2TSI. Concours blanc Math. 2025

CORRECTION

Exercice 01

Q01. T renvoie le rang du premier succès lors de la répétition d'épreuves de Bernoulli indépendantes de même paramètre p, donc $T \sim \mathcal{G}(p)$.

Q02-a Soit R_k l'événement « le k'eme lancer est réussi. »

On remarque que pour tout $k \in [2, +\infty[, \mathbb{P}_{\overline{R_1} \cap ... \cap \overline{R_{k-1}}}(\overline{R_k}) = q^k$.

Calculons pour tout entier $n \ge 1$, $\mathbb{P}\left(\bigcap_{k=1}^{n} \overline{R_k}\right)$

On utilise la formule des probabilités composées.

$$\mathbb{P}\left(\bigcap_{k=1}^{n} \overline{R_{k}}\right) = \mathbb{P}\left(\overline{R_{1}}\right) . \mathbb{P}_{\overline{R_{1}}}\left(\overline{R_{2}}\right) . \mathbb{P}_{\overline{R_{1}} \cap \overline{R_{2}}}\left(\overline{R_{3}}\right) ... \mathbb{P}_{\overline{R_{1}} \cap ... \cap \overline{R_{n-1}}}\left(\overline{R_{n}}\right).$$

On obtient
$$\mathbb{P}\left(\bigcap_{k=1}^{n} \overline{R_k}\right) = q \times q^2 \times ... \times q^n = q^{\frac{n(n+1)}{2}}$$
.

Alors
$$\mathbb{P}\left(\bigcap_{k\in\mathbb{N}^*}\overline{R_k}\right) = \lim_{n\to+\infty}\mathbb{P}\left(\bigcap_{k=1}^n\overline{R_k}\right) = \lim_{n\to+\infty}q^{\frac{n(n+1)}{2}} = 0 \text{ car } q\in]0,1[\text{ fixé}.$$

Q02-b On veut calculer la probabilité de $\bigcup_{k \in \mathbb{N}^*} R_k$. On remarque que c'est aussi la probabilité de réussir au moins un panier. On va user des lois de Morgan.

$$\mathbb{P}\left(\bigcup_{k\in\mathbb{N}^*} R_k\right) = 1 - \mathbb{P}\left(\bigcap_{k\in\mathbb{N}^*} \overline{R_k}\right) = 1 - 0 = 1.$$

L'événement « réussir au moins un panier » est quasi-certain.

Problème 01

On considère les suites $(u_n)_{n\geqslant 0}$, $(v_n)_{n\geqslant 0}$ et $(w_n)_{n\geqslant 0}$ définies par

$$\begin{cases} u_0 = 1 \\ v_0 = 0 \\ w_0 = 0 \end{cases} \text{ et } \forall n \geqslant 0, \quad \begin{cases} u_{n+1} = 2u_n - v_n + w_n \\ v_{n+1} = v_n + w_n \\ w_{n+1} = -u_n + v_n + w_n \end{cases}$$

On note:

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \quad \text{et, pour tout} \quad n \geqslant 0, \ X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$$

Q07. Soit f l'endomorphisme de \mathbb{R}^3 dont A est la matrice dans la base canonique. Montrons que le polynôme caractéristique χ_A de A a pour expression : $\chi_A(x) = (x-2)(x-1)^2$.

$$\chi_A(x) = \operatorname{Det}(xI_3 - A) = \begin{vmatrix} x - 2 & 1 & -1 \\ 0 & x - 1 & -1 \\ 1 & -1 & x - 1 \end{vmatrix} = (x - 2) \begin{vmatrix} x - 1 & -1 \\ -1 & x - 1 \end{vmatrix} + 1 \times \begin{vmatrix} 1 & -1 \\ x - 1 & -1 \end{vmatrix}$$
$$= (x - 2) ((x - 1)^2 - 1) + \underbrace{(-1 + x - 1)}_{(x - 2)} = (x - 2)(x - 1)^2$$

Les valeurs propres de A sont les racines de χ_A , donc 1 et 2.

 $\mathbf{Q08}$. Le polynôme caractéristique de A est scindé, la matrice A est donc trigonalisable.

Q09. 0 n'est pas valeur propre de A donc la matrice A est inversible. (En effet $AX = 0 \Rightarrow X = 0$ puisque 0 n'est pas valeur propre)

Q10. La matrice A est-elle diagonalisable?

r On détermine l'espace propre E_1 associé à 1 puisque son ordre de multiplicité est 2.

Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \text{Ker}(A - I_3), \text{ alors}:$$

$$\begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - y + z \\ z \\ -x + y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} x - y + z = 0 \\ z = 0 \\ -x + y = 0 \end{cases} \Leftrightarrow \begin{cases} x = y \\ z = 0 \end{cases}$$

Donc $E_1 = \text{Vect}(b_2)$ où $b_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. Donc $\dim(E_1) = 1 < 2$ (2 étant l'ordre de multiplicité de la valeur propre 1) donc la matrice A n'est pas diagonalisable.

