Devoir surveillé 03

CORRECTION

Exercice 01

Soit
$$I = \int_0^{+\infty} \frac{e^{-t} - e^{-2t}}{t} dt$$
.

1. Calculons $\lim_{t\to 0} \frac{e^{-t} - e^{-2t}}{t}$, en faisant un développement limité de e^{-t} et e^{-2t} en 0.

On a : $e^{-t} = 1 - t + o(t)$ et $e^{-2t} = 1 - 2t + o(t)$. Il reste , au V(0),

$$\frac{e^{-t} - e^{-2t}}{t} = \frac{1 - t - 1 + 2t + o(t)}{t} = 1 + o(1).$$

Ainsi $\lim_{t\to 0} \frac{e^{-t} - e^{-2t}}{t} = 1.$

2. Justifions que quand t tend vers $+\infty$, $\frac{e^{-t}}{t} = o(e^{-t})$.

On remarque que $\frac{e^{-t}}{t} = \frac{e^t e^{-t}}{t} = \frac{1}{t}$ qui tend vers 0. En conclusion, $\frac{e^{-t}}{t} = o(e^{-t})$.

Justifions que quand t tend vers $+\infty$, $\frac{e^{-2t}}{t} = o(e^{-t})$

On remarque que $\frac{e^{-2t}}{t} = \frac{e^t e^{-2t}}{t} = \frac{e^t e^{-2t}}{t} = \frac{e^{-t}}{t}$ qui tend vers 0. En conclusion, $\frac{e^{-2t}}{t} = o(e^{-t})$.

- 3. Montrons alors la convergence de I
- La fonction $f: t \mapsto \frac{e^{-t} e^{-2t}}{t}$ est continue sur $]0, +\infty[$.
- En 0, comme $\lim_{t\to 0} f(t) = 1$, on en déduit que f est prolongeable par continuité en 0 donc il y a convergence en 0.
- Comme quand t tend vers $+\infty$, $\frac{e^{-t}}{t} = o(e^{-t})$ et $\frac{e^{-2t}}{t} = o(e^{-t})$, alors : $f(t) = o(e^{-t})$. Et comme $t \mapsto e^{-t}$ est intégrable sur $[1, +\infty[$, I est bien convergente en $+\infty$.
- 4. On suppose $\varepsilon>0.$ On commence à appliquer la linárité de l'intégrale.

$$\int_{\varepsilon}^{+\infty} \frac{e^{-t} - e^{-2t}}{t} dt = \int_{\varepsilon}^{+\infty} \frac{e^{-t}}{t} dt - \int_{\varepsilon}^{+\infty} \frac{e^{-2t}}{t} dt.$$

C'est légitime car les deux intégrales $\int_{\varepsilon}^{+\infty} \frac{e^{-t}}{t} dt$ et $\int_{\varepsilon}^{+\infty} \frac{e^{-2t}}{t} dt$ convergent. Pourquoi d'ailleurs?

Puis, en effectuant le changement de variable x=2t dans $\int_{\varepsilon}^{+\infty} \frac{e^{-2t}}{t} dt$:

$$\int_{\varepsilon}^{+\infty} \frac{e^{-2t}}{t} dt = \int_{2\varepsilon}^{+\infty} \frac{e^{-x}}{x/2} dx/2 = \int_{2\varepsilon}^{+\infty} \frac{e^{-x}}{x} dx.$$

On peut écrire cette dernière intégrale $\int_{2\varepsilon}^{+\infty} \frac{e^{-t}}{t} dt$ car t et x sont des variables dites muettes.

Donc elles n'ont le droit de ne rien dire.

On écrit alors :

$$\int_{\varepsilon}^{+\infty} \frac{e^{-t} - e^{-2t}}{t} dt = \int_{\varepsilon}^{+\infty} \frac{e^{-t}}{t} dt - \int_{2\varepsilon}^{+\infty} \frac{e^{-t}}{t} dt.$$

Or Michel de Chasles s'applique sur les intégrales généralisées.

$$\int_{\varepsilon}^{+\infty} \frac{e^{-t}}{t} dt = \int_{2\varepsilon}^{+\infty} \frac{e^{-t}}{t} dt + \int_{\varepsilon}^{2\varepsilon} \frac{e^{-t}}{t} dt.$$

Et donc:

$$I = \int_{2\varepsilon}^{+\infty} \frac{e^{-t}}{t} dt + \int_{\varepsilon}^{2\varepsilon} \frac{e^{-t}}{t} dt - \int_{2\varepsilon}^{+\infty} \frac{e^{-t}}{t} dt.$$

On a bien $I = \int_{-t}^{2\varepsilon} \frac{e^{-t}}{t} dt$.

5. En remarquant que $e^{-2\varepsilon} \leqslant e^{-t} \leqslant e^{-\varepsilon}$ pour $t \in [\varepsilon, 2\varepsilon]$, trouvons $\lim_{\varepsilon \to 0} \int_{-\varepsilon}^{2\varepsilon} \frac{e^{-t}}{t} dt$.

