2TSI. Devoir surveillé 05 CORRECTION

Problème 01

Dans cette partie, l'espace \mathbb{R}^2 est muni de sa structure euclidienne usuelle et d'un repère orthonormé direct (O, \vec{i}, \vec{j}) .

On considère la famille de droites $(D_t)_{t \in \mathbb{R}}$ d'équation cartésienne

$$(t^2-1)x-2ty=2t(t-1).$$

1-a *Question préliminaire.* Soit $(a,b,c) \in \mathbb{R}^3$ tel que $(a,b) \neq (0,0)$.

On considère alors la droite D d'équation cartésienne ax + by + c = 0 ainsi que le point M_0 de coordonnées $(x_0, y_0) \in \mathbb{R}^2$.

Démontrons que les coordonnées du projeté orthogonal H_0 de M_0 sur la droite D sont :

$$\left(x_0 - a\frac{ax_0 + by_0 + c}{a^2 + b^2}, y_0 - b\frac{ax_0 + by_0 + c}{a^2 + b^2}\right).$$

Les coordonnées de H_0 peuvent par définition du projeté orthogonal s'écrire sous la forme :

$$x_h = x_0 + \lambda a$$
, $y_h = y_0 + \lambda b$,

où λ est un réel. DE plus, $(x_h, y_h) \in D$:

$$a(x_0 + \lambda a) + b(y_0 + \lambda b) + c = 0.$$

On tire alors de cette équation la valeur de λ , on obtient : $\lambda = -\frac{ax_0 + by_0 + c}{a^2 + b^2}$.

D'où les coordonnées annoncées de H_0 :

$$\left(x_0 - a\frac{ax_0 + by_0 + c}{a^2 + b^2}, y_0 - b\frac{ax_0 + by_0 + c}{a^2 + b^2}\right).$$

1-b Déduisons en la distance $d(M_0, D)$ du point M_0 à la droite D.

On sait que $d(M_0, D) = \|\overrightarrow{M_0 H_0}\|$. Alors :

$$d(M_0, D) = \left\| \left(a \frac{ax_0 + by_0 + c}{a^2 + b^2}, b \frac{ax_0 + by_0 + c}{a^2 + b^2} \right) \right\| = \frac{|ax_0 + by_0 + c|}{a^2 + b^2} \left\| (a, b) \right\|.$$

On continue.

$$d(M_0, D) = \frac{|ax_0 + by_0 + c|}{a^2 + b^2} \sqrt{a^2 + b^2} = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}.$$

2-a Déterminons l'ensemble des points du plan équidistants des droites D_{-1} , D_0 et D_1 .

On a déjà : $\begin{cases} D_0: x=0 \\ D_{-1}: y=2 \\ D_1: y=0 \end{cases}$. Un point M de coordonnées (x,y) est donc équidistants des trois droites si et seulement si:

$$|x| = |y - 2| = |y|$$
.

En particulier, $(y-2)^2=y^2$, d'où l'on tire y=1 et donc $x=\pm 1$. Les points de coordonnées (1,1) et (-1,1) sont les solutions.

2-b Déduisons en qu'il existe un unique point, dont on précisera les coordonnées, équidistant de toutes les droites D_t , $t \in R$.

Ce point est aussi équidistants des droites D_0 , D_{-1} et D_1 . Les seuls candidats sont (1,1) et (-1,1).

$$d((1,1), D_t) = \frac{\left|t^2 - 1 - 2t - 2t(t-1)\right|}{\sqrt{(t^2 - 1)^2 + 4t^2}} = \frac{\left|1 + t^2\right|}{\sqrt{(1+t^2)^2}} = 1.$$

De même,

$$d((-1,1), D_t) = \frac{|1 - 3t^2|}{\sqrt{(1+t^2)^2}}.$$

Cette dernière distance n'est pas constante. La réponse est donc (1,1).

3. Soit t un réel fixé. Montrons que le point A(t) de composantes (0, 1-t) appartient à D_t et que le vecteur $\vec{u}(t) = (-2t, 1-t^2)$ est un vecteur directeur de D_t puis écrivons une représentation paramétrique de la droite D_t .

Il est clair que $(t^2-1)\times 0-2t(1-t)=2t(t-1)$ et $A(t)\in D_t$ puis on rappelle que la droite ax+by=c a pour vecteur directeur (-b,a) et donc $\vec{u}(t)=(b,-a)$ aussi.

On en déduit le paramétrage suivant, où $\lambda \in \mathbf{R}$:

$$\begin{cases} x = -2t\lambda \\ y = 1 - t + \lambda(1 - t^2) \end{cases}.$$

4-a On cherche **l'enveloppe** Γ de la famille de droites $(D_t)_{t\in\mathbb{R}}$, c'est-à-dire une courbe paramétrée définie par $t\mapsto \phi(t)$ telle que, pour tout t, la droite D_t est tangente à Γ en $\phi(t)$. En reprenant les notations de **3**, justifions le système :

$$\begin{cases} \phi(t) = A(t) + \lambda(t) \vec{u}(t) \\ \text{Det} (\phi'(t), \vec{u}(t)) = 0 \end{cases}$$

où λ est une fonction de \mathbb{R} dans \mathbb{R} .

On remarque que la tangente en un point $M(t) = \phi(t)$ de Γ est portée par $\vec{u}(t)$ et donc $\phi'(t)$ est colinéaire à $\vec{u}(t)$, ce qui se traduit par : Det $(\phi'(t), \vec{u}(t)) = 0$. Par ailleurs, la tangente étant D_t , elle passe par A(t) et est de vecteur directeur $\vec{u}(t)$. Elle passe aussi par $\phi(t)$ car c'est le point de contact de Γ et de la tangente. Donc il existe $\lambda(t) \in \mathbf{R}$ tel que $A(t)\phi(t) = \lambda(t)\vec{u}(t)$.

