Devoir libre 04

2TSI. Mathématiques

A rendre le lundi 09 Janvier 2023 au plus tard

Les questions 1 et 2 sont à traiter par tous. Les questions 3 et 4 sont à lire pour tous pour comprendre l'intérêt des racines des polynômes de Tchebychev pour l'interpolation de Lagrange mais sont à développer et à traiter en bonus pour ceux qui en veulent toujours plus. Par contre, la question 5 est à faire par tous et il faudra faire du code Python et me rendre les valeurs des polynômes et les graphes.

1. Soit $n \in \mathbb{N}$, $f \in \mathscr{C}^{n+1}([a,b])$, $(x_0,...,x_n) \in [a,b]^{n+1}$ tous distincts et P_n l'unique polynôme de degré au plus n qui satisfait à $P_n(x_i) = f(x_i)$ pour tout $i \in [0,n]$. On pose :

$$\phi: [a,b] \setminus \{x_0,...,x_n\} \to \mathbb{R}, x \mapsto \frac{f(x) - P_n(x)}{\prod_{i=0}^n (x - x_i)}.$$

On pose aussi pour tout $x \in [a, b] \setminus \{x_0, ..., x_n\}$ fixé,

$$g: [a,b] \to \mathbb{R}, t \mapsto f(t) - P_n(t) - \phi(x) \prod_{i=0}^{n} (t - x_i).$$

- (a) Justifier que g est de classe \mathscr{C}^{n+1} et s'annule aux (n+2) points $x_0,...,x_n,x$ de [a,b].
- (b) On partage [a, b] avec les points $x_0, ..., x_n, x$ qui annulent g. On crée ainsi n+1 sous-intervalles de réunion [a, b]. En appliquant le théorème de Michel Rolle (1652-1719) autant de fois que nécessaire (et en l'expliquant bien sur la copie), démontrer qu'il existe $\zeta \in [a, b]$ tel que

$$g^{(n+1)}(\zeta) = 0.$$

- (c) En déduire : $\forall x \in [a, b] \setminus \{x_0, ..., x_n\}, \ \exists \ \zeta \in [a, b], \ \phi(x) = \frac{f^{(n+1)}(\zeta)}{(n+1)!}.$
- (d) En remarquant : $\forall x \in [a, b] \setminus \{x_0, ..., x_n\}$, il existe $\zeta \in [a, b]$ tel que $\frac{f(x) P_n(x)}{\prod_{i=0}^{n} (x x_i)} = \frac{f^{(n+1)}(\zeta)}{(n+1)!}$,

en déduire l'inégalité :

$$\forall x \in [a, b], |f(x) - P_n(x)| \le \frac{1}{(n+1)!} \prod_{i=0}^{n} (x - x_i) \sup_{x \in [a, b]} \left| f^{(n+1)}(x) \right|.$$

2. Soit $n \in \mathbb{N}$, on appelle polynôme de Tchebychev de degré n la fonction définie par

$$T_n: [-1,1] \to \mathbb{R}, x \mapsto \cos(n \arccos x).$$

- (a) Écrire $\cos(2\theta)$ en fonction de $\cos\theta$ seul et $\cos(3\theta)$ aussi en fonction de $\cos\theta$ seul, calculer T_0 , T_1 , T_2 et T_3 sous forme de polynômes en x.
- (b) Montrer que $\sin(\arccos x) = \sqrt{1-x^2}$. On pose $\alpha = \arccos x$. Montrer que $(\cos(\alpha) + i\sin(\alpha))^n = \left(\left(x+i\sqrt{1-x^2}\right)^n \text{ pour tout } n \in \mathbb{N}$. En remarquant que $T_n(x) = \Re\left(e^{in\alpha}\right)$ montrer par la formule du binôme de'Isaac Newton (1643-1727) que T_n est un polynôme de degré exactement n.
- (c) Montrer pour tout entier n et tout réel θ :

$$\cos((n+2)\theta) + \cos(n\theta) = 2\cos((n+1)\theta)\cos\theta.$$

Montrer alors que pour tout $n \in \mathbb{N}$,

$$T_{n+2}(x) = 2x T_{n+1}(x) - T_n(x).$$

Retrouver le fait que T_n est un polynôme de degré n dont on donnera le coefficient dominant.