On écrit:

$$\int_{0}^{2\varepsilon} \frac{e^{-2\varepsilon}}{t} dt \leqslant \int_{0}^{2\varepsilon} \frac{e^{-t}}{t} dt \leqslant \int_{0}^{2\varepsilon} \frac{e^{-\varepsilon}}{t} dt.$$

Or
$$\int_{\varepsilon}^{2\varepsilon} \frac{1}{t} dt = \ln(2\varepsilon) - \ln(\varepsilon) = \ln 2$$
. Donc:

$$e^{-2\varepsilon} \ln 2 \le I \le e^{-\varepsilon} \ln 2$$
.

Un appel à la Gendarmerie fait tendre I vers $\ln 2$.

Exercice 02

- 1. On a pour tout $a, b \in \mathbb{R}$ et tout $n \in \mathbb{N}$, $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.
- On applique la formule précédente avec $a=X,\,b=1,\,n=k$ et on obtient $(X+1)^k=\sum_{i=0}^k \binom{k}{i}X^i$. En particulier.

$$\sum_{i=0}^{k} \binom{k}{i} = 2^k.$$

3. On peut récurrer.

Montrons par récurrence forte que pour tout $k \in \mathbb{N}^*$ la propriété H(k): « si P est un polynôme de degré k, alors $\phi(P)$ est un polynôme de degré $k-1 \gg$.

Initialisation: k = 1

Soit P un polynôme de degré 1, que l'on écrit $P(X) = a_1X + a_0$ avec $a_1 \in \mathbb{R}^*$ et $a_0 \in \mathbb{R}$. Alors $\phi(P)(X) = a_1$ i.e. $\deg(\phi(P)) = 0$ donc la propriété est vraie au rang 0.

<u>Hérédité</u>: soit $k \in \mathbb{N}^*$, supposons la propriété vraie pour tout $1 \le i \le k$. Montrons H(k+1). Soit P un polynôme de degré k+1, que l'on écrit $P(X) = a_{k+1}X^{k+1} + Q(X)$ avec $a_{k+1} \in \mathbb{R}^*$ et $Q \in \mathbb{R}_k[X]$. Alors on a par linéarité de ϕ

$$\phi(P)(X) = a_{k+1}\phi(X^k) + \phi(Q)$$

$$= a_{k+1} \sum_{i=0}^{k-1} {k \choose i} X^k + \phi(Q)$$

avec $\deg(\phi(Q)) \leqslant k-1$ par hypothèse de récurrence et $\deg\left(a_{k+1}\sum_{i=0}^{k-1} \binom{k}{i} X^k\right) = k$. Ainsi $\deg(\phi(P)) = k$ k et la propriété est vraie au rang k+1.

<u>Conclusion</u>: par principe de récurrence la propriété est vraie pour tout $k \in \mathbb{N}^*$.

4. Déjà pour tout $P, Q \in \mathbb{R}_n[X]$ et tout $\lambda \in \mathbb{R}$ on a

$$\begin{split} \phi(\lambda P+Q)(X) &= (\lambda P+Q)(X+1) - (\lambda P+Q)(X) \\ &= \lambda P(X+1) - \lambda P(X) + Q(X+1) - Q(X) \\ &= \lambda \phi(P)(X) - \phi(Q)(X) \end{split}$$

Puis, pour tout $P \in \mathbb{R}_n[X]$, on a $\phi(P)(X) = P(X+1) - P(X)$ ainsi

$$deg(\phi(P)(X)) \leq max(deg(P(X+1)), deg(P(X)))$$

i.e. $\operatorname{Im}(\Phi) \subset \mathbb{R}_n[X]$.

Ainsi ϕ est bien un endomorphisme de $\mathbb{R}_n[X]$.

5-a $\dim \mathbb{R}_3[X] = 4$ et (P_0, P_1, P_2, P_3) est une famille de polynômes de degré échelonné donc forme une famille libre et est donc une base de $\mathbb{R}_3[X]$.

5-b Par calcul direct, on a

$$\phi(P_0)(X) = 1 - 1 = 0$$

$$\phi(P_1)(X) = X + 1 - X = 1$$

$$\phi(P_2)(X) = (X + 1)^2 - X^2 = 2X + 1$$

$$\phi(P_3)(X) = (X + 1)^3 - X^3 = 3X^2 + 3X + 1.$$

5-c On a d'après la question précédente

$$\phi^{2}(P_{2})(X) = \phi(\phi(P_{2}))(X) = (2(X+1)+1) - (2X+1) = 2$$

$$\phi^{3}(P_{2})(X) = \phi(\phi^{2}(P_{2}))(X) = 0$$

5-d Rapidement, on voit que la matrice de ϕ dans la base (P_0, P_1, P_2, P_3) est

$$A = \left(\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

Puis:

On retrouve dans C_3 de A^2 la valeur 2 et dans C_3 de A^3 la valeur 0.

