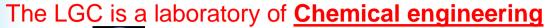


CO₂ Capture for Chemical Use

David Rouzineau

Laboratoire de Génie Chimique de Toulouse (France)


<u>David.Rouzineau@ensiacet.fr</u>

A bit about LGC

Electrochemical Processes

Process Systems Engineering

Research departments

Interface & Particle Interaction Engineering

bioprocesses and microbial systems

Reacting, Mixing & Separation

LGC and CO₂

Carbon Management is an inter-department research theme

Development of clean energy

Microbial fuel cells

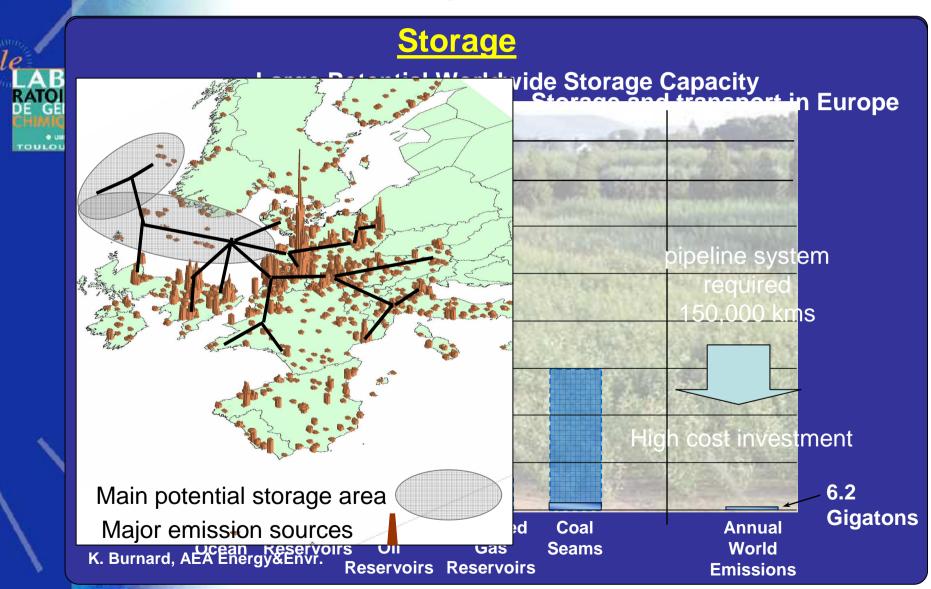
Biogas production of quality Natural Gas Vehicle

Production of syngas with biomass

Hydrogen production by electrolysis

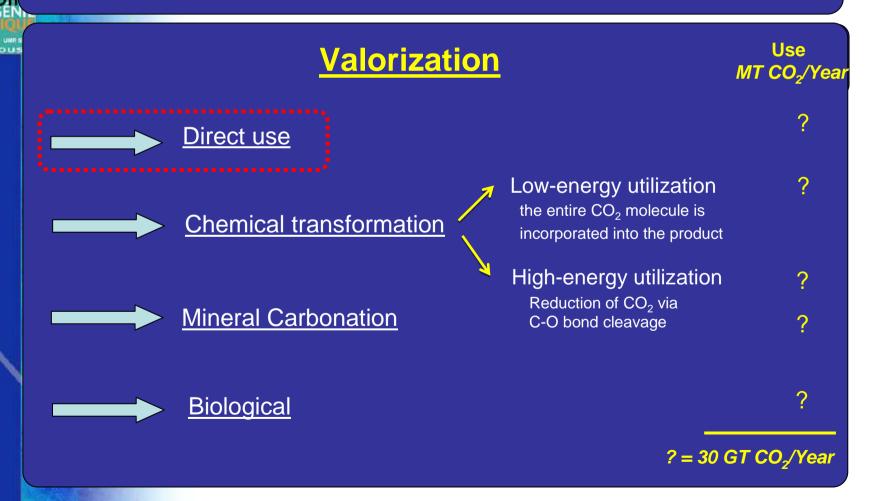
- Alternative process
- Carbon Capture and Storage
 - Development of new gas liquid contactor

Hollow fiber membrane for pre and post combustion


New packing in C/C for postcombustion capture

Packing optimization for O₂ production in oxycombsution

- Modelisation and simulation of absorption CO₂ capture
- Development of new process for mineral carbonation



Storage

Large potential storage, problem of transport (decentralized option ?)