4-b Calculons Det $\left(\frac{dA}{dt}(t), \vec{u}(t)\right)$ et Det $(\vec{u}'(t), \vec{u}(t))$.

$$\operatorname{Det}\left(\frac{dA}{dt}(t), \vec{u}(t)\right) = \left| \begin{array}{cc} 0 & -2t \\ -1 & 1-t^2 \end{array} \right| = -2t.$$

$$\mathsf{Det}\, \left(\vec{u}'(t),\, \vec{u}(t)) = \left| \begin{array}{cc} -2 & -2t \\ -2t & 1-t^2 \end{array} \right| = -2(1+t^2)\,.$$

4-c Déduisons du bins précédent : $\lambda(t)$.

$$\phi(t) = A(t) + \lambda(t) \, \vec{u}(t) \Rightarrow \phi'(t) = \frac{dA}{dt}(t) + \lambda'(t) \, \vec{u}(t) + \lambda(t) \, \vec{u}'(t).$$

Et donc:

$$\mathsf{Det}\left(\phi'(t),\,\vec{u}(t)\right) = \mathsf{Det}\left(\frac{dA}{dt}(t) + \lambda'(t)\,\vec{u}(t) + \lambda(t)\,\vec{u}'(t),\,\vec{u}(t)\right).$$

On utilise la linéarité du déterminant par rapport à la première variable.

$$\mathsf{Det}\left(\phi'(t),\,\vec{u}(t)\right) = \mathsf{Det}\left(\frac{dA}{dt}(t),\,\vec{u}(t)\right) + \mathsf{Det}\left(\lambda'(t)\,\vec{u}(t),\,\vec{u}(t)\right) + \mathsf{Det}\left(\lambda(t)\,\vec{u}'(t),\,\vec{u}(t)\right).$$

Il reste (car Det $(\lambda'(t)\vec{u}(t), \vec{u}(t)) = 0$).

$$\mathrm{Det}\left(\phi'(t),\,\vec{u}(t)\right) = \mathrm{Det}\,\left(\frac{dA}{dt}(t),\,\vec{u}(t)\right) + \mathrm{Det}\,\left(\lambda(t)\,\vec{u}'(t),\,\vec{u}(t)\right).$$

Et finalement:

$$\operatorname{Det}\left(\phi'(t),\, \vec{u}(t)
ight) = \operatorname{Det}\left(rac{dA}{dt}(t),\, \vec{u}(t)
ight) + \lambda(t)\operatorname{Det}\left(\vec{u}'(t),\, \vec{u}(t)
ight).$$

Il reste à utiliser la question précédente.

Det
$$(\phi'(t), \vec{u}(t)) = -2t - 2(1+t^2)\lambda(t)$$

Or, Det $(\phi'(t), \vec{u}(t)) = 0$. Ainsi :

$$\lambda(t) = -\frac{t}{1+t^2}.$$

On remarque que λ est de classe C^1 sur **R**.

4-d Déduisons qu'une représentation paramétrique de l'enveloppe Γ de la famille de droites $(D_t)_{t\in\mathbb{R}}$ est : $\mathbb{R} \to \mathbb{R}^2$, $t \mapsto \phi(t) = \left(\frac{2t^2}{1+t^2}, \frac{(1-t)^2}{1+t^2}\right)$.

En effet, on remplace $\lambda(t)$ trouvé dans $\phi(t) = A(t) + \lambda(t) \vec{u}(t)$.

$$\phi(t) = (0, 1 - t) - \frac{t}{1 + t^2} \left(-2t, 1 - t^2 \right) = \left(\frac{2t^2}{1 + t^2}, 1 - t + \frac{t(t^2 - 1)}{1 + t^2} \right).$$

On obtient bien:

$$\phi(t) = \left(\frac{2t^2}{1+t^2}, \frac{(1-t)^2}{1+t^2}\right).$$

5-a On considère la courbe Γ' de représentation paramétrique $\left\{ \begin{array}{l} x=1+\cos(\theta) \\ y=1+\sin(\theta) \end{array} \right.$, où $\theta\in[0,2\pi]$. Reconnaissons la courbe Γ' .

C'est le cercle de centre (1,1) et de rayon 1.

5-b Démontrons que $\Gamma \subset \Gamma'$. Sont-elles égales?

Montrons que si $\phi(t) = (x(t), y(t)), (x(t) - 1)^2 + (y(t) - 1)^2 = 1.$

$$\left(\frac{2t^2}{1+t^2} - 1\right)^2 + \left(\frac{(1-t)^2}{1+t^2} - 1\right)^2 = \left(\frac{2t^2 - 1 - t^2}{1+t^2}\right)^2 + \left(\frac{(1-t)^2 - (1+t^2)}{1+t^2}\right)^2$$
$$= \frac{1}{(1+t^2)^2} \left((t^2 - 1)^2 + 4t^2\right) = \frac{1}{(1+t^2)^2} \left((t^2 + 1)^2\right) = 1.$$

On a bien :
$$\Gamma \subset \Gamma'$$
. Comme le point $(2,1) \in \Gamma' \setminus \Gamma$ (en effet, $\frac{2t^2}{1+t^2} = 2$ est impossible), $\Gamma \neq \Gamma'$.

5-c Les deux courbes sont-elles parcourues dans le même sens?

Étant donné le sens de rotation des droites D_t que l'on devine grâce aux droites D_{-1} , D_0 et D_1 , on obtient que les deux courbes sont parcourues dans le sens trigonométrique.

Problème 02

Dans tout le sujet, l'espace R^3 est muni de sa structure euclidienne usuelle et d'un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$. On note E, l'espace vectoriel des fonctions de classe C^1 sur \mathbb{R}^3 à valeurs dans \mathbb{R} et F, l'espace vectoriel des fonctions continues sur \mathbb{R}^3 à valeurs dans R^3 .