- **6.** Immédiatement, $\chi_A(x) = x^4$. La seule valeur propre est 0. Si A est diagonalisable, A est semblable à ma matrice Diag (0,0,0,0) soit 0. Et donc $A = P0P^{-1} = 0$. Impossible. Donc A n'est pas diagonalisable.
- 7. D'après la question Q3, si P est de degré $k \in \mathbb{N}^*$ alors $\phi(P)$ est degré k-1 donc non nul ainsi $\ker(\phi) \subset \mathbb{R}_0[X]$. Réciproquement, si $P \in \mathbb{R}_0[X]$, on a directement $\phi(P)(X) = 0$. Ainsi

$$\ker(\phi) = \mathbb{R}_0[X].$$

8. D'après la question \mathbf{Q} 3, si P est de degré $k \in \mathbb{N}^*$ alors $\phi(P)$ est degré k-1, d'où par linéarité de ϕ

$$\operatorname{Im}(\phi) = \phi(\mathbb{R}_n[X]) \supset \mathbb{R}_{n-1}[X].$$

. D'après le théorème du rang, comme le noyau est de dimension 1, $\operatorname{Im}(\phi)$ est de dimension $\dim(\mathbb{R}_n[X]) - 1 = n = \dim(\mathbb{R}_{n-1}[X])$. On a donc : $\operatorname{Im}(\phi) = \mathbb{R}_{n-1}[X]$.

9. On a

$$\sum_{i=0}^{n} P(i) = \sum_{i=0}^{n} \phi(Q)(i)$$
$$= \sum_{i=0}^{n} Q(i+1) - Q(i)$$
$$= Q(n+1) - Q(0)$$

car on reconnaît une somme téléscopique.

Problème

On note \mathbb{R}_+ l'ensemble des nombres réels positifs et \mathbb{R}_+^* l'ensemble des nombres réels strictement positifs. Pour tout $t \in \mathbb{R}_+$, on considère la fonction ϕ_t définie sur \mathbb{R} de la manière suivante :

$$\forall x \in \mathbb{R}, \ \phi_t(x) = \frac{e^{-t}}{1 + x^2 t^2}$$

De plus, on considère la fonction réelle f d $\tilde{\mathbf{A}}$ $\hat{\mathbf{C}}$ finie par :

$$f(x) = \int_0^{+\infty} \phi_t(x) \, dt.$$

Partie A

Cette partie est le calcul de la somme de la série de Riemann $\sum_{n\geq 1} \frac{1}{n^2}$.

1) On veut montrer que pour tout $k \in \mathbb{N}^*$, $\int_0^{\pi} \left(\frac{t^2}{2\pi} - t\right) \cos(kt) dt = \frac{1}{k^2}$.

On va faire de manière classique deux intégrations par parties successives, en remarquant á chaque fois que les fonctions considérées sont bien de classe C^1 sur $[0,\pi]$.

La fonction $t \mapsto \frac{t^2}{2\pi} - t$ et la fonction $t \mapsto \cos(kt)$ sont bien de classe \mathcal{C}^1 sur $[0, \pi]$.

$$\int_0^{\pi} \left(\frac{t^2}{2\pi} - t\right) \cos(kt) dt = -\int_0^{\pi} \left(\frac{t}{\pi} - 1\right) \frac{\sin(kt)}{k} dt + \left[\left(\frac{t^2}{2\pi} - t\right) \frac{\sin(kt)}{k}\right]_0^{\pi},$$

par une première intégration par parties. Or :

$$\left[\left(\frac{t^2}{2\pi} - t \right) \frac{\sin(kt)}{k} \right]_0^{\pi} = 0 - 0 = 0.$$

Il reste:

$$\int_0^{\pi} \left(\frac{t^2}{2\pi} - t\right) \cos(kt) dt = -\int_0^{\pi} \left(\frac{t}{\pi} - 1\right) \frac{\sin(kt)}{k} dt.$$

On effectue une deuxième intégration par parties car $t \mapsto \frac{t}{\pi} - 1$ et $t \mapsto \frac{\sin(kt)}{k}$ sont bien de classe \mathcal{C}^1 sur $[0, \pi]$:

$$-\int_0^{\pi} \left(\frac{t}{\pi} - 1\right) \frac{\sin(kt)}{k} dt = \int_0^{\pi} \frac{1}{\pi} \frac{-\cos(kt)}{k^2} dt + \left[\left(-\frac{t}{\pi} + 1 \right) \frac{-\cos(kt)}{k^2} \right]_0^{\pi}.$$

Or:

$$\left[\left(-\frac{t}{\pi} + 1 \right) \frac{-\cos(kt)}{k^2} \right]_0^{\pi} = 0 - \left(-\frac{1}{k^2} \right) = \frac{1}{k^2}.$$

Il reste:

$$\int_0^{\pi} \left(\frac{t^2}{2\pi} - t \right) \cos(kt) \, dt = -\int_0^{\pi} \frac{1}{\pi} \frac{\cos(kt)}{k^2} \, dt + \frac{1}{k^2}.$$