Direct use

Non-flammable Non toxic Renewable source Thermodynamically Non-mutagenic and kinetics stable Non-carcinogenic Easily handled Not chemically inert but low reactivity Direct used for numerous applications

- Fire extinguishers
- Mechanical industry (soldering, moulding)
- Waste-water treatment
- Food industry as an additive for beverages
 Heat exchanger in nuclear plants
- Food-packaging, ...

- Supercritical solvent
- Enhanced oil recovery
- Spray gas
- Refrigerating agent (dry ice)

Direct use

Enhanced of Advantages of direct use 10

MT CO₂/Year

IPCC, 2005

Other Numerous applications

13,5 MT CO₂/Year

L. Dumergues 2008

Totas Safety and environmental benefits

53,5 MT CO₂/Year

+ General proximity of the producing and consumer sites of CO₂

Drawbacks of direct use

- Limited use compared to the overall CO₂ production (<0,02%)
- Need of high CO₂ purity

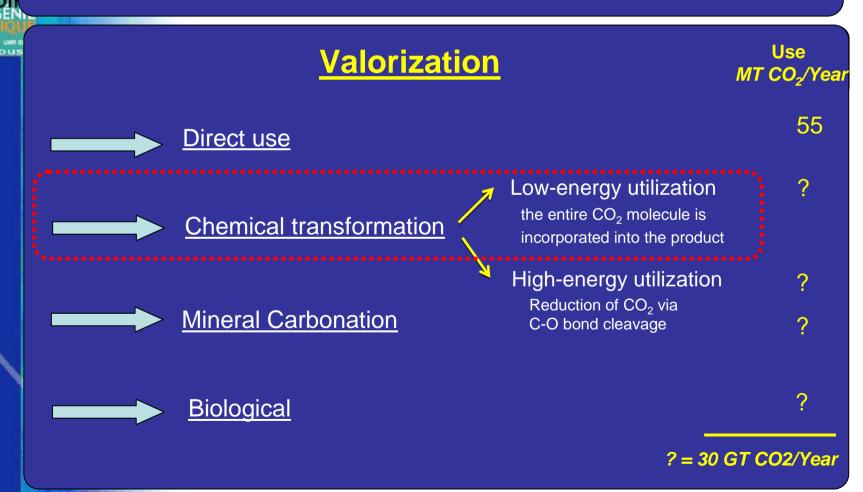
Industrial/research targets

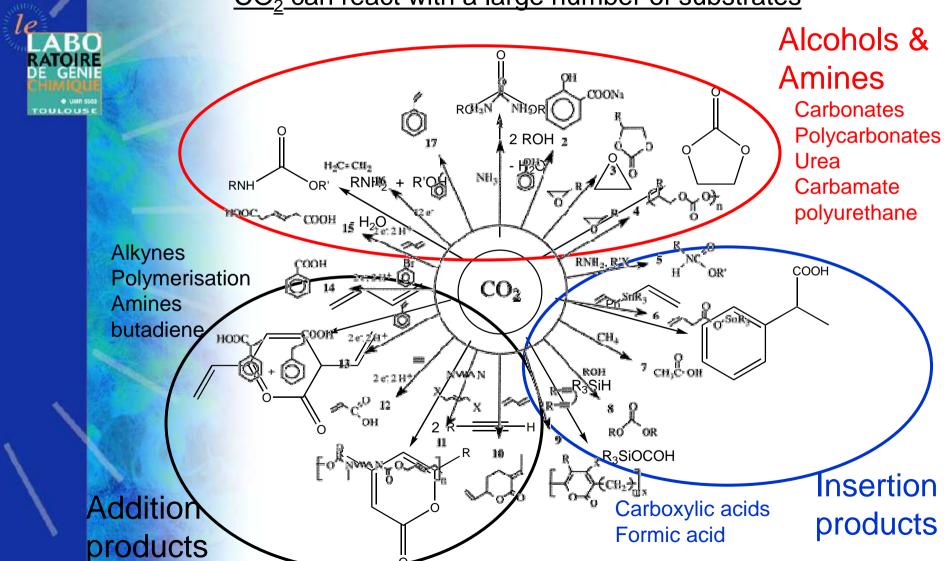
Increasing interest for CO₂ in refrigerating systems

In France: 36 systems: supermarkets, freezing, cold store, ice cream, ice ring

Research: Hydrates slurries good secondary refrigerant

L. Fournaison 2008


Developing EOR technologies



Large potential storage, problem of transport (decentralized option ?)