Pour toute fonction f de E, on note ∇f son gradient.

On définit la fonction φ sur E par : $\forall f \in E, \varphi(f) = \nabla f$.

Pour tout vecteur \vec{u} de \mathbb{R}^3 , on définit la fonction $\varphi_{\vec{u}}$ par

$$\forall f \in E, \varphi_{\vec{u}}(f) = \vec{u}.\varphi(f)$$
 (produit scalaire de \vec{u} et $\varphi(f)$).

PARTIE I

1. Démontrons que φ est une application linéaire à valeurs dans F.

Soit $f \in E$. Notons $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$ ses dérivées partielles respectives par rapport aux première, deuxième et troisième place.

f étant de classe C^1 sur \mathbb{R}^3 , les fonctions $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$ y sont continues.

 φ est l'application $f \mapsto \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$. Elle est donc bien à valeurs dans F.

Par linéarité de la dérivation sur l'espace des fonctions de classe \mathcal{C}^1 sur \mathbb{R} , les applications $f \mapsto \frac{\partial f}{\partial x'}$ $f \mapsto \frac{\partial f}{\partial u}, f \mapsto \frac{\partial f}{\partial z}$ sont linéaires.

Ainsi,
$$\forall f, g \in E, \forall \lambda, \mu \in \mathbb{R}, \varphi(\lambda f + \mu g) = \left(\frac{\partial(\lambda f + \mu g)}{\partial x}, \frac{\partial(\lambda f + \mu g)}{\partial y}, \frac{\partial(\lambda f + \mu g)}{\partial z}\right).$$

$$\varphi(\lambda f + \mu g) = \lambda \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) + \mu \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right) = \lambda \varphi(f) + \mu \varphi(g).$$

Donc φ est bien une application linéaire à valeurs dans F

2. Déterminons le noyau de φ . Qu'en déduit-on pour φ ?

Soit $f \in E$, $\varphi(f) = 0$, $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$ sont des fonctions nulles sur \mathbb{R} , donc f ne dépend ni de x, ni de y, ni de z. f est donc constante sur \mathbb{R}^3 .

Réciproquement, si f est constante sur \mathbb{R}^3 , sont gradient est nul.

On en déduit que le noyau de φ est l'ensemble des fonctions constantes sur \mathbb{R}^3 . Il n'est pas réduit à la fonction nulle, donc φ est non injectif.

3-a Énoncons le théorème de Schwarz pour les fonctions à plusieurs variables.

Soit f une fonction de classe C^2 sur U, ouvert de \mathbb{R}^3 . On note $\frac{\partial f}{\partial x}$ la dérivée par rapport à la i^e place.

Alors
$$\forall i, j \in \{1, 2, 3\}, \forall a \in U, \frac{\partial^2 f}{\partial x_i \partial x_j}(a) = \frac{\partial^2 f}{\partial x_j \partial x_i}(a).$$

3-b Soit $V:(x,y,z)\mapsto (P(x,y,z),Q(x,y,z),R(x,y,z))$ une fonction de classe \mathcal{C}^1 appartenant à l'image

Démontrons que :
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
 ; $\frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$; $\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}$.

Soit $V:(x,y,z)\mapsto (P(x,y,z),Q(x,y,z),R(x,y,z))$ une fonction de classe \mathcal{C}^1 appartenant à l'image de

$$\exists f \in E$$
, telle que $V = \varphi(f)$. On a alors $P = \frac{\partial f}{\partial x}$, $Q = \frac{\partial f}{\partial y}$ et $R = \frac{\partial f}{\partial z}$.

V étant de classe C^1 sur \mathbb{R}^3 , P,Q et R le sont aussi. Les dérivées partielles de f sont de classe C^1 sur \mathbb{R}^3 , donc f est de classe \mathcal{C}^2 sur \mathbb{R}^3 . On déduit du théorème de Schwarz : $\frac{\partial P}{\partial y} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial Q}{\partial x}$

$$\frac{\partial P}{\partial y} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial Q}{\partial x}$$
$$\frac{\partial Q}{\partial z} = \frac{\partial^2 f}{\partial z \partial y} = \frac{\partial^2 f}{\partial y \partial z} = \frac{\partial R}{\partial y}$$
$$\frac{\partial P}{\partial z} = \frac{\partial^2 f}{\partial z \partial x} = \frac{\partial^2 f}{\partial x \partial z} = \frac{\partial R}{\partial x}$$

- **4-a** On pose, pour tout (x,y,z) de \mathbb{R}^3 , $V(x,y,z)=(1+y^2+y^2z^2,xy(1+z^2),xy^2z)$. Justifions qu'il n'existe pas de fonction f telle que $\nabla f=V$.

V est bien de classe C^1 sur \mathbb{R}^3 , ses composantes étant des fonctions polynômes en x, y, z.

Si par l'absurde, il existait une fonction f telle que $\nabla f = V$, on aurait $\frac{\partial P}{\partial u} = \frac{\partial Q}{\partial x}$

Or
$$\forall (x,y,z) \in \mathbb{R}^3$$
, $\frac{\partial P}{\partial y}(x,y,z) = 2y(1+z^2)$ et $\frac{\partial Q}{\partial x}(x,y,z) = y(1+z^2)$, donc $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$, ce qui est contradictoire.

Donc il n'existe pas de fonction f telle que $\nabla f = V$.

• Qu'en déduit-on pour la fonction φ ?

On en déduit que la fonction φ n'est pas surjective.

4-b Déterminons toutes les fonctions f telles que $\forall (x,y,z) \in \mathbb{R}^3$, $\nabla f(x,y,z) = xV(x,y,z)$.

La fonction $x \mapsto \frac{x^2}{2}(1+y^2+y^2z^2)$ est une primitive de $x \mapsto x(1+y^2+y^2z^2)$.