Enfin:

$$\int_0^{\pi} \frac{1}{\pi} \frac{\cos(kt)}{k^2} dt = \left[-\frac{1}{\pi k^2} \frac{\sin(kt)}{k} \right]_0^{\pi} = 0 - 0 = 0.$$

D'où:

$$\forall k \in \mathbb{N}^{\star}, \int_{0}^{\pi} \left(\frac{t^{2}}{2\pi} - t \right) \cos(kt) \, dt = \frac{1}{k^{2}}.$$

2)a) Soit
$$x \in]0,\pi]$$
. Montrons: $\forall n \in \mathbb{N}^*$, $e^{ix} \frac{1 - e^{inx}}{1 - e^{ix}} = \frac{\sin\left(\frac{nx}{2}\right)}{\sin\left(\frac{x}{2}\right)} e^{i\frac{(n+1)x}{2}}$.

Pour cela, on va utiliser les formules d'Euler :

$$\sin\left(\frac{nx}{2}\right) = \frac{1}{2i} \left(e^{\frac{inx}{2}} - e^{-\frac{inx}{2}} \right) \text{ et } \sin\left(\frac{x}{2}\right) = \frac{1}{2i} \left(e^{\frac{ix}{2}} - e^{-\frac{ix}{2}} \right).$$

On écrit pour tout $n \in \mathbb{N}^*$,

$$e^{ix}\frac{1-e^{inx}}{1-e^{ix}}=e^{ix}\frac{e^{\frac{inx}{2}}}{e^{\frac{ix}{2}}}\frac{e^{-\frac{inx}{2}}-e^{\frac{inx}{2}}}{e^{-\frac{ix}{2}}-e^{\frac{ix}{2}}}=e^{i\frac{(n+1)x}{2}}\frac{-2i\sin\left(\frac{nx}{2}\right)}{-2i\sin\left(\frac{x}{2}\right)},$$

ce qui se met sous la forme simplifiée :

$$\forall n \in \mathbb{N}^{\star}, \ e^{ix} \frac{1 - e^{inx}}{1 - e^{ix}} = \frac{\sin\left(\frac{nx}{2}\right)}{\sin\left(\frac{x}{2}\right)} e^{i\frac{(n+1)x}{2}}.$$

2)b) Supposons encore $n \in \mathbb{N}^*$ et $x \in]0, \pi[$. On a :

$$\sum_{k=1}^{n} e^{ikx} = e^{ix} \frac{1 - e^{inx}}{1 - e^{ix}},$$

en utilisant la formule qui donne la somme partielle d'une suite géométrique. Il reste à récupérer la partie réelle de chaque membre de l'égalité précédente.

$$\sum_{k=1}^{n} \operatorname{Re} \left(e^{ikx} \right) = \operatorname{Re} \left(e^{ix} \frac{1 - e^{inx}}{1 - e^{ix}} \right),$$

c'est-à-dire :

$$\sum_{k=1}^{n} \cos(kx) = \operatorname{Re}\left(e^{ix} \frac{1 - e^{inx}}{1 - e^{ix}}\right).$$

Il reste à arranger le second membre de la dernière égalité. On utilise 2)a):

$$\operatorname{Re}\left(e^{ix}\frac{1-e^{inx}}{1-e^{ix}}\right) = \operatorname{Re}\left(\frac{\sin\left(\frac{nx}{2}\right)}{\sin\left(\frac{x}{2}\right)}e^{i\frac{(n+1)x}{2}}\right) = \frac{\sin\left(\frac{nx}{2}\right)\cos\left(\frac{(n+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)}$$

car Re $\left(e^{i\frac{(n+1)x}{2}}\right) = \cos\left(\frac{(n+1)x}{2}\right)$. On en déduit bien ce que l'on veut :

$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n \cos(kx) = \frac{\sin\left(\frac{nx}{2}\right)\cos\left(\frac{(n+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)}.$$

3) Soit Ψ une fonction réelle de classe \mathcal{C}^1 sur $[0,\pi]$. On procède à une intégration par parties et l'on écrit :

$$\int_0^\pi \Psi(x)\sin(mx)\,dx = -\int_0^\pi \Psi'(x)\left[\frac{-\cos(mx)}{m}\right]\,dx + \left[\Psi(x)\frac{-\cos(mx)}{m}\right]_0^\pi.$$

Cela donne:

$$\int_0^{\pi} \Psi(x) \sin(mx) \, dx = \frac{1}{m} \int_0^{\pi} \Psi'(x) \cos(mx) \, dx + \frac{1}{m} \left[-\Psi(\pi)(-1)^m + \Psi(0) \right].$$

On remarque que $\lim_{m\to+\infty}\frac{1}{m}\left[-\Psi(\pi)(-1)^m+\Psi(0)\right]=0$ car $-\Psi(\pi)(-1)^m+\Psi(0)$ est borné quand m varie. Puis :

$$\left| \frac{1}{m} \int_0^{\pi} \Psi'(x) \cos(mx) \, dx \right| \leqslant \frac{1}{m} \int_0^{\pi} |\Psi'(x) \cos(mx)| \, dx.$$

Or Ψ' étant continue sur $[0, \pi]$, elle est bornée et il existe $M \in \mathbb{R}_+$, tel que pour tout $x \in [0, \pi]$, $|\Psi'(x)| \leq M$ et donc pour tout $x \in [0, \pi]$, $|\Psi'(x) \cos(mx)| \leq M$.