Chemical transformation (Low-energy utilization)

CO₂ can react with a large number of substrates

Chemical transformation (Low-energy utilization)

Reactions manufactured: actually

Urea (agricultural use)

$$CO_2 + 2 NH_3 \xrightarrow{\triangle} H_2N \xrightarrow{NH_2} + H_2O$$

use (CO_2)

70 MT/Year

R.H. Heyn, SINTEF, 2008

Hydroxybenzoic acids (Medicinal and cosmetic uses -aspirine-, food)

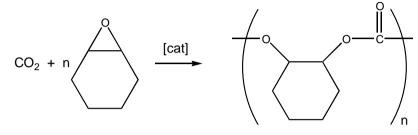
+ CO₂
$$\triangle$$
 COOM

20 KT/Year

R.H. Heyn, SINTEF 2008

Propylene and ethylene carbonate (solvents, electrolytes)

~ KT/Year


Chemical transformation (Low-energy utilization)

Reactions developed: short term

Polycarbonates co₂ + n

use (CO₂)

500 kT/Year

- toxic reactant avoided : phosgene
- •Technology close to industrial implementation
- Process development under investigation

Darensbourg, D. J. Chem. Rev. 2007

+ H₂O

Dimethylcarbonate (DMC) CO₂ + 2 MeOH (cat)

50 kT/Year

M. Aresta, A. Dibenedetto, 2003

Reactions developed: medium and longer term

Carboxylic acids (pharmaceuticals, leather tanning, textile dyeing, plastics, lacquers, and solvents)

(alkyl)Carbamates (agrochemical, pharmaceutical)

Polyurethanes (foam)

Acrylic acids (reactant for polymer)

Chemical transformation (Low-energy utilization)

Estimated Use (MT CO₂/Year)

Actually

100 MT CO₂/Year

Expected

<200 MT CO₂/Year

Total

<300 MT CO₂/Year

Advantages of Chemical transformation

- Possibility to make valuable products (storage is a simple additional cost)
- + Several organic pathways for its activation and conversion
- Use of more safe reactants, for ex. in substituting phosgene with DMC.
- + CO₂ adds value in developing sustainable (green) processes

Drawbacks of Chemical transformation

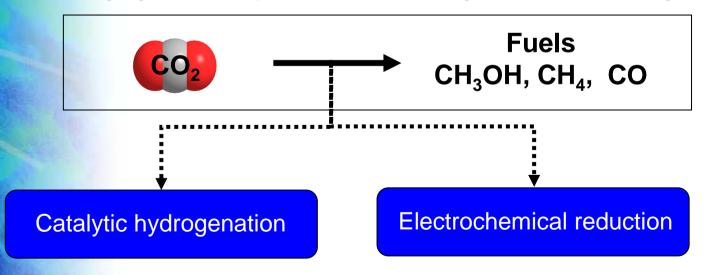
- Limited use compared to the overall CO₂ production (<1%)
- Need of high CO₂ purity
- Catalyst development is necessary and essential

Storage

Large potential storage, problem of transport (decentralized option ?)

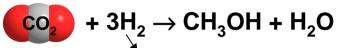
<u>Valorization</u>	Use MT CO ₂ /Year
Direct use	55
Low-energy utilization the entire CO ₂ molecule is incorporated into the product	300
High-energy utilization Reduction of CO ₂ via C-O bond cleavage	?
Biological ? = 30 0	? GT CO2/Year

Chemical transformation (High-energy utilization)

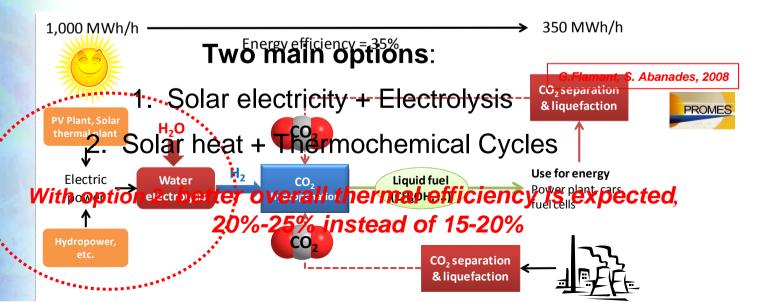


803 kJ/mol

Possible to synthetize a large variety of products ranging from C1-type molecules to higher molecular weight



Chemical transformation (High-energy utilization)


Catalytic hydrogenation

Methanol

How much CO₂ produced per H₂?

