2TSI. Devoir surveillé n°04

Samedi 06 février 2021

Durée : 4 heures. Les calculettes sont interdites et les différents exercices sont indépendants et les trois parties de l'exercice 02 le sont largement aussi.

Exercice 01

Soient E un plan vectoriel, $\mathcal{B} = (\vec{i}, \vec{j})$ une base de E et $\theta \in]0, \pi[$ fixé.

On considère l'endomorphisme f de E représenté par sa matrice C dans la base $\mathcal{B}: C = \begin{pmatrix} 0 & -1 \\ 1 & 2\cos(\theta) \end{pmatrix}$. On définit alors sur E une forme bilinéaire symétrique Φ par les relations (1):

$$\Phi(\vec{i}, \vec{j}) = \Phi(\vec{j}, \vec{i}) = \cos(\theta)$$
 et $\Phi(\vec{i}, \vec{i}) = \Phi(\vec{j}, \vec{j}) = 1$.

On rappelle qu'une forme bilinéaire sur E est une application de E^2 dans \mathbf{R} , linéaire par rapport à chacune des variables.

- 1. En utilisant les relations (1) et le fait que Φ est linéaire par rapport à chacune de ses variables et que Φ est symétrique, c'est-à-dire que $\Phi(\vec{X}, \vec{Y}) = \Phi(\vec{Y}, \vec{X})$ pour tout couple (\vec{X}, \vec{Y}) de vecteurs du plan, calculer $\Phi(2\vec{i} \vec{j}, \vec{i} + 3\vec{j})$ en fonction de θ .
- 2. On passe au cas général. Soient $\vec{X} = x_1\vec{i} + x_2\vec{j}$ et $\vec{Y} = y_1\vec{i} + y_2\vec{j}$ deux vecteurs de E. Exprimer $\Phi(\vec{X}, \vec{Y})$ en fonction des réels x_1, x_2, y_1, y_2 et θ .
- 3. Montrer que Φ est un produit scalaire sur E, c'est-à-dire que Φ en plus d'être bilinéaire symétrique est définie et positive.
- 4. Soit $\vec{X} = x_1 \vec{i} + x_2 \vec{j}$, déterminer les composantes de $f(\vec{X})$. Puis montrer que pour tout \vec{X} de \vec{E} ,

$$\Phi(f(\vec{X}), f(\vec{X})) = \Phi(\vec{X}, \vec{X}).$$

On dit que f est une isométrie pour le produit scalaire Φ .

5. Déterminer un vecteur $\vec{k} \in E$ tel que (\vec{i}, \vec{k}) soit une base orthonormée pour Φ et que $\Phi(\vec{j}, \vec{k}) > 0$. Indication : on pourra utiliser l'algorithme de Jorgen Pedersen Gram (1850-1916)- Erhard Schmidt (1876-1959) à (\vec{i}, \vec{j}) .

Kultur : Jorgen Pedersen Gram vivait au Danemark et Erhard Schmidt vivait en D.D.R (Die deutsche demokratische Republik).

- 6. On pose $P = \begin{pmatrix} 1 & -\frac{\cos \theta}{\sin \theta} \\ 0 & \frac{1}{\sin \theta} \end{pmatrix}$.
 - (a) Montrer que $P^{-1} = \begin{pmatrix} 1 & \cos \theta \\ 0 & \sin \theta \end{pmatrix}$.
 - (b) Calculer $P^{-1}CP$ et en déduire la matrice de f dans la base (\vec{i}, \vec{k}) . **Spécial 5/2**: Préciser la nature de f.

Exercice 02

Si $m \in \mathbf{R}$ est fixé, on considère l'équation différentielle (E_m) :

$$y''(x) + mxy'(x) + y(x) = x^2$$

et on note (H_m) son équation homogène associée.

PARTIE A. Étude du cas m=0

- 1. Résoudre l'équation homogène (H_0) .
- 2. Trouver une solution particulière de l'équation différentielle (E_0) définie sur \mathbf{R} de la forme $y_p(x) = x^2 + \alpha x + \beta$, où α et β sont des réels à déterminer.
- 3. En déduire l'ensemble des solutions de (E_0) et l'unique solution $y : \mathbf{R} \mapsto \mathbf{R}$ de (E_0) avec y(0) = 0 et y'(0) = 1.

PARTIE B. Étude du cas m=1

On cherche les séries entières $\sum_{n \in \mathbb{N}} a_n x^n$ solutions de (H_1) avec $a_1 = 0$.

- 1. Montrer alors que pour tout $n \in \mathbf{N}$, $a_{n+2} = -\frac{a_n}{n+2}$.
- 2. Montrer par récurrence que pour tout $n \in \mathbb{N}$, $a_{2n} = \frac{(-1)^n}{2^n n!} a_0$ et $a_{2n+1} = 0$.
- 3. Donner une expression simple de $\sum_{n=0}^{+\infty} a_n x^n$ en fonction de x et de a_0 .

PARTIE C. Existence d'une solution polynomiale non nulle

- 1. Soit $m \in \mathbb{R}$. On suppose qu'il existe un polynôme P non nul de degré d solution de (H_m) . Montrer que $d \neq 0$ et que m = -1/d.
- 2. On étudie ici le résultat réciproque. On fixe un entier naturel d non nul et on souhaite montrer que $(H_{-1/d})$ admet une solution polynomiale non nulle. On note $\mathbf{R}_d[X]$ l'espace vectoriel des polynômes de degré au plus d et l'application :

$$h: \mathbf{R}_d[X] \mapsto \mathbf{R}_d[X], P \mapsto h(P) = P'' - \frac{1}{d}XP' + P.$$

- (a) Montrer que pour tout $P \in \mathbf{R}_d[X]$, $\deg h(P) \leq d-1$.
- (b) Rappeler la dimension de $\mathbf{R}_d[X]$ et montrer que h est un endomorphisme de $\mathbf{R}_d[X]$.
- (c) Montrer que h n'est pas surjective. Est-elle injective?
- (d) En déduire l'existence d'une solution polynomiale non nulle de $(H_{-1/d})$.

Exercice 03

On rappelle que la partie entière $\lfloor x \rfloor$ de $x \in \mathbf{R}$ est l'unique entier relatif n tel que $n \leq x < n+1$. On considère la fonction

$$f: \mathbf{R} \to \mathbf{R}, x \mapsto x - |x|.$$

On note, si elle existe, $S_f(x) = a_0 + \sum_{n=1}^{+\infty} (a_n \cos(2\pi nx) + b_n \sin(2\pi nx))$ la série de Joseph (Fourier) de la fonction f.

- 1. Pour tout $x \in \mathbb{R}$, exprimer $\lfloor x+1 \rfloor$ en fonction de $\lfloor x \rfloor$. En déduire que f est périodique de période 1. Exprimer f(x) pour $x \in [0,1[$. Préciser f(1). Enfin, f est-elle continue sur \mathbb{R} ? Justifier.
- 2. Calculer a_0 puis pour tout $n \ge 1$, a_n . Que remarque t-on?
- 3. Calculer les coefficients b_n pour tout $n \in \mathbf{N}^*$.
- 4. Montrer que la série de Fourier S_f de f est convergente en tout point $x \in \mathbf{R}$. Préciser la fonction vers laquelle elle converge sur]0,1[.
- 5. On admet la convergence de la série $\sum_{p \in \mathbb{N}} u_p$ de terme général $u_p = \frac{(-1)^p}{2p+1}$. On note U sa somme, trouver une relation entre U et $S_f(1/4)$ et calculer alors U.
- 6. Énoncer le théorème de Marc-antoine Parseval. En déduire la somme $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.