On écrit :

$$\left| \frac{1}{m} \int_0^{\pi} \Psi'(x) \cos(mx) \, dx \right| \leqslant \frac{1}{m} \int_0^{\pi} M \, dx = \frac{M\pi}{m},$$

et cette dernière quantité tend vers 0 quand m tend vers $+\infty$.

Donc: $\lim_{m \to +\infty} \left| \frac{1}{m} \int_0^{\pi} \Psi'(x) \cos(mx) dx \right| = 0$ et on peut conclure.

$$\lim_{m \to +\infty} \int_0^{\pi} \Psi(x) \sin(mx) \, dx = 0.$$

4) Soit
$$g$$
 définie sur $[0, \pi]$ par : $x \mapsto \begin{cases} \frac{\frac{x^2}{2\pi} - x}{2\sin\left(\frac{x}{2}\right)} & \text{si} \quad x \in]0, \pi] \\ -1 & \text{si} \quad x = 0 \end{cases}$

g est clairement de classe \mathcal{C}^1 sur $]0,\pi]$ par rapport de fonctions de classe \mathcal{C}^1 sur $]0,\pi]$, le dénominateur ne s'annulant pas.

Il reste à montrer que g est de classe \mathcal{C}^1 en 0. Pour cela, on va utiliser le théorème de raccordement. Pour montrer que g est de classe \mathcal{C}^1 sur $[0,\pi]$, il suffit de montrer que g est continue sur $[0,\pi]$, de classe \mathcal{C}^1 sur $[0,\pi]$ (ce qui est le cas) et que $\lim_{x\to 0} g'(x)$ existe (et sa valeur est alors celle de la dérivée de g en 0.

Commencons donc par montrer la continuité de g en 0.

On écrit, pour tout $x \in]0, \pi]$,

$$g(x) = \frac{\frac{x^2}{2\pi} - x}{2\sin\left(\frac{x}{2}\right)}.$$

Effectuons un développement limité de sin à l'ordre 1 au voisinage de 0^+ :

$$g(x) = \frac{\frac{x^2}{2\pi} - x}{2\left(\frac{x}{2} + o(x)\right)} = \frac{\frac{x}{2\pi} - 1}{2\left(\frac{1}{2} + o(1)\right)},$$

quantité qui tend vers -1 quand x tend vers 0. Donc $\lim_{x\to 0} g(x) = g(0) = -1$ et g est bien continue en 0 et donc sur $[0,\pi]$ (car rapport de deux fonctions continues sur $]0,\pi]$ dont le dénominateur ne s'annule pas). Montrons maintenant que $\lim_{x\to 0} g'(x)$ existe.

On écrit, pour tout $x \in]0, \pi]$,

$$g'(x) = \frac{\left(\frac{x}{\pi} - 1\right)\left(2\sin\left(\frac{x}{2}\right)\right) - \left(\frac{x^2}{2\pi} - x\right) \times \frac{2}{2}\cos\left(\frac{x}{2}\right)}{4\sin^2\left(\frac{x}{2}\right)}.$$

On utilise un développement limité d'ordre 2 de sin et d'ordre 1 de cos, ce qui donne

$$g'(x) = \frac{\left(\frac{x}{\pi} - 1\right)\left(2\left(\frac{x}{2} + o(x^2)\right)\right) - \left(\frac{x^2}{2\pi} - x\right)(1 + o(x))}{4\left(\frac{x^2}{2} + o(x^2)\right)} = \frac{\frac{x^2}{\pi} - x + o(x^2) - \frac{x^2}{2\pi} + x}{x^2 + o(x^2)}.$$

Il reste :
$$g'(x) = \frac{\frac{x^2}{2\pi} + o(x^2)}{x^2 + o(x^2)} = \frac{\frac{1}{2\pi} + o(1)}{1 + o(1)} \Rightarrow \lim_{x \to 0} g'(x) = \frac{1}{2\pi}.$$

5) Montrons :

$$2\sin\left(\frac{nx}{2}\right)\cos\left(\frac{(n+1)x}{2}\right) = \sin\left(\frac{(2n+1)x}{2}\right) + \sin\left(\frac{-x}{2}\right).$$