- Mitsui Chemicals (Japan) will build a demonstration plant (100 T/yr Methanol)
 - -better catalysts has to be developed
 - -Expects to emit half as much CO2 as consumed
- The problem is the availability of hydrogen or of hydrogen sources
- Technology proposed development by NITE/RITE (Japan) using renewable energy sources

Chemical transformation (High-energy utilization)

Electrochemical reduction

Water Reduction

$$2H_2O \rightarrow 4H^+ + 4e^- + O_2$$

CO₂ Reduction

$$CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$$
 -0.53 V

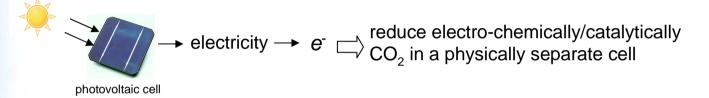
$$CO_2 + 4H^+ + 4e^- \rightarrow HCHO + H_2O -0.48 V$$

$$CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH + H_2O -0.38 V$$

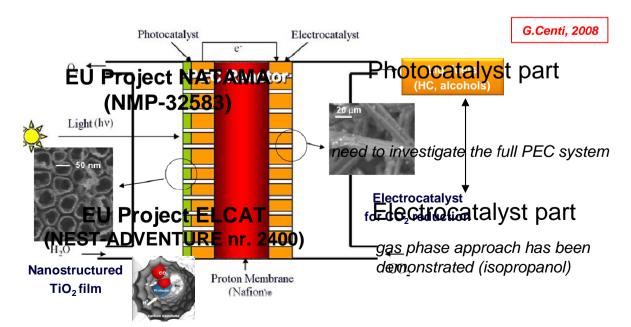
$$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O -0.24 V$$

Energy?

<u>Chemical transformation</u> (High-energy utilization)


Photo- and electro- chemical/catal. conv. CO₂

Indirect use of solar energy: PhotoElectroChemical reduction

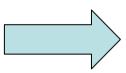

Two steps

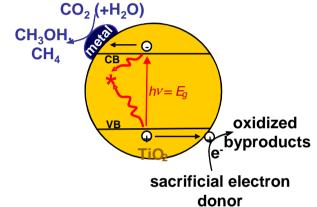
One step

coupling the two processes in a single unit PhotoElectroChemical (PEC) Reactor

Recent research

Chemical transformation (High-energy utilization)




Photo- and electro- chemical/catal. conv. CO₂

Natural photosynthesis

Artificial photosynthesis

Linsebigler et al., Chem. Reviews, 1995

But still a challenge:

- Limited productivities in the absence of sacrificial agents
- Low solubility of CO₂ in water
- CO₂ photoreduction process is competing with H₂ and H₂O₂ formation
- Need of UV lamps (low activity in visible region)

G.Centi. 2008

Chemical transformation (High-energy utilization)

Estimated Use (MT CO₂/Year)

Actually

0

MT CO₂/Year

Expected

limitless MT CO₂/Year

Advantage of CO₂ conversion into fuel

- Large potential to reduce greenhouse gas emissions
- Recycled CO₂ using renewable resources contributing to close the carbon-cycle on actual infrastructure.
- Use the solar energy (and water) to convert CO₂ into fuels which may be easy stored and transported

Drawback of CO₂ conversion into fuel

- Need long term developments (process improvement needed, not experimental units)
- Not solve the problem of greenhouse gas in the next future

Storage

Large potential storage, problem of transport (decentralized option ?)

