Correction Devoir libre 02

n et p étant deux entiers naturels non nuls, on désigne par $\mathcal{M}_{n,p}(\mathbb{K})$ l'ensemble des matrices à n lignes et p colonnes à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). Pour A appartenant à $\mathcal{M}_{n,p}(\mathbb{K})$, on note A^T la transposée de la matrice A. On rappelle que $A^T \in \mathcal{M}_{p,n}(\mathbb{K})$ et que par rapport à A, les lignes de A deviennent les colonnes de A^T , dans le sens croissant d'indexation.

Par ailleurs, la transposition est une application linéaire et si $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,q}(\mathbb{K})$ alors

$$(AB)^T = B^T A^T.$$

L'ensemble des matrices carrées d'ordre n à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) est noté $\mathcal{M}_n(\mathbb{K})$. Pour $A \in \mathcal{M}_n(\mathbb{K})$, on note Tr(A) sa trace. Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est dite antisymétrique si $A^T = -A$. On note $\mathcal{A}_n(\mathbb{K})$ l'ensemble des matrices antisymétriques d'ordre n à coefficients dans \mathbb{K} . Enfin, si A est carrée et inversible, $(A^T)^{-1} = (A^{-1})^T$.

Partie I

On considère dans cette partie uniquement la matrice $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$

1-a On a rapidement :
$$A^2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \Rightarrow A^2 + I_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 et clairement $Rg(A^2 + I_3) = 1$

et $A^2 + I$ n'est pas inversible.

En Plus : etude diagonalisation de A. On calcule le polynôme caractéristique de A, $\chi_A(t) = \begin{bmatrix} t & 0 & -1 \\ 0 & t & 0 \end{bmatrix}$

$$\begin{vmatrix} 0 & t & 0 \\ 1 & 0 & t \end{vmatrix} = t(t^2 + 1) = t(t - i)(t + i).$$

Ainsi, les valeurs propres complexes de A sont 0, i et -i.

La matrice A n'est pas diagonalisable dans $\mathbb R$ car elle possède des valeurs propres non réelles et comme les trois valeurs propres complexes sont distinctes dans $\mathbb C$, la matrice A est bien diagonalisable dans $\mathbb C$.

2. On pose $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. On montre que P est inversible en calculant P^{-1} . Il faut user du

Gau β -Jordan. On concatène P et I_3 .

$$\left(\begin{array}{cccccc} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{array}\right) \sim \left(\begin{array}{ccccccc} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{array}\right).$$

On a permuté L_2 et L_3 . Alors $P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, on reconnait P.

3. Calculons PAP^{-1} :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = B.$$

Donc A est semblable à la matrice B.

4. On commence, $B^2 = \text{diag}(-1, -1, 0)$. Et donc par récurrence immédiate,

$$B^{2p} = (-1)^p \operatorname{diag}(1, 1, 0).$$

Puis, $B^0 = I_3$, et pour tout p entier,

$$B^{2p+1} = B^{2p}B = (-1)^p \operatorname{diag}(1, 1, 0)B = (-1)^p \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = (-1)^p B.$$

En posant D = Diag(1, 1, 0), on a : $B^{2p} = (-1)^p D$ et $B^{2p+1} = (-1)^p B$.

Alors:

$$A = P^{-1}BP \Rightarrow A^2 = P^{-1}BPP^{-1}BP = P^{-1}B^2P.$$

Supposons $A^n = P^{-1}B^nP$, alors $A^{n+1} = A^nA = (P^{-1}B^nP)P^{-1}BP = P^{-1}B^{n+1}P$. On a la transmission. Alors pour tout p entier,

$$A^{2p} = P^{-1}B^{2p}P = P(-1)^pDP = (-1)^pDiag(1, 0, 1).$$

(On a laissé les calculs au lecteur.) De même,

$$A^{2p+1} = P^{-1}B^{2p+1}P = P(-1)^pBP = (-1)^pA.$$

Partie II

Étude de $\mathcal{A}_3(\mathbb{R})$.