La méthode la plus rapide est de demander de l'aide à Leonhard (s'il le veut bien). On écrit :

$$2\sin\left(\frac{nx}{2}\right)\cos\left(\frac{(n+1)x}{2}\right) = 2\left(\frac{e^{\frac{inx}{2}} - e^{-\frac{inx}{2}}}{2i}\right) \left(\frac{e^{\frac{i(n+1)x}{2}} + e^{-\frac{i(n+1)x}{2}}}{2}\right).$$

On développe et :

$$2\sin\left(\frac{nx}{2}\right)\cos\left(\frac{(n+1)x}{2}\right) = \frac{1}{2i}\left(e^{i\frac{(2n+1)}{2}x} + e^{-i\frac{x}{2}} - e^{i\frac{x}{2}} - e^{-i\frac{(2n+1)}{2}x}\right).$$

C'est bien $\sin\left(\frac{(2n+1)x}{2}\right) - \sin\left(\frac{x}{2}\right)$

6. On calcule :
$$\int_0^{\pi} \left(\frac{t^2}{4\pi} - \frac{t}{2} \right) dt = \left[\frac{t^3}{12\pi} - \frac{t^2}{4} \right]_0^{\pi} = -\frac{\pi^2}{6}.$$

7. Déterminons $\lim_{n\to+\infty}\sum_{k=1}^n\frac{1}{k^2}$. En utilisant 1), on a :

$$\sum_{k=1}^{n} \frac{1}{k^2} = \int_0^{\pi} \left(\frac{t^2}{2\pi} - t \right) \sum_{k=1}^{n} \cos(kt) dt,$$

puis cette égalité devient (en utilisant 2),

$$\sum_{k=1}^{n} \frac{1}{k^2} = \int_0^{\pi} \left(\frac{t^2}{2\pi} - t\right) \frac{\sin\left(\frac{nt}{2}\right)\cos\left(\frac{(n+1)t}{2}\right)}{\sin\left(\frac{x}{2}\right)} dt = \int_0^{\pi} \left(\frac{t^2}{2\pi} - t\right) \frac{2\sin\left(\frac{nt}{2}\right)\cos\left(\frac{(n+1)t}{2}\right)}{2\sin\left(\frac{t}{2}\right)} dt.$$

Il reste \tilde{A} utiliser la formule trigonométrique classique (rappelée en Q5) :

$$2\sin\left(\frac{nx}{2}\right)\cos\left(\frac{(n+1)x}{2}\right) = \sin\left(\frac{(2n+1)x}{2}\right) + \sin\left(\frac{-x}{2}\right).$$

Ainsi:

$$\sum_{k=1}^{n} \frac{1}{k^2} = \int_0^{\pi} \left(\frac{t^2}{2\pi} - t\right) \frac{\sin\left(\frac{(2n+1)t}{2}\right) + \sin\left(\frac{-t}{2}\right)}{2\sin\left(\frac{t}{2}\right)} dt.$$

8. Cela donne, en usant de la définition de la fonction g,

(1)
$$\sum_{k=1}^{n} \frac{1}{k^2} = \int_0^{\pi} g(t) \sin\left(\frac{(2n+1)t}{2}\right) dt - \int_0^{\pi} \left(\frac{t^2}{4\pi} - \frac{t}{2}\right) dt.$$

Ainsi (1) devient:

(2)
$$\sum_{k=1}^{n} \frac{1}{k^2} = \int_0^{\pi} g(x) \sin\left(\frac{(2n+1)x}{2}\right) dx + \frac{\pi^2}{6}.$$

Puis comme g est de classe \mathcal{C}^1 sur $[0,\pi]$, on peut appliquer le résultat de la question 3) :

$$\lim_{n \to +\infty} \int_0^{\pi} g(x) \sin\left(\frac{(2n+1)x}{2}\right) dx = 0.$$

Il reste à faire tendre n vers $+\infty$ dans (2) et :

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}.$$

Partie B

1) Pour x fixé in \mathbb{R} , $\phi_t(x) = O(e^{-t})$ et comme $t \mapsto e^{-t}$ est intégrable sur $[0, +\infty[$, f existe pour tout $x \in \mathbb{R}$. On peut conclure :

Le domaine de définition de f est \mathbb{R} .

Comme pour tout $x \in \mathbb{R}$, f(-x) = f(x), f est paire.

- **2)a)** On désire étudier la continuité de f.
- Si t=0, $\Psi_t(x)=1$ pour tout x et cette fonction est dérivable sur \mathbb{R}_+ .
- Si $t>0,\,\phi_t$ est dérivable par rapport à x par rapport de fonctions dérivables par rapport à x et :

$$\forall t \in \mathbb{R}_+, \, \forall x \in \mathbb{R}_+, \, \phi_t'(x) = \frac{-e^{-t}2xt^2}{(1+x^2t^2)^2}$$

Preuve de la propriété admise : pour tout $t \in \mathbb{R}_+$, pour tout $x \in \mathbb{R}_+$,

$$|\phi_t'(x)| \leqslant te^{-t} \Leftrightarrow \left| \frac{-e^{-t}2xt^2}{(1+x^2t^2)^2} \right| \leqslant te^{-t},$$

c'est-à-dire

$$\frac{e^{-t}2xt^2}{(1+x^2t^2)^2}\leqslant te^{-t} \Leftrightarrow \frac{2xt}{(1+x^2t^2)^2}\leqslant 1 \Leftrightarrow 2xt\leqslant (1+x^2t^2)^2.$$

Si l'on pose u=xt, il s'agit d'étudier le signe de $g(u)=(1+u^2)^2-2u$. Si $g(u)\geqslant 0$ pour $u\geqslant 0$ alors l'inégalité à montrer est vraie.

