Devoir surveillé N°04

2TSI-MATHÉMATIQUES

Samedi 27 Janvier 2024

Les différents exercices sont indépendants.

Exercice 01

On considère l'équation différentielle :

(E)
$$(1+4x)y'(x) - 2y(x) = 0$$
.

- 1. Résoudre (E).
- 2. Déterminer les solutions de (E) développables en série entière.
- 3. On considère la série entière $\sum_{n>0} \frac{(-1)^n (2n)!}{(2n-1)(n!)^2} x^n.$
 - (a) Déterminer le rayon de convergence R de cette série.
 - (b) Montrer que sa somme S est une base de l'espace vectoriel des solutions de (E) sur]-R, R[.
 - (c) En comparant avec les solutions trouvées à la question 1, trouver l'expression de S(x).

Exercice 02

- 1. Montrer que pour a>0 fixé, l'intégrale généralisée $\int_a^{+\infty} \frac{\sin t}{t^2} \, dt$ converge.
- 2. En déduire le domaine de définition de $F: x \mapsto \int_x^{+\infty} \frac{\sin t}{t^2} \, dt$ puis sa dérivée.
- 3. Montrer à l'aide d'une intégration par parties, que $F(x) = \frac{\cos x}{x^2} 2 \int_x^{+\infty} \frac{\cos t}{t^3} dt$. En refaisant ensuite une intégration par parties sur cette dernière intégrale, montrer :

$$F(x) = \frac{\cos x}{x^2} + o\left(\frac{1}{x^2}\right),$$

quand $x \to +\infty$.

- 4. Montrer que la fonction $g: t \mapsto \frac{\sin t t}{t^2}$ est prolongeable par continuité sur [0, 1].
- 5. On note encore g le prolongement par continuité de g sur [0,1]. Justifier que $\int_x^1 g(t) dt$ tend vers la constante $K = \int_a^1 g(t) dt$.

Déterminer : $\lim_{x\to 0^+} \int_x^1 \frac{\sin t}{t^2} dt - (-\ln x)$ et en déduire que $F(x) \sim_{0^+} -\ln x$.

Exercice 03

On pose I =]-1, 1[.

- 1. Déterminer $(a, b, c) \in \mathbb{R}^3$, $\forall t \in I \setminus \{0\}$, $\frac{2 4t^2}{t(t^2 1)} = \frac{a}{t} + \frac{b}{t 1} + \frac{c}{t + 1}$.
- $\text{2. Déterminer } (\alpha,\beta,\gamma,\delta) \in \mathbb{R}^4, \, \forall t \in I \setminus \{0\}, \, \frac{1}{t^2(1-t^2)} = \frac{\alpha}{t} + \frac{\beta}{t^2} + \frac{\gamma}{1-t} + \frac{\delta}{1+t}.$

3. On considère l'équation différentielle, définie sur $I \setminus \{0\}$, par :

(F)
$$Z'(t) + \frac{4t^2 - 2}{t(t^2 - 1)}Z(t) = 0.$$

Résoudre (F).

4. On considère l'équation différentielle, définie sur I par :

$$(E) (t^2 - 1)y''(t) + 2ty'(t) - 2y(t) = 0.$$

- (a) On pose : $\forall t \in I, y(t) = t z(t)$. Écrire l'équation différentielle (E') vérifiée sur I par z.
- (b) En utilisant la résolution de (F) déterminer toutes les solutions de (E') et en déduire les solutions de (E).

Exercice 04

On pose $E = \mathcal{C}^0([-1,1],\mathbb{R})$ et pour tout $(f,g) \in E^2$,

$$\langle f, g \rangle = \frac{1}{2} \int_{-1}^{1} f(x)g(x) dx.$$

Enfin, pour tout $i \in [0,3]$, on pose : $P_i(x) = x^i$.

- 1. Montrer que $\langle \, , \, \rangle$ est un produit scalaire sur E.
- 2. Justifier que la famille (P_0, P_1, P_2) est libre mais pas orthogonale.
- 3. On utilisant l'algorithme de Gram-Schmidt, trouver une base orthonormale de $\mathbb{R}_2[X]$ à partir de la famille (P_0, P_1, P_2) .
- 4. En déduire la projection orthogonale R de P_3 sur $\mathbb{R}_2[X]$.
- 5. Déterminer la distance de P_3 à $\mathbb{R}_2[X]$.