1. Montrons que, pour tout $n \in \mathbb{N}^*$, $\mathcal{A}_n(\mathbb{R})$ est un espace vectoriel sur \mathbb{R} . C'est du cours. Mais on va le refaire car c'est vous! Déjà la matrice nulle est opposée à sa transposée. Puis si A et B sont dans $\mathcal{A}_n(\mathbb{R})$ et $a \in \mathbb{R}$,

$$(A+aB)^T = -A - aB = -(A+aB) \Rightarrow A + aB \in \mathcal{A}_n(\mathbb{R}).$$

2. On sait que $A \in \mathcal{A}_n(\mathbb{R}) = (a_{i,j})$ vérifie : $a_{i,i} = -a_{i,i}$ pour tout i entier et donc $a_{i,i} = 0$. On pose ensuite $\alpha = a_{3,2}, \ \beta = a_{1,3}$ et $\gamma = a_{2,1}$. Par antisymétrie, $a_{2,3} = -\alpha, \ a_{3,1} = -\beta$ et $a_{1,2} = -\gamma$. On a bien $A = \begin{pmatrix} 0 & -\gamma & \beta \\ \gamma & 0 & -\alpha \\ -\beta & \alpha & 0 \end{pmatrix}$ avec $\alpha, \beta, \gamma \in \mathbb{R}$.

On a bien
$$A = \begin{pmatrix} 0 & -\gamma & \beta \\ \gamma & 0 & -\alpha \\ -\beta & \alpha & 0 \end{pmatrix}$$
 avec $\alpha, \beta, \gamma \in \mathbb{R}$.

3. On note $E_{i,j}$ la matrice dont tous les coefficients sont nuls sauf celui à l'intersection de la $i^{\text{ème}}$ rue et de la $j^{\text{ème}}$ avenue (pour faire Newyorkais) qui vaut 1. Alors :

$$A = \alpha(E_{3,2} - E_{2,3}) + \beta(E_{1,3} - E_{3,1}) + \gamma(E_{2,1} - E_{1,2}).$$

La famille $\{E_{3,2} - E_{2,3}, E_{1,3} - E_{3,1}, E_{2,1} - E_{1,2}\}$ est géneratrice de $\mathcal{A}_n(\mathbb{R})$.

$$\alpha(E_{3,2} - E_{2,3}) + \beta(E_{1,3} - E_{3,1}) + \gamma(E_{2,1} - E_{1,2}) = 0 \Rightarrow \begin{pmatrix} 0 & -\gamma & \beta \\ \gamma & 0 & -\alpha \\ -\beta & \alpha & 0 \end{pmatrix} = 0 \Rightarrow \alpha = \beta = \gamma = 0.$$

La famille est libre, c'est donc une base et dim $(A_n(\mathbb{R})) = 3$.

4. $\forall A \in \mathcal{A}_3(\mathbb{R}),$

$$\mathsf{Det}\,(A) = \mathsf{Det}\,(A^T) = \mathsf{Det}\,(-A) = -\mathsf{Det}\,A \Rightarrow \mathsf{Det}\,A = 0.$$

5. Montrons que, $\forall A \in \mathcal{A}_3(\mathbb{R})$, il existe un unique vecteur $w \in \mathbb{R}^3$ tel que A soit la matrice de l'application $v \mapsto w \wedge v$ dans la base canonique de \mathbb{R}^3 .

En effet, il suffit de prendre $\vec{w}(\alpha, \beta, \beta)$. On a rapidement :

$$\phi(\vec{e}_1) = \vec{w} \wedge \vec{e}_1 = \begin{pmatrix} 0 \\ \gamma \\ -\beta \end{pmatrix}, \ \phi(\vec{e}_2) = \vec{w} \wedge \vec{e}_2 = \begin{pmatrix} -\gamma \\ 0 \\ -\beta \end{pmatrix} \text{ et } \phi(\vec{e}_3) = \vec{w} \wedge \vec{e}_3 = \begin{pmatrix} \beta \\ -\alpha \\ 0 \end{pmatrix}.$$

On retrouve les colonnes de la matrice A.

Partie III

On fixe dans cette partie un entier naturel n non nul et une matrice $A \in \mathcal{A}_n(\mathbb{R})$. On note I la matrice identité de $\mathcal{M}_n(\mathbb{R})$.

1. Soit X une matrice-colonne de $\mathcal{M}_{n,1}(\mathbb{R})$, quelle est la forme de X^T ?

Clairement, $X^T \in \mathcal{M}_{1,n}(\mathbb{R})$ est une matrice ligne.

Quel est le nombre de lignes et de colonnes de X^TBX , où $B \in \mathcal{M}_n(\mathbb{R})$?

La matrice X^TBX est le produit d'une matrice de $\mathcal{M}_{1,n}(\mathbb{R})$ par une matrice de $\mathcal{M}_n(\mathbb{R})$ et par une matrice de $\mathcal{M}_{n,1}(\mathbb{R})$ et on obtient une matrice de $\mathcal{M}_1(\mathbb{R})$ donc c'est une constante.

2. Pour toute matrice colonne $X \in \mathcal{M}_{n,1}(\mathbb{R})$ et toute matrice carrée B d'ordre n, X^TBX est une constante donc symétrique.

