Correction Devoir libre 01

2TSI. Mathématiques

Exercice 01

- 1. On pose pour tout n entier supérieur ou égal à 2, $f_n: x \mapsto x^n + x 1$. Alors $f'_n(x) = nx^{n-1} + 1 > 0$ pour $x \ge 0$ et donc f_n est strictement croissante sur \mathbf{R}_+ . De plus, $f_n(0) = -1$ et $f_n(1) = 1$.
- **2.** Comme f_n est continue et strictement croissante et comme $f_n(0)f_n(1) < 0$, l'équation $f_n(x) = 0$ a une unique solution positive x_n . Et il est clair que $0 < x_n < 1$.
- 3. On a : $f_n(x_{n+1}) = x_{n+1}^n + x_{n+1} 1$ et comme $f_{n+1}(x_{n+1}) = x_{n+1}^{n+1} + x_{n+1} 1 = 0$, on en déduit :

$$f_n(x_{n+1}) = x_{n+1}^n - x_{n+1}^{n+1} = x_{n+1}^n (1 - x_{n+1}) > 0.$$

En effet, $x_{n+1} \in]0,1[$.

Comme f_n est strictement croissante et que $f_n(x_n) = 0$, on en déduit que $x_n < x_{n+1}$. La suite (x_n) est strictement croissante.

- **4.** La suite $(x_n)_{n\geqslant 2}$ est bornée et croissante donc convergente vers $l\in]0,1].$
- **5.** Si l < 1, alors $\lim_{n \to +\infty} n \ln(x_n) = -\infty$ et donc $\lim_{n \to +\infty} \ln(x_n^n) = -\infty$ et donc $\lim_{n \to +\infty} x_n^n = 0$. Comme pour tout n, $x_n^n + x_n 1 = 0$ et en passant à la limite, l = 1 ce qui est absurde. En conclusion, l'hypothèse l < 1 est absurde et l = 1.
- **6.** On définit ϵ_n par $x_n = l \epsilon_n$. Alors $\epsilon_n = 1 x_n$. Comme $\lim_{n \to +\infty} x_n = 1$, $\lim_{n \to +\infty} \epsilon_n = 0$. Puis :

$$x_n^n + x_n - 1 = 0 \Rightarrow (1 - \epsilon_n)^n - \epsilon_n = 0 \Rightarrow (1 - \epsilon_n)^n = \epsilon_n.$$

On en déduit que $\ln \epsilon_n = n \ln (1 - \epsilon_n)$. Comme ϵ_n tend vers 0 quand n tend vers $+\infty$,

$$\ln(1 - \epsilon_n) \sim -\epsilon n \Rightarrow \ln(\epsilon_n) \sim -n\epsilon_n$$
.

Comme $\lim_{n \to +\infty} \ln \epsilon_n = -\infty$, $\lim_{n \to +\infty} n \epsilon_n = +\infty$.

Exercice 02

- 1. La fonction $u: x \mapsto \frac{2x}{1+x}$ est définie sur $\mathbb{R} \setminus -1$ et comme $u'(x) = \frac{2}{(1+x)^2} > 0$, la fonction u est strictement croissante sur $]-\infty, -1[$ et prend ses valeurs dans $]2, +\infty[$ et sur $]-1, +\infty[$ et prend alors ses valeurs dans $]-\infty, 2[$.
- **2.** Donnons le domaine de définition de la fonction $f: x \mapsto \arcsin\left(\frac{2x}{1+x}\right)$.

Il faut que $\left|\frac{2x}{1+x}\right| \leqslant 1$ et donc $|u(x)| \leqslant 1$. Puis :

$$\frac{2x}{1+x} = -1 \Leftrightarrow x = -\frac{1}{3} \text{ et } \frac{2x}{1+x} = 1 \Leftrightarrow x = 1.$$

D'après l'étude de $\mathbf{1},\,f$ est donc définie sur $D_f=\left[-\frac{1}{3},\,1\right]$.

3. Sur D_f , f est continue et dérivable sur $\left]-\frac{1}{3}, 1\right[$. Alors sur cet intervalle,

$$f'(x) = \frac{u'(x)}{\sqrt{1 - u^2(x)}} = \frac{2}{(1+x)^2} \frac{1}{\sqrt{1 - \frac{4x^2}{(1+x)^2}}} > 0.$$

La fonction f est strictement croissante sur D_f et comme $\arcsin(-1) = -\frac{\pi}{2}$ et $\arcsin(1) = \frac{\pi}{2}$, f est à valeurs dans $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

4. En 0, f(0) = 0 et comme f'(0) = 2, y = 2x est une équation de la tangente à f en (0,0). Déterminons un développement limité à l'ordre 3 au voisinage de 0 de f.

$$f(x) = \arcsin(2x(1-x+x^2) + o(x^3)) = \arcsin(2x - 2x^2 + 2x^3 + o(x^3)).$$

Puis, on sait que $\arcsin t = t + \frac{t^3}{6} + o(t^3)$ au voisinage de t = 0, donc en posant $t = 2x - 2x^2 + 2x^3$,

$$f(x) = 2x - 2x^2 + 2x^3 + \frac{(2x - 2x^2 + 2x^3)^3}{6} + o(x^3) = 2x - 2x^2 + 2x^3 + \frac{8x^3}{6} + o(x^3) = 2x - 2x^2 + \frac{10x^3}{3} + o(x^3).$$

On remarque que la courbe est sous la tangente.

5. Il reste à faire le tracé en n'oubliant pas qu'en x = -1/3 et x = 1, la courbe présente une tangente verticale.

Exercice 03

1. Effectuons un développement limité à l'ordre 1 au voisinage de x=1 de $x\mapsto e^{x^2+x}-e^{2x}$ et de $x\mapsto\cos\left(\frac{\pi}{2}x\right)$.

On pose x = 1 + h ou h = x - 1. On a :

$$e^{x^2+x}-e^{2x}=e^{2+3h+h^2}-e^{2+2h}=e^2\left(e^{3h+h^2}-e^{2h}\right)=e^2\left(1+3h-(1+2h)+o(h)\right)=e^2h+o(h).$$

Et de même,

$$\cos\left(\frac{\pi}{2}x\right) = \cos\left(\frac{\pi}{2}(1+h)\right) = -\sin\left(\frac{\pi}{2}h\right) = -\frac{\pi h}{2} + o(h).$$

2 Déduisons en $\lim_{x \to 1} \frac{e^{x^2 + x} - e^{2x}}{\cos(\frac{\pi}{2}x)}$.

On utilise les DL plus haut

$$\frac{e^{x^2+x}-e^{2x}}{\cos\left(\frac{\pi}{2}x\right)} = \frac{e^2h+o(h)}{-\frac{\pi h}{2}+o(h)} = \frac{e^2+o(1)}{-\frac{\pi}{2}+o(1)}.$$

Et donc:
$$\lim_{x \to 1} \frac{e^{x^2 + x} - e^{2x}}{\cos(\frac{\pi}{2}x)} = -\frac{2e^2}{\pi}.$$