On considère la fonction h définie sur \mathbb{R}^3 par $\forall (x,y,z) \in \mathbb{R}^3$, $h(x,y,z) = \frac{x^2}{2}(1+y^2+y^2z^2)$. Les fonctions coordonnées de h sont des polynômes en x, y et z donc sont de classe \mathcal{C}^1 sur \mathbb{R}^3 .

fonctions coordonnées de
$$h$$
 sont des polynômes en x , y et z donc sont de classe C^1 sur \mathbb{R}^3 . $\forall (x,y,z) \in \mathbb{R}^3$, $\frac{\partial h}{\partial x}(x,y,z) = x(1+y^2+y^2z^2)$, $\frac{\partial h}{\partial y}(x,y,z) = x^2y(1+z^2)$ et $\frac{\partial h}{\partial z}(x,y,z) = x^2y^2z$.

On a donc bien $\forall (x,y,z) \in \mathbb{R}^3$, $\nabla h(x,y,z) = x V(x,y,z)$.

Soit $f \in E.f$ vérifie « $\forall (x,y,z) \in \mathbb{R}^3$, $\nabla f(x,y,z) = xV(x,y,z)$ »si et seulement si $\varphi(f) = \varphi(h)$, c'est-à-dire, par linéarité de φ , $f-h \in \ker \varphi$.

D'après la question 2., l'ensemble des fonctions f telles que $\forall (x,y,z) \in \mathbb{R}^3$, $\nabla f(x,y,z) = xV(x,y,z)$

est
$$\begin{cases} f: \mathbb{R}^3 \to \mathbb{R}^3 \\ x \mapsto \frac{x^2}{2}(1+y^2+y^2z^2)+k \end{cases}, k \in \mathbb{R}$$

PARTIE II

Soient $f_1, f_2, f_3, f_4, f_5, f_6$ les fonctions de E définies par :

$$\forall (x,y,z) \in \mathbb{R}^3, \quad f_1(x,y,z) = \cos(x), \quad f_2(x,y,z) = \sin(x), \\ f_3(x,y,z) = y\cos(x), \quad f_4(x,y,z) = y\sin(x), \\ f_5(x,y,z) = z\cos(x), \quad f_6(x,y,z) = z\sin(x).$$

On considère alors l'espace vectoriel G engendré par les fonctions f_1 , f_2 , f_3 , f_4 , f_5 et f_6 .

Dans cette partie et la suivante, \vec{u} désigne le vecteur $\vec{i} + \vec{j} + \vec{k}$. On peut remarquer qu'avec ce choix de \vec{u} , $\phi_{\vec{u}}(f) = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}$. On dit alors que $\phi_{\vec{u}}(f)$ est la divergence de f. De plus, on note ϕ_1 la restriction de la fonction $\phi_{\vec{u}}$ à G.

1. Démontrons que $(f_1, f_2, f_3, f_4, f_5, f_6)$ est une base notée \mathcal{B} de G.

 $(f_1, f_2, f_3, f_4, f_5, f_6)$ est une famille génératrice de G. Donc pour montrer que c'est une base, il suffit de montrer que c'est une famille libre.

Soit
$$(\lambda_1, \dots, \lambda_6) \in \mathbf{R}^6$$
 tel que $\sum_{i=1}^6 \lambda_i f_i = 0$. Ainsi, pour tout $(x, y, z) \in \mathbf{R}^3$, on peut écrire :

$$\lambda_1 \cos(x) + \lambda_2 \sin(x) + \lambda_3 y \cos(x) + \lambda_4 y \sin(x) + \lambda_5 z \cos(x) + \lambda_6 z \sin(x).$$

Pour (x, y, z) = (0, 0, 0), on obtient : $\lambda_1 = 0$.

Pour $(x, y, z) = (\pi/2, 0, 0)$, on obtient : $\lambda_2 = 0$.

Ainsi : $\forall (x, y, z) \in \mathbf{R}^3$, $\lambda_3 y \cos(x) + \lambda_4 y \sin(x) + \lambda_5 z \cos(x) + \lambda_6 z \sin(x)$.

Pour (x, y, z) = (0, 1, 0), on obtient : $\lambda_3 = 0$.

Pour $(x, y, z) = (\pi/2, 1, 0)$, on obtient : $\lambda_4 = 0$.

Pour (x, y, z) = (0, 0, 1), on obtient : $\lambda_5 = 0$.

Pour $(x, y, z) = (\pi/2, 0, 1)$, on obtient : $\lambda_6 = 0$.

Ainsi :
$$\sum_{i=1}^{6} \lambda_i f_i = 0 \Rightarrow (\lambda_1, \dots, \lambda_6) = (0, \dots, 0).$$

Ainsi \mathcal{B} est libre, donc c'est une base de G.

- **2.** Démontrons que ϕ_1 est un endomorphisme de G.
- La **linéarité** de ϕ_1 découle de celle du gradient et de la bilinéarité du produit scalaire. Plus précisément, si $(f,g) \in G$ et $\lambda \in \mathbf{R}$, alors :

$$\begin{split} \phi_1(f+\lambda g) &= \phi_{\vec{u}}(f+\lambda g) = \vec{u} \cdot \nabla (f+\lambda g) \\ &= \vec{u} \cdot (\nabla (f) + \lambda \nabla (g)) \text{ car le gradient est linéaire} \\ &= \vec{u} \cdot \nabla (f) + \lambda \vec{u} \nabla (g) \text{ par bilinéarité du produit scalaire} \\ &= \phi_{\vec{u}}(f) + \lambda \phi_{\vec{u}}(g) \end{split}$$

Alors : $\phi_1(f + \lambda g) = \phi_1(f) + \lambda \phi_1(g)$.