<u>Direct use</u>	55
Chemical transformation Low-energy utilization the entire CO ₂ molecule is incorporated into the product	300
High-energy utilization Reduction of CO ₂ via C-O bond cleavage	Large potentia (in futur)
Biological	? GT CO2/Year

Mineral Carbonation

$$(Mg, Ca)_xSi_yO_{x+2y} + x CO_2 \rightarrow x (Mg, Ca)CO_3 + ySiO_2$$

Different ways

Solid-Gas Reaction

~1% conversion efficiency

Aqueous Mineral Carbonation

costly reaction conditions (185 ℃ and 115 atm)

Multi-stage Aqueous Mineral Carbonation reduced conditions, but acidic medium incurs cost

Single-Stage Aqueous Mineral Carbonation

Mineral Carbonation

There are enough minerals to potentially **Different mining residues/byproducts** capture all the emitted CO₂ (> 1 000 000 can be used to sequester CO₂. Gt CO₂). Lackner et. al, 1998 Carbonates are potentially Industry usable as construction materials. reclamation Re-use in construction CO2 Pipeline (Ca, Mg) CO₃ Carbonates are the most stable Mineral carbonation form of carbon dioxide storage plant Power plant Re-use/Disposal Generation Storage process

Recent research: Single or Multi-Stage Aqueous Mineral Carbonation

Energy Research Centre of the Netherlands (ECN)

Problem of dissolution and precipitation in the reactor Mineral characterization
Bio mineral carbonation
Implementation of industrial pilots

Mineral Carbonation

Estimated Use (MT CO₂/Year)

0

MT CO₂/Year

Expected

limitless MT CO₂/Year

Advantage of CO₂ mineral carbonation

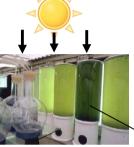
- Large potential storage
- + Permanent and inherently safe sequestration of CO₂ by mineral carbonation
- + Valorization of the final products
- + Existing technologies (more maturity of mineral carbonation than CO₂ into fuel)

Drawback of CO₂ mineral carbonation

- Sequestration costs of current mineral carbonation technologies (> 100€/ton CO₂)
- Not enough experimental units and process improvement needed

Storage

Large potential storage, problem of transport (decentralized option ?)

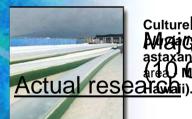

<u>Valorization</u>	Use MT CO ₂ /Year
<u>Direct use</u>	55
Chemical transformation Low-energy utilization the entire CO ₂ molecule is incorporated into the product	300
Mineral Carbonation Mineral Carbonation C-O bond cleavage	Large potentia (in futur) Large potential (cost)
<u>Biological</u>	?
? = 30	GT CO2/Year

Biological

CO₂ conversion into mirco-algae by photosynthetic microorganisms

Closed photobioreactor

Open photobioreactor


Valorization of microalgae

Microalgae

Efficient photosynthesis
Potential for intensive cultures
High growth rate

biofuel biogaz food for livestock, chemicals, colorants, perfumes, vitamins, Etc.

Culture Device hap closed photoreactor to avoid the drawback of loggen photoreactor in greenhouse of 2000 m² (500 astaxanthine (20000 I on a 100 m² area) Medenasupas - year of dry matter and the device of the performance of 2000 m² (500 m²).

Needs to improve the performance of 2000 m² (500 m²).

Needs to improve the performance to Be Cost effective (control of culture conditions at large-scale production, use of solar flux, energetic consumption, management of the inputoutput)

Global CO₂ consumption

10 Mt/year

J. Legrand, J. Pruvost 2008

b-carotène - Australia

JP Cadoret ,O.Bernard 2008

Biological

Estimated Use (MT CO₂/Year)

Actually

10

MT CO₂/Year

Expected

x 2 every 5 years MT CO₂/Year

van Harmelen & Oonk, 2006

Advantage of biological conversion

- + The production of microalgae increase around the world
- + Simple conception and low investment cost for open photoreactor
- + Large valorization of microalgae
- Great diversity (>30,000 species) of microalgae able to metabolize other gas: NO_x, SO_x

Drawback of biological conversion

- Limit production exist: theory limit 400 T/ha/year and current productivity 30 T/ha/year
- There will never be enough surface for a significant consumption of CO₂
- Microalgae are sensitive : cold, strong illumination
- No knowledge of the economic aspects

Direct used and chemicals conversion (low energy) is NOT a solution to the Greenhouse Effect

The volume of CO₂ used cannot increase from the actual about 0.5% to over 1-2%.

Safety and environmental benefits related to the use of more safe reactant

Fundamental catalysis research is required

A larger contribution to the reduction of CO₂ emissions could derive by converting CO₂ back to fuels.

Need long term development

Large potential of CO₂ conversion by mineral carbonation

Need experimental units and process improvement