- (d) Ici $n \in \mathbb{N}^*$, en remarquant que a est une racine de T_n (i.e $T_n(a) = 0$) est équivalent à $\cos(n\arccos a) = 0$, montrer que T_n admet exactement n racines simples : $x_k = \cos\left(\frac{2k+1}{2n}\pi\right)$ pour tout k entier de [0, n-1].
- (e) Ici $n \in \mathbb{N}^*$, expliquer pourquoi $|T_n(x)| \leq 1$ pour tout $x \in [-1, 1]$. Montrer que pour tout $x \in]-1, 1[, T'_n(x) = \frac{n}{\sqrt{1-x^2}}\sin(n\arccos x)$.

Trouver alors les valeurs qui annulent $T'_n(x)$.

Calculer $T_n(\pm 1)$ et en remarquant que $\sup_{x \in [-1,1]} |T_n(x)| = 1$, expliquer pourquoi ± 1 sont des extrema de T_n .

Montrer alors que pour tout $k \in [0, n]$, T_n admet exactement n + 1 extrema globaux :

$$z_k = \cos\left(\frac{k\pi}{n}\right)$$
 et que $T_n(z_k) = (-1)^k$.

- 3. Dans cette question, [a,b] = [-1,1]. L'objectif est de choisir les points $x_0,...,x_n$ utiles pour l'interpolation de Lagrange de telle manière que $\sup_{x \in [-1,1]} \left| \prod_{i=0}^n (x-x_i) \right| \leqslant \sup_{x \in [-1,1]} |Q(x)|$ pour tout polynôme Q normalisé de degré n+1. Nous allons montrer que les points $x_0,...,x_n$ qui vérifient cette propriété sont les racines du polynôme de Tchebychev T_{n+1} . Posons alors $\frac{1}{2^n}T_{n+1} = \overline{T}_{n+1}$ (et donc \overline{T}_{n+1} est normalisé), considérons $Q \in \mathbb{R}_{n+1}[X]$ normalisé quelconque et posons : $\forall j \in [0,n], x_j = \cos\left(\frac{2j+1}{2n+2}\pi\right)$ et $\forall k \in [0,n+1], z_k = \cos\left(\frac{k\pi}{n+1}\right)$.
 - (a) Montrer que $\sup_{x \in [-1,1]} \left| \prod_{j=0}^{n} (x x_j) \right| = \frac{1}{2^n}$.
 - (b) Montrer deg $\left(Q \overline{T}_{n+1}\right) \leqslant n$ et $\forall k \in [0, n+1], \left(Q \overline{T}_{n+1}\right)(z_k) = Q(z_k) \frac{(-1)^k}{2^n}$.
 - (c) Supposons que $\frac{1}{2^n} > \sup_{x \in [-1,1]} |Q(x)|$ et $k \in [0, n+1]$.

Montrer alors que si k est pair, $\left(Q - \overline{T}_{n+1}\right)(z_k) < 0$ et si k est impair, $\left(Q - \overline{T}_{n+1}\right)(z_k) > 0$. En déduire qu'il y a (n+1) changements de signe pour $\left(Q - \overline{T}_{n+1}\right)$.

Établir alors une contradiction. Conclure.

- 4. Montrer que si $x = \frac{a+b}{2} + \frac{a-b}{2}v$, on a l'équivalence : $v \in [-1,1] \Leftrightarrow x \in [a,b]$. En déduire les réels $x_0, ..., x_n$ de $([a,b])^n$ qui vérifient $\sup_{x \in [a,b]} \left| \prod_{i=0}^n (x-x_i) \right| \leqslant \sup_{x \in [a,b]} |Q(x)|$ pour tout polynôme Q normalisé de degré n+1.
- 5. Application numérique. On suppose ici $f: x \mapsto \frac{1}{2+7x^2}$ et [a,b] = [-1,1].
 - (a) Déterminer le polynôme d'interpolation de Lagrange P9 ayant pour support X=np.linspace(-1,1,9) et f(X) puis le polynôme d'interpolation de Lagrange NewP9 ayant pour support les 9 racines de T₉ et leurs images par f.

Indication: on définit d'abord f par def f(x) : return 1/(2+7*x**2).

Puis on s'aide de la syntaxe de l'exemple : utilisation de interpolate.lagrange page 2 sur 3 du TD Python 01.

- En particulier, XX = [np.cos((2*k+1)*np.pi/18)] for k in range(0,9)] donne la liste des racines de T_9 .
- (b) Faire deux dessins où apparaissent les graphes de f et de P9 d'une part puis ceux de f et de NewP9 d'autre part, sur [-1,1]. On pourra différencier les deux graphes avec l'option linestyle affectée à l'un des deux graphes. Allez voir dans le TD 01 page 3 sur 3 la syntaxe méthode 0.3