• Comme $G = \text{Vect}\{\mathcal{B}\}$, pour **justifier que** $\phi_1 \in \mathcal{L}(G)$, il suffit que montrer que : $\forall i$ entier entre 1 et 6, $\phi_1(f_i) \in G$.

Remarquons que : $\forall f \in G$, $\phi_1(f) = \vec{u} \cdot \nabla(f) = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}$. Ainsi :

$$\phi_1(f_1) = -f_2; \quad \phi_1(f_2) = f_1$$

 $\phi_1(f_3) = f_1 - f_4; \quad \phi_1(f_4) = f_2 + f_3$
 $\phi_1(f_5) = f_1 - f_6; \quad \phi_1(f_6) = f_2 + f_5$

- En conclusion, ϕ_1 est linéaire et $\phi_1(\mathcal{B}) \subset G$ donc $\phi_1 \in \mathcal{L}(G)$.
- **3-a** Déterminons la matrice A de ϕ_1 dans la base \mathcal{B} , puis calculons A^2 .

D'après les calculs de la questions précédente, la matrice A de ϕ_1 dans la base $\mathcal B$ vaut :

$$A = \left(\begin{array}{cccccc} 0 & 1 & 1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0 \end{array}\right).$$

Pour calculer A^2 on peut soit faire soigneusement le calcul matriciel, soit calculer $\phi_1^2(f_i)$ pour i = 1, ...6.

$$\phi_1^2(f_1) = \phi_1(-f_2) = -f_1$$

$$\phi_1^2(f_2) = \phi_1(f_1) = -f_2$$

$$\phi_1^2(f_3) = \phi_1(f_1 - f_4) = -f_2 - (f_2 + f_3) = -2f_2 - f_3$$

$$\phi_1^2(f_4) = \phi_1(f_2 + f_3) = f_1 + f_1 - f_4 = 2f_1 - f_4$$

$$\phi_1^2(f_5) = \phi_1(f_1 - f_6) = -f_2 - (f_2 + f_5) = -2f_2 - f_5$$

$$\phi_1^2(f_6) = \phi_1(f_2 + f_5) = 2f_1 - f_6$$

On en déduit :

$$A^2 = \left(\begin{array}{cccccc} -1 & 0 & 0 & 2 & 0 & 2 \\ 0 & -1 & -2 & 0 & -2 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{array} \right).$$

3-b • Sans calcul, donnons les valeurs propres de A^2 et dire si A^2 est diagonalisable dans \mathbb{R} .

La matrice A^2 est triangulaire supérieure, donc ses valeurs propres sont ses coefficients diagonaux. Ainsi $Sp(A^2) = \{-1\}$.

Raisonnons par l'absurde. Si A^2 était diagonalisable, il existerait donc une matrice P inversible telle que $P^{-1}A^2P=D$ où D est une matrice diagonale contenant les valeurs propres sur la diagonale; ainsi on aurait $P^{-1}A^2P=(-1)I_6$. Donc on pourrait écrire $A^2=P(-1)I_6P^{-1}=-I_6$ et donc A^2 serait diagonale, ce qui n'est pas le cas. Ainsi A^2 n'est pas diagonalisable dans $\bf R$.

• Qu'en est-il de *A*?

Si A était diagonalisable, il existerait une matrice Q inversible et une matrice Δ diagonale telles que $Q^{-1}AQ = \Delta$ et l'on pourrait écrire $A^2 = Q\Delta Q^{-1}Q\Delta Q^{-1} = Q\Delta^2 Q^{-1}$ avec Δ^2 digonale. Donc A^2 serait diagonalisable, ce qui n'est pas le cas.

Ainsi A n'est pas diagonalisable dans \mathbf{R} .

3-c De quelle(s) équation(s) aux dérivées partielles les vecteurs propres de $\phi_1^2 = \phi_1 \circ \phi_1$ sont-ils solutions?

Soit f un vecteur propre de ϕ_1 . Comme la seule valeur propre de ϕ_1 est -1, f vérifie : $\phi_1^2(f) = -f$.

$$\begin{split} \phi_1^2(f) &= \phi_1 \left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \right) \\ &= \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \right) + \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \right) + \frac{\partial}{\partial z} \left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \right) \end{split}$$

Or f est de classe \mathbb{C}^2 donc d'après le théorème d'Hermann Schwarz :

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right), \quad \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial z} \right) = \frac{\partial}{\partial z} \left(\frac{\partial f}{\partial x} \right) \text{ et } \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial z} \right) = \frac{\partial}{\partial z} \left(\frac{\partial f}{\partial y} \right).$$

$$\phi_1^2(f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} + 2 \left(\frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial x \partial z} + \frac{\partial^2 f}{\partial y \partial z} \right).$$

Ainsi l'équation aux dérivées partielles vérifiée par les vecteurs propres de ϕ_1 est :

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} + 2\left(\frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial x \partial z} + \frac{\partial^2 f}{\partial y \partial z}\right) + f = 0.$$

3-d Déterminons l'ensemble des fonctions f solutions de l'équation $\phi_1^2(f) + f = 0$. Indication : on cherchera des vecteurs colonnes X qui vérifient $A^2X = -X$.

