possédant l'allèle A, c'est-à-dire : $\mathbb{P}[X_0=1]=1$.

- 2. Soit $n \in \mathbb{N}$.
 - (a) Justifier que : $\mathbb{P}_{[X_n=0]}[X_{n+1}=0]=1$ et $\mathbb{P}_{[X_n=3]}[X_{n+1}=3]=1$.
 - (b) Soit $i \in \{1, 2\}$. Justifier que:

•
$$\mathbb{P}_{[X_n=i]}[X_{n+1}=i]=\frac{i^2+(3-i)^2}{9}.$$

•
$$\mathbb{P}_{[X_n=i]}[X_{n+1}=i+1] = \mathbb{P}_{[X_n=i]}[X_{n+1}=i-1] = \frac{i(3-i)}{9}$$
.

•
$$\mathbb{P}_{[X_n=i]}[X_{n+1}=j]=0 \text{ si } j \notin \{i-1,i,i+1\}.$$

On a représenté ci-dessous le *graphe du processus*. Dans les ronds, on lit le nombre d'individus de la population qui ont l'allèle A. Les flèches donnent la probabilité de passer d'un état à un autre en une étape.



Par exemple:

- la probabilité de passer d'une population à 1 allèle A à une population à 2 allèles A en une seule étape vaut : $\frac{2}{9}$.
- la probabilité de passer d'une population à 2 allèles A à une population à 2 allèles A en une seule étape vaut : $\frac{5}{9}$.

Lorsqu'il n'y a pas de flèche, c'est que cette probabilité est nulle. Par exemple, on ne peut pas passer d'une population sans allèle A à une population qui en a un.

3. Déterminer la loi de X_1 et X_2 .