Donc: $g(u) = (1 + u^2)^2 - 2u = u^4 + 2u^2 - 2u + 1$.

On a: $g'(u) = 4u^3 + 4u - 2$ et $g''(u) = 12u^2 + 4$.

Donc g''(u) est toujours positif et donc g'(u) est croissante. Comme g'(0) = -2, il existe une valeur $\alpha > 0$ et une seule qui annule g'. Ainsi, g est décroissante sur $[0, \alpha]$ avec g(0) = 1 et g est croissante sur $[\alpha, +\infty[$. Il reste à d $\tilde{\mathbb{A}}$ ©terminer le signe de $g(\alpha)$. On a :

$$g'(\alpha) = 0 \Leftrightarrow 2\alpha^3 = -2\alpha + 1.$$

 $\mathrm{Donc}: g(\alpha) = \alpha^4 + 2\alpha^2 - 2\alpha + 1 = \alpha^4 + 2\alpha^2 + 2\alpha^3 > 0.$

La fonction g est bien à valeurs positives sur \mathbb{R}_+ et on a l'inégalité demandée :

$$\forall t \in \mathbb{R}_+, \forall x \in \mathbb{R}_+, |\phi_t'(x)| \leq te^{-t}.$$

2)b) On peut en déduire : $\forall (t,x) \in (\mathbb{R}_+)^2$, $\forall h \in \mathbb{R}^*$ avec $x+h \geq 0$,

$$\left| \frac{e^{-t}}{1 + (x+h)^2 t^2} - \frac{e^{-t}}{1 + x^2 t^2} \right| \leqslant |h| t e^{-t}.$$

En effet, l'égalité des accroissements finis (le TAF pour les intimes) peut être appliqué :

$$\exists c \in]x, x + h[, \phi_t(x + h) - \phi_t(x) = h\phi'_t(c).$$

Donc : $|\phi_t(x+h) - \phi_t(x)| \le |h|te^{-t}$. C'est ce que l'on voulait.

2) c) Pour tout x_0 fixé dans \mathbb{R}_+ ,

$$f(x_0 + h) - f(x_0) = \int_0^{+\infty} \phi_t(x_0 + h) dt - \int_0^{+\infty} \phi_t(x_0) dt,$$

c'est-à-dire :

$$f(x_0 + h) - f(x_0) = \int_0^{+\infty} \left[\phi_t(x_0 + h) - \phi_t(x_0) \right] dt,$$

ce qui entraîne :

$$|f(x_0+h)-f(x_0)| \le \int_0^{+\infty} |\phi_t(x_0+h)-\phi_t(x_0)| dt \le \int_0^{+\infty} |h| t e^{-t} dt.$$

2-d. Or $\int_0^{+\infty} te^{-t} dt$ a une valeur finie (que même le commun des mortels peut calculer). Donc si h tend vers 0, $|f(x_0 + h) - f(x_0)|$ tend vers 0 et on a : $\lim_{h \to 0} f(x_0 + h) = f(x_0)$. Ce qui signifie que f est continue en x_0 . Et donc f est continue sur \mathbb{R}_+ . Comme f est paire, f est continue sur \mathbb{R} .

3) Reprenons pour $x \in \mathbb{R}_+$ et $h \geqslant 0$,

$$f(x_0 + h) - f(x_0) = \int_0^{+\infty} \left[\phi_t(x_0 + h) - \phi_t(x_0) \right] dt.$$

On remarque que $\phi_t(x_0 + h) \leqslant \phi_t(x_0)$ et donc :

$$f(x_0 + h) - f(x_0) \leqslant 0.$$

On peut conclure : f est décroissante sur \mathbb{R}_+ . Par parité, on étend à \mathbb{R} :

f est croissante sur \mathbb{R}_{-} et décroissante sur \mathbb{R}_{+} .