Chercher les solutions dans G de « $\phi_1^2(f) + f = 0$ »revient à chercher les vecteurs propres de A^2 , c'est

à dire les éléments de Ker $(A^2 + I_6)$. Posons $X = \begin{pmatrix} a \\ b \\ c \\ d \\ e \\ f \end{pmatrix}$. Alors :

$$\Leftrightarrow d + f = 0 \text{ et } c + e = 0.$$

$$\Leftrightarrow X = a \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} + d \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}.$$

Ainsi:

$$\operatorname{\mathsf{Ker}}(A^2+I_6)=\operatorname{\mathsf{Vect}}\left\{\left(egin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}
ight), \left(egin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{array}
ight), \left(egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ -1 \\ 0 \end{array}
ight), \left(egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ -1 \end{array}
ight)
ight\}.$$

Cette famille est libre de manière évidente, donc c'est une base de l'espace propre. En revenant à l'application linéaire ϕ_1^2 associée à la matrice A^2 dans la base \mathcal{B} , on obtient :

$$\phi_1^2(f) + f = 0 \Leftrightarrow f \in \text{Vect}\{f_1; f_2; f_3 - f_5; f_4 - f_6\}.$$

PARTIE III

Soit f une fonction non nulle de E. On note S la surface d'équation f(x,y,z)=0. On suppose que les fonctions f choisies dans la suite sont telles que la surface S est non vide et qu'au moins un point de S est régulier.

Nous allons nous intéresser à quelques fonctions f de E telles que en tout point régulier M de S, le vecteur normal au plan tangent à S en M est orthogonal au vecteur \vec{u} .

1-a Donnons la définition d'un point régulier M_0 de S puis donnons une équation du plan tangent à S en ce point M_0 . On notera (x_0, y_0, z_0) les coordonnées de M_0 .

On dit que M_0 est régulier lorsque $\nabla(f)(M_0) \neq 0$.

Lorsque M_0 est régulier, $\nabla(f)(M_0)$ est un vecteur normal au plan tangent, que l'on notera π_{M_0} . Ainsi

$$M(x,y,z) \in \pi_{M_0} \Leftrightarrow \overline{M_0 M} \perp \nabla(f)(M_0) \Leftrightarrow \overline{M_0 M} \cdot \nabla(f)(M_0) = 0$$

$$\Leftrightarrow (x - x_0) \frac{\partial f}{\partial x}(M_0) + (y - y_0) \frac{\partial f}{\partial y}(M_0) + (z - z_0) \frac{\partial f}{\partial z}(M_0) = 0.$$

ce qui est une équation cartésienne du plan tangent à S en M_0 .

1-b • Lorsque f est définie par : $\forall (x,y,z) \in \mathbb{R}^3$, $f(x,y,z) = x^2 + 2y^2 - z^2 - 2$ et M_0 est le point de coordonnées (1,-1,1), donnons une équation du plan tangent à S au point M_0 .

On suppose que : $\forall (x,y,z) \in \mathbb{R}^3$, $f(x,y,z) = x^2 + 2y^2 - z^2 - 2$ et M_0 est le point de coordonnées (1,-1,1). Alors $\nabla(f)(x,y,z) = (2x,4y,-2z)$ et donc $\nabla(f)(M_0) = (2,-4,-2)$; M_0 est régulier.

Une équation cartésienne du plan tangent à S en M_0 est 2(x-1)-4(y+1)-2(z-1)=0 c'est à dire :

$$2x - 4y - 2z - 4 = 0.$$

• Cette fonction *f* répond-t-elle au problème?

Enfin $\nabla(f)(M_0) \cdot \mathcal{U} = -4 \neq 0$ donc cette fonction f ne répond pas au problème.

2-a • Soit F_1 la fonction définie par : $\forall (x,y,z) \in \mathbb{R}^3$, $F_1(x,y,z) = (y-z)^2 - \alpha$, où $\alpha \in \mathbb{R}_+^*$?. La fonction $f = F_1$ répond-elle au problème?

On suppose que
$$\forall (x, y, z) \in \mathbb{R}^3$$
, $f(x, y, z) = F_1(x, y, z) = (y - z)^2 - \alpha$ où $\alpha \in \mathbb{R}_+^*$.
Alors $\nabla(f)(x, y, z) = (0, 2(y - z), -2(y - z)) = 2(y - z) \cdot (0, 1, -1)$.

Tous les points $M_0(x_0, y_0, z_0)$ tels que $y_0 \neq z_0$ sont donc réguliers. En chacun de ces points, la normale au plan tangent est de plus dirigée par le vecteur \vec{n} de coordonnées (0, 1, -1). Ce vecteur étant orthogonal à \vec{u} , la fonction $f = F_1$ répond au problème.

• Décrivons la surface associée.

$$M(x, y, z) \in S \Leftrightarrow (y - z)^2 = \alpha \Leftrightarrow |y - z| = \alpha \text{ avec } \alpha > 0$$

 $\Leftrightarrow y - z = \sqrt{\alpha} \text{ ou bien } y - z = -\sqrt{\alpha}$

Comme $\alpha > 0$, on peut dire que $\sqrt{\alpha} \neq -\sqrt{\alpha}$ et donc :

S est la réunion des deux plans d'équations respectives $y-z=\sqrt{\alpha}$ et $y-z=-\sqrt{\alpha}$.

N.B.: ce sont des plans parallèles.

2-b Soit g une fonction non nulle de classe \mathcal{C}^1 sur \mathbb{R}^2 à valeurs dans \mathbb{R} . Vérifions que la fonction f, définie par : $\forall (x,y,z) \in \mathbb{R}^3$, f(x,y,z) = g(x-y,x-z) répond au problème.

Soit g une fonction non nulle de classe \mathcal{C}^1 sur \mathbb{R}^2 à valeurs dans \mathbb{R} . Soit f définie par : $\forall (x,y,z) \in \mathbb{R}^3$, f(x,y,z) = g(x-y,x-z).

f est de classe C^1 (composition de fonctions de classe C^1) et de plus

$$\frac{\partial f}{\partial x}(x,y,z) = \partial_1 g(x-y,x-z) + \partial_2 g(x-y,x-z)$$

$$\frac{\partial f}{\partial y}(x,y,z) = -\partial_1 g(x-y,x-z)$$

$$\frac{\partial f}{\partial z}(x,y,z) = -\partial_2 g(x-y,x-z)$$

Donc $\nabla(f)(x,y,z)\cdot(Y+Y+Y)=0$.

