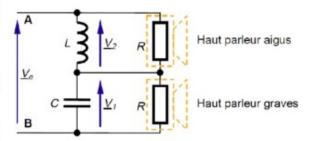
A. Filtrage audio analogique

A.I. Mise en situation et problématique


Lors de la restitution de la musique en qualité haute fidélité, il est important d'utiliser les haut-parleurs dans la bande de fréquence où la réponse est la meilleure.

Il est donc nécessaire de ne fournir que les signaux dans la bande appropriée à l'aide de filtres : signaux basse fréquence pour les boomers, haute fréquence pour les tweeters, par exemple.

La figure ci-contre montre des filtres destinés à équiper une enceinte acoustique 2 voies.

Dans sa bande passante, chaque haut-parleur est assimilé à une résistance R=8 Ω .

L'étude comprend aussi le calcul de la valeur des éléments L et C.

Cahier des charges

Exigence 1 : la puissance du signal issue de l'amplificateur doit être indépendante de la fréquence du signal

Exigence 2 : l'ensemble des fréquences audibles (20 Hz à 20 kHz) doit être restitué dans les haut-parleurs

Exigence 3 : le boomer doit accepter les fréquences inférieures à 1 kHz, le tweeter les fréquences supérieures à 1 kHz

A.2. Calcul de l'impédance

Question 1

Déterminer l'expression de l'impédance complexe Z entre les bornes A et B en fonction de la pulsation ω du signal Ve, de L, R et C.

Question 2

Déterminer la relation entre R, L et C pour que l'impédance Z soit identique à la résistance R quelle que soit la pulsation ω . On pourra poser $X = \left(1 + j\frac{L}{R}\omega\right) = \left(1 + jRC\omega\right)$

Question 3

En déduire l'intérêt que procure cette condition sur la puissance délivrée par l'amplificateur fournissant la tension Ve.

Dans la suite du problème, la condition Z = R est vérifiée.

A.3. Etude du premier filtre

Question 4

Exprimer la fonction de transfert $H_1(j\omega) = \frac{V_1}{V_e}$ et l'écrire sous la forme $H_1(j\omega) = \frac{1}{1+j\frac{\omega}{\omega_0}}$

Exprimer alors la pulsation ω_0 en fonction de R et C

Question 5

Calculer la valeur de C qui permet de respecter l'exigence 3 du cahier des charges.

Question 6

Etudier succinctement, puis tracer les diagrammes de Bode (gain $G_{\rm I}$ et phase $\varphi_{\rm I}$) asymptotiques et réels de ce filtre sur le document page 4.

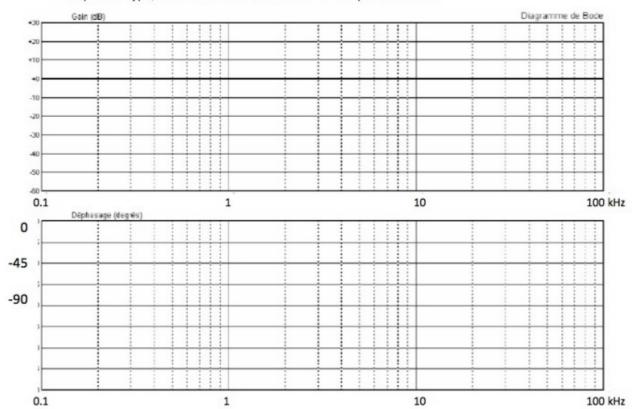
Indiquer son type, et contrôler la cohérence avec le haut-parleur associé

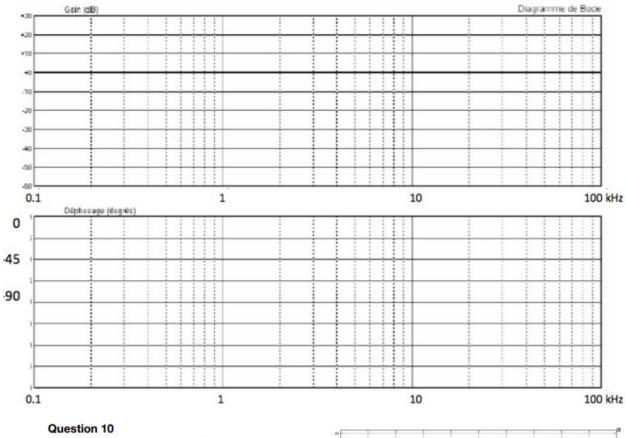
A.4. Etude du second filtre

Question 7

Exprimer la fonction de transfert $H_2(j\omega) = \frac{V_2}{V_e}$

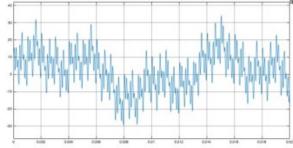
Mettre cette dernière sous forme canonique.

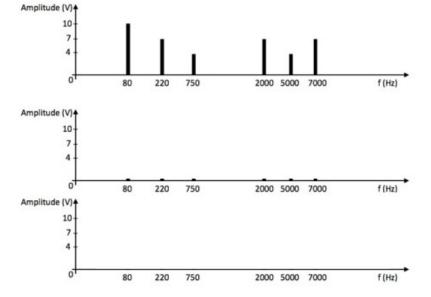

Question 8


Calculer la valeur de l'inductance L qui permet de respecter l'exigence 3 du cahier des charges

Question 9

Etudier succinctement, puis tracer les diagrammes de Bode (gain G_2 et phase φ_2) asymptotiques et réels de ce filtre sur le document page 4.


Indiquer son type, et contrôler la cohérence avec le haut-parleur associé



On considère le signal audio ci-dessous, avec son spectre de Fourier

Tracer le spectre du signal en entrée du boomer et du tweeter