4-a. Soit x>0 et posons le changement de variable u=xt dans l'intégrale définissant f:

$$f(x) = \int_0^{+\infty} \frac{e^{-t}}{1 + x^2 t^2} dt = \int_0^{+\infty} \frac{e^{-\frac{u}{x}}}{1 + u^2} \times \frac{1}{x} du,$$

ce qui donne bien:

$$\forall x \in \mathbb{R}_+^*, \ f(x) = \frac{1}{x} \int_0^{+\infty} \frac{e^{-\frac{u}{x}}}{1 + u^2} \, du.$$

4-b. On remarque maintenant que $\left|e^{-\frac{u}{x}}\right| \leq 1$ pour tout u > 0 et pour tout x > 0. Donc :

$$|f(x)| \le \frac{1}{x} \int_0^{+\infty} \frac{1}{1+u^2} du = \frac{\pi}{2x}.$$

Il reste à faire tendre x vers $+\infty$:

$$\lim_{x \to +\infty} \frac{\pi}{2x} = 0 \Rightarrow \lim_{x \to +\infty} f(x) = 0.$$

5)a) Le but du jeu est la nature de l'intégrale généralisée : $\int_0^{+\infty} f(x) dx$. On a les implications pour x > 0,

$$0 \leqslant u \leqslant \sqrt{x} \Rightarrow -\sqrt{x} \leqslant -u \leqslant 0 \Rightarrow -\frac{1}{\sqrt{x}} \leqslant -\frac{u}{x} \leqslant 0$$

$$\Rightarrow e^{-\frac{1}{\sqrt{x}}} \leqslant e^{-\frac{u}{x}} \leqslant 1.$$

Il reste à intégrer :

$$e^{-\frac{1}{\sqrt{x}}} \int_0^{\sqrt{x}} \frac{du}{1+u^2} \le \int_0^{\sqrt{x}} \frac{e^{-\frac{u}{x}}}{1+u^2} du \le \int_0^{\sqrt{x}} \frac{du}{1+u^2}.$$

Cela donne bien:

$$\forall x \in \mathbb{R}_+^{\star}, \ e^{-\frac{1}{\sqrt{x}}} \arctan(\sqrt{x}) \leqslant \int_0^{\sqrt{x}} \frac{e^{-\frac{u}{x}}}{1+u^2} du \leqslant \arctan(\sqrt{x}).$$

5)b) On fait tendre x vers $+\infty$ dans la double inégalité précédente. On a entre autre :

$$\lim_{x \to +\infty} \arctan \sqrt{x} = \frac{\pi}{2} \text{ et } \lim_{x \to +\infty} e^{-\frac{1}{\sqrt{x}}} = 1.$$

On en déduit par le théorème des Gendarmes,

$$\lim_{x \to +\infty} \int_0^{\sqrt{x}} \frac{e^{-\frac{u}{x}}}{1+u^2} \, du.$$

5)c) On écrit (car $e^{-\frac{u}{x}} \leqslant 1$):

$$0 \leqslant \int_{\sqrt{x}}^{+\infty} \frac{e^{-\frac{u}{x}}}{1+u^2} \, du \leqslant \int_{\sqrt{x}}^{+\infty} \frac{du}{1+u^2} \leqslant \int_{0}^{+\infty} \frac{du}{1+u^2} - \int_{0}^{\sqrt{x}} \frac{du}{1+u^2}.$$

Et donc, en intégrant les deux dernières intégrales

$$\forall x \in \mathbb{R}_+^*, \ 0 \leqslant \int_{\sqrt{x}} +\infty \frac{e^{-\frac{u}{x}}}{1+u^2} du \leqslant \frac{\pi}{2} - \arctan(\sqrt{x}).$$

5)d) On écrit:

$$\int_0^{+\infty} \frac{e^{-\frac{u}{x}}}{1+u^2} du = \int_0^{\sqrt{x}} \frac{e^{-\frac{u}{x}}}{1+u^2} du + \int_{\sqrt{x}}^{+\infty} \frac{e^{-\frac{u}{x}}}{1+u^2} du.$$

On a:

$$\lim_{x\to +\infty} \int_0^{\sqrt{x}} \frac{e^{-\frac{u}{x}}}{1+u^2} \, du = \frac{\pi}{2} \text{ et } \lim_{x\to +\infty} \int_{\sqrt{x}}^{+\infty} \frac{e^{-\frac{u}{x}}}{1+u^2} \, du = \lim_{x\to +\infty} \left[\frac{\pi}{2} - \arctan\sqrt{x}\right] = 0.$$

Donc, on peut en déduire que :

$$\lim_{x \to +\infty} \int_0^{+\infty} \frac{e^{-\frac{u}{x}}}{1 + u^2} \, du = \frac{\pi}{2}.$$

5)e) On en déduit un équivalent simple de f au voisinage de $+\infty$. En effet, quand x tend vers $+\infty$,

$$\lim_{x \to +\infty} x f(x) = \frac{\pi}{2} \Rightarrow f(x) \sim \frac{\pi}{2x}.$$

5)f) $\int_0^{+\infty} f(x) dx$ est définie en 0 et f étant à valeurs positives, et comme $f(x) \sim \frac{\pi}{2x}$, quand x tend vers $+\infty$ et comme $x \mapsto \frac{\pi}{2x}$ n'est pas intégrable au voisinage de $+\infty$, on peut en déduire que :

$$\int_0^{+\infty} f(x) dx \text{ est divergente.}$$