Ainsi, en tout point régulier M_0 de S, le vecteur $\nabla(f)(M_0)$ est normal au plan tangent et est orthogonal à $\vec{i} + \vec{j} + \vec{k}$. Donc la fonction f répond au problème.

2-c La fonction F_1 est-elle de la forme précédente?

Si l'on pose $g(u,v)=(v-u)^2-\alpha$, alors $g(x-y,x-z)=(x-z-(x-y))^2-\alpha=(y-z)^2-\alpha=F_1(x,y,z)$. La fonction F_1 est bien de la forme précédente.

3-a Soit $\Gamma_1 = S \cap \Pi$ où S est la surface $(x-z)^2 + (y-z)^2 = 1$ et Π est le plan d'équation x+y+z=0. On considère les vecteurs $\vec{e_3} = \frac{\vec{u}}{\|\vec{u}\|}$, $\vec{e_1} = \frac{1}{\sqrt{2}}(\vec{k} - \vec{i})$, et $\vec{e_2} = \vec{e_3} \wedge \vec{e_1}$.

On note *P* la matrice de passage de $(\vec{i}, \vec{j}, \vec{k})$ à $(\vec{e_1}, \vec{e_2}, \vec{e_3})$.

• Écrivons P.

On a :
$$\vec{e}_3 = \frac{1}{\sqrt{3}} \left(\vec{i} + \vec{j} + \vec{k} \right)$$
 et $\vec{e}_2 = \frac{1}{\sqrt{6}} (\vec{i} - 2\vec{j} + \vec{k})$ et donc :

$$P = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ 0 & -2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \end{pmatrix}.$$

• Vérifions que P est une matrice de rotation dont on donnera l'axe et le cosinus de son angle. Les vecteurs $\vec{e_1}$ et $\vec{e_3}$ sont de norme 1 et de plus $\vec{e_1} \perp \vec{e_3}$.

Comme $\vec{e_2} = \vec{e_3} \wedge \vec{e_1}$, on en déduit que $(\vec{e_3}, \vec{e_1}, \vec{e_2})$ est une base orthonormée directe de \mathbf{R}^3 ; puis, par permutation circulaire : $(\vec{e_1}, \vec{e_2}, \vec{e_3})$ est aussi une base orthonormée directe de \mathbf{R}^3 .

P étant la matrice de passage d'une base orthonormée directe à une autre, P est une matrice de rotation.

Remarque. Le lecteur courageux ou inconscient fera le calcul du déterminant et trouvera après épuisement 1.

Pour l'axe, on pose $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et on résout :

$$PX = X \Leftrightarrow \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ 0 & -2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

$$\Leftrightarrow \begin{cases} -x\sqrt{3} + y + z\sqrt{2} &= x\sqrt{6} \\ -2y + z\sqrt{2} &= y\sqrt{6} \\ x\sqrt{3} + y + z\sqrt{2} &= x\sqrt{6} \end{cases} \Leftrightarrow \begin{cases} -x(\sqrt{3} + \sqrt{6}) + y + z\sqrt{2} &= 0 \\ -(2 + \sqrt{6})y + z\sqrt{2} &= 0 \\ x\sqrt{3} + y + z(\sqrt{2} - \sqrt{6}) &= 0 \end{cases}.$$

Il ressort en faisant la différence des deux premières lignes,

$$x = \frac{3 + \sqrt{6}}{\sqrt{3} + \sqrt{6}}y = \frac{\sqrt{3} + \sqrt{2}}{1 + \sqrt{2}} = (\sqrt{3} + \sqrt{2})(\sqrt{2} - 1)y.$$

De même, $z=\frac{2+\sqrt{6}}{\sqrt{2}}y=(\sqrt{2}+\sqrt{3})y$. Il reste :

$$(x,y,z) = ((\sqrt{3} + \sqrt{2})(\sqrt{2} - 1)y, y, (\sqrt{2} + \sqrt{3})y).$$

Une base de l'axe est $\left(\sqrt{2}-1,\,\sqrt{3}-\sqrt{2},\,1\right)$. De plus :

$$1 + 2\cos\theta = -\frac{1}{2} - \frac{2}{\sqrt{6}} + \frac{1}{\sqrt{3}} \Rightarrow \cos\theta = \frac{-3}{4} + \frac{\sqrt{3} - \sqrt{6}}{6}$$

• Que vaut P^{-1} ?

On a tout simplement : $P^{-1} = P^{T}$.

3-b Démontrons qu'un système d'équations de la courbe Γ_1 dans le repère $(O, \vec{e_1}, \vec{e_2}, \vec{e_3})$ est

$$\left\{ \begin{array}{c} 5X^2 + 2\sqrt{3}XY + 3Y^2 = 2 \\ Z = 0 \end{array} \right. ,$$

où (X,Y,Z) désignent les coordonnées d'un point M dans le repère $(O,\vec{e_1},\vec{e_2},\vec{e_3})$.