On a:

$$(X^T B X)^T = X^T B^T X.$$

Si B = A avec A antisymétrique, $A^T = -A$ et

$$(X^T A X)^T = X^T A^T X = -X^T A X.$$

Alors le seul coeff de X^TAX est égal à son opposé et vaut donc 0.

3. Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$. On note $x_1, ..., x_n$ ses coefficients.

$$X^TX = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sum_{i=1}^n x_i^2.$$

$$X^T X = 0 \Rightarrow \sum_{i=1}^{n} x_i^2 = 0 \Rightarrow \forall i \in [1, n], \ x_i = 0 \Rightarrow X = 0.$$

4. Soit une matrice colonne X telle que (A + I)X = 0.

1er Méthode :
$$X^{T}(A+I)X = X^{T}((A+I)X) = X^{0} = 0$$
.

2eme Méthode :
$$X^T(A+I)X = X^TAX + X^TX = 0 + X^TX$$
.

Donc $X^TX = 0 \Rightarrow X = 0$.

5. Si $X \in \text{Ker}(A+I)$, (A+I)X = 0. Et donc X = 0 d'après la question précédente. Ainsi, A+I est associé à un endomorphisme injectif et comme l'on est en dimension finie, $A+I_3$ est inversible.

6. Montrons que $B = (I - A)(I + A)^{-1}$ vérifie $B^T B = I$.

On écrit :

$$B^{T}B = \left[(I-A)(I+A)^{-1} \right]^{T} \left[(I-A)(I+A)^{-1} \right] = \left[(I+A)^{-1} \right]^{T} (I-A)^{T} (I-A)(I+A)^{-1}$$
$$= \left[(I+A)^{T} \right]^{-1} (I-A^{T})(I-A)(I+A)^{-1} = (I-A)^{-1} (I+A)(I-A)(I+A)^{-1}$$
$$= (I-A)^{-1} (I-A)(I+A)(I+A)^{-1} = I_{n}I_{n} = I_{n}$$

On a usé de $A^T = -A$ et de (I - A)(I + A) = (I + A)(I - A).

7. On a:

$$(I+B)(I+A) = I + A + B(I+A) = I + A + (I-A)(I+A)^{-1}(I+A) = I + A + I - A = 2I.$$

Partie IV

On se fixe dans cette partie un entier naturel non nul n et une matrice $A \in \mathcal{A}_n(\mathbb{R})$ et on note f l'endomorphisme de \mathbb{R}^n canoniquement associé à A.

1. Soit X une matrice colonne de $\mathcal{M}_{n,1}(\mathbb{R})$ et Y = AX. On suppose que AY = 0.

$$AY = A(AX) = A^2X = 0.$$

Puis:

$$Y^{T}Y = (AX)^{T}(AX) = X^{T}A^{T}AX = X^{T}(-A)AX = -X^{T}A^{2}X = -X^{T}0 = 0.$$

2. $\vec{y} \in \text{Ker } f \cap \text{Im } f$ alors il existe $\vec{x} \in \mathbb{R}^n$ tel que $\vec{y} = f(\vec{x})$ et $f(\vec{y}) = \vec{0}$.

Si Y (respectivement X) est la matrice de \vec{y} (respectivement \vec{x}) dans la base canonique de \mathbb{R}^n , alors Y = AX et AY = 0. Donc $Y^TY = 0$ et donc Y = 0 d'après III-3. Et donc $\vec{y} = \vec{0}$.

Et donc dim $(\operatorname{Ker} f \cap \operatorname{Im} f) = 0$ et comme dim $\mathbb{R}^n = \dim \operatorname{Ker} f + \dim \operatorname{Im} f$, on a bien :

$$\mathbb{R}^n = Imf \oplus Kerf.$$

3. Soit $r = \dim \operatorname{Im} f$ et $\gamma = (\vec{e_1}, ..., \vec{e_n})$ une base de \mathbb{R}^n adaptée à la décomposition en somme directe $\mathbb{R}^n = \operatorname{Im} f \oplus \operatorname{Ker} f$. Alors $(\vec{e_1}, ..., \vec{e_n})$ est une base de $\operatorname{Im} f$ et $(\vec{e_{r+1}}, ..., \vec{e_n})$ est une base de $\operatorname{Ker} f$. Dans cette base, la matrice représentative de f est de la forme bloc

$$B = \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix}$$

où C est une matrice carrée d'ordre inférieur ou égal à n. On peut même dire que le rang de C est r. Comme $\operatorname{Rg} C = r$ est aussi $\operatorname{RG} f$, C est inversible.