Indication : on rappelle que si (x, y, z) sont les coordonnées de M dans le repère $(O, \vec{i}, \vec{j}, \vec{k})$ alors

$$\left(\begin{array}{c} x \\ y \\ z \end{array}\right) = P \left(\begin{array}{c} X \\ Y \\ Z \end{array}\right).$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = P \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \Leftrightarrow \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = P^T \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Ainsi $Z = \frac{1}{\sqrt{3}}(x+y+z)$ donc la condition « x+y+z=0 »s'écrit « Z=0 ».

$$(x-z)^{2} + (y-z)^{2} = \left(\frac{-X}{\sqrt{2}} + \frac{Y}{\sqrt{6}} + \frac{Z}{\sqrt{3}} - \left(\frac{X}{\sqrt{2}} + \frac{Y}{\sqrt{6}} + \frac{Z}{\sqrt{3}}\right)\right)^{2} + \left(\frac{-2Y}{\sqrt{6}} + \frac{Z}{\sqrt{3}} - \left(\frac{X}{\sqrt{2}} + \frac{Y}{\sqrt{6}} + \frac{Z}{\sqrt{3}}\right)\right)^{2}$$

$$= \left(-\sqrt{2}X\right)^{2} + \left(\frac{-X}{\sqrt{2}} - \frac{3Y}{\sqrt{6}}\right)^{2}$$

$$= 2X^{2} + X^{2}/2 + 3Y^{2}/2 + \sqrt{3}XY$$

Ainsi:

$$(x-z)^2 + (y-z)^2 = 1 \Leftrightarrow 2X^2 + X^2/2 + 3Y^2/2 + \sqrt{3}XY = 1 \Leftrightarrow 5X^2 + 3Y^2 + 2\sqrt{3}XY = 2.$$

Ainsi:

$$M \in S \cap \Pi \Leftrightarrow \left\{ \begin{array}{l} x+y+z=0 \\ (x-z)^2+(y-z)^2=1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} Z=0 \\ 5X^2+3Y^2+2\sqrt{3}XY=2 \end{array} \right.$$

3-c On pose $U = \begin{pmatrix} X \\ Y \end{pmatrix}$, vérifions que l'équation $5X^2 + 2\sqrt{3}XY + 3Y^2 = 2$ s'écrit : $U^TAU = 2$, où $A = \begin{pmatrix} 5 & \sqrt{3} \\ \sqrt{3} & 3 \end{pmatrix}$.

On a:

$$U^{T}AU = \begin{pmatrix} X & Y \end{pmatrix} \begin{pmatrix} 5 & \sqrt{3} \\ \sqrt{3} & 3 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} 5X + Y\sqrt{3} & X\sqrt{3} + 3Y \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$

$$\Leftrightarrow U^{T}AU = X(5X + Y\sqrt{3}) + Y(X\sqrt{3} + 3Y) = 5X^{2} + 3Y^{2} + XY2\sqrt{3} = 2.$$

3-d On pose $Q=\begin{pmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix}$. Reconnaissons l'isométrie plane associée à Q et déduisons sans calculs Q^{-1} .

On remarque que c'est une rotation plane d'angle $\theta = \frac{\pi}{6}$ et Q^{-1} est la rotation plane d'angle $\theta = -\frac{\pi}{6}$. 3-e Calculons $D = Q^{-1}AQ$.

$$Q^{-1}AQ = \begin{pmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{pmatrix} \begin{pmatrix} 5 & \sqrt{3} \\ \sqrt{3} & 3 \end{pmatrix} \begin{pmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix} = \begin{pmatrix} 3\sqrt{3} & 3 \\ -1 & \sqrt{3} \end{pmatrix} \begin{pmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix}.$$

Et finalement : $Q^{-1}AQ = \begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix}$.

3-f On pose
$$\vec{I} = \frac{\sqrt{3}}{2}\vec{e}_1 + \frac{1}{2}\vec{e}_2$$
 et $\vec{J} = -\frac{1}{2}\vec{e}_1 + \frac{\sqrt{3}}{2}\vec{e}_2$ et $U' = \begin{pmatrix} X' \\ Y' \end{pmatrix} = Q^{-1}U$.

• Calculons $(U')^T DU'$

$$(U')^T DU' = (Q^{-1}U)^T DQ^{-1}U = U^T QDQ^{-1}U = U^T Q(Q^{-1}AQ)Q^{-1}U = U^T AU = 2.$$

• Déduisons en que dans $(0, \vec{l}, \vec{j})$, Γ_1 a pour équations paramétriques

$$\begin{cases} X' = \alpha \cos t \\ Y' = \beta \sin t \end{cases}$$

où $t \in [0, 2\pi[$ et α , β sont à déterminer.

On peut écrire, d'après plus haut :

$$(U')^T DU' = \begin{pmatrix} X' & Y' \end{pmatrix} \begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} X' \\ Y' \end{pmatrix} = \begin{pmatrix} 6X' & 2Y' \end{pmatrix} \begin{pmatrix} X' \\ Y' \end{pmatrix}$$

Ce qui donne :

$$(U')^T DU' = 2 = 6X'^2 + 2Y'^2 \Rightarrow 3X'^2 + Y'^2 = 1.$$

$$3X'^2 + Y'^2 = 1 \Leftrightarrow \frac{X'^2}{\frac{1}{3}} + Y'^2 = 1$$

Donc on pose $\alpha = \frac{1}{\sqrt{3}}$ et $\beta = 1$.

3-g Étudions l'arc paramétré $t \mapsto (\alpha \cos t, \beta \sin t)$,

avec les valeurs α et β trouvées, puis dans le repère $(O, \vec{e}_1, \vec{e}_2)$, dessinons les axes OX' et OY' puis Γ_1 .

Dans le repère (O, \vec{I}, \vec{J}) , étudions l'arc. On remarque que les fonctions $t \mapsto X'(t)$ et $t \mapsto Y'(t)$ sont de période 2π . On prend $t \in [-\pi, \pi]$. Puis comme X' est paire et Y' est impaire, on se ramène à $t \in [0, \pi]$ et on effectuera une symétrie par rapport à OX'. Puis $X'(\pi - t) = -X'(t)$ et $Y'(\pi - t) = Y'(t)$, donc on peut se ramener à $t \in [0, \frac{\pi}{2}]$ et on effectuera une symétrie par rapport à OY'.

On a pour tout $t \in [0, \frac{\pi}{2}]$, X'(t) décroit de $1/\sqrt{3}$ à 0 et Y'(t) croit de 0 à 1. La pente de la tangente en t = 0 est verticale et est horizonle en $t = \frac{\pi}{2}$.