Q11. On considère les éléments suivants de \mathbb{R}^3 : $b_1 = (0, 1, 1)$, $b_2 = (1, 1, 0)$ et $b_3 = (0, 0, 1)$. Montrons que $\mathscr{B} = (b_1, b_2, b_3)$ est une base de \mathbb{R}^3 .

$$Det(b_1, b_2, b_3) = \begin{vmatrix} 0 & 1 & \mathbf{0} \\ 1 & 1 & \mathbf{0} \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} \times 1 = -1 \neq 0$$

Donc la famille \mathcal{B} est une base puisque le déterminant précédent est non nul (La famille est libre de cardinal 3 dans \mathbb{R}^3 c'est donc une base)

Q12. Montrons que la matrice de f dans la base \mathscr{B} est :

$$T = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Et enfin :

$$\begin{pmatrix} 2 & -1 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Donc $f(b_3) = b_2 + b_3$.

 \square Donc la matrice de f dans la base $\mathscr B$ est :

$$T = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Les colonnes étant les coordonnées de $f(b_1)$, $f(b_2)$ et $f(b_3)$ dans la base \mathscr{B} .

Q13. On note P la matrice de passage de la base canonique de \mathbb{R}^3 à \mathscr{B} .

Déterminer
$$P$$
 et vérifions que $P^{-1} = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix}$.

 \square Les vecteurs colonnes de P sont les vecteurs de \mathscr{B} exprimés dans la base canonique.

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Un calcul immédiat permet d'obtenir que $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,

$$\operatorname{donc} \, P^{-1} = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix}.$$

Q14. Déterminons une relation entre $A, P, T P^{-1}$.

 $\text{ Avec la formule } \operatorname{Mat}_{\mathscr{C}}(f) = P_{\mathscr{C} \to \mathscr{B}} \operatorname{Mat}_{\mathscr{B}}(f) P_{\mathscr{B} \to \mathscr{C}}, \text{ on a } A = PTP^{-1}.$

Q15. On note T = N + D, où D est une matrice diagonale et $N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Déterminons D et vérifions que N et D commutent.

$$D = T - N = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

$$DN = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = N$$

$$et ND = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = N.$$

$$Done Det N computant$$

Q16. Que vaut N^n pour tout entier $n \ge 2$?

$$N^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0 \text{ la matrice nulle.}$$

Donc $\forall n \ge 2$, $N^n = N^2 N^{n-2} = 0 N^{n-2} = 0$.

Q17.

Par une récurrence évidente $\forall n \geq 1, \ ND^n = ND$ puisque ND = N. Un calcul direct simple permet aussi de l'obtenir.

 \square Comme N et D commutent, nous pouvons utiliser le binôme de Newton :

$$T^{n} = (D+N)^{n} = \sum_{k=0}^{n} \binom{n}{k} N^{k} D^{n-k} \underbrace{\sum_{N^{2}=0 \text{ si } n \geqslant 2}}_{N^{2}=0 \text{ si } n \geqslant 2} \sum_{k=0}^{1} \binom{n}{k} N^{k} D^{n-k} = D^{n} + nND^{n-1}$$

$$= D^{n} + nN = \binom{2^{n} \quad 0 \quad 0}{0 \quad 1 \quad 0} + n \binom{0 \quad 0 \quad 0}{0 \quad 0 \quad 1} = \binom{2^{n} \quad 0 \quad 0}{0 \quad 1 \quad n}$$

$$= D^{n} + nN = \binom{2^{n} \quad 0 \quad 0}{0 \quad 0 \quad 1} + n \binom{0 \quad 0 \quad 0}{0 \quad 0 \quad 1} = \binom{2^{n} \quad 0 \quad 0}{0 \quad 0 \quad 1}$$

Q18.

 \square On vérifie immédiatement que $X_{n+1}=AX_n,$ en effet :

$$\begin{pmatrix} 2 & -1 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix} = \begin{pmatrix} 2u_n - v_n + w_n \\ v_n + w_n \\ -u_n + v_n + w_n \end{pmatrix} = \begin{pmatrix} u_{n+1} \\ v_{n+1} \\ w_{n+1} \end{pmatrix}$$

Q19.

 \mathbb{R} L'hypothèse : P_n : " $X_n = A^n X_0$ " pour $n \in \mathbb{N}.$

Initialisation : Puisque $A^0 = I_3$ et $A^0 X_0 = X_0$, donc P_0 est vrai.

 ${}^{\mbox{\tiny \mbox{\tiny Ω}}}$ Transmission : Soit $n\in\mathbb{N}.$ Supposons que P_n soit vrai, alors :

$$X_{n+1} = AX_n = AA^nX_0 = A^{n+1}X_0$$

Donc $P_n \Rightarrow P_{n+1}$.

On a montré par récurrence que $\forall n \in \mathbb{N}, X_n = A^n X_0$.

Q20.

L'hypothèse : H_n : " $A^n = PT^nP^{-1}$ " pour $n \in \mathbb{N}$.

Initialisation : Puisque $A^0 = I_3$ et $PT^0P^{-1} = I_3$, H_0 est vrai.

Transmission : Soit $n \in \mathbb{N}$. Supposons que H_n soit vrai, alors :

$$A^{n+1} = AA^n = PTP^{-1}PT^nP^{-1} = PTT^nP^{-1} = PT^{n+1}P^{-1}$$

Donc $H_n \Rightarrow H_{n+1}$.

On a montré par récurrence que $\forall n \in \mathbb{N}, A^n = PT^nP^{-1}$.

Q21.

Pour $n \in \mathbb{N}$, on a :

$$A^{n} = PT^{n}P^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2^{n} & 0 & 0 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2^{n} & 2^{n} & 0 \\ 1 + n & -n & n \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 + n & -n & n \\ -2^{n} + n + 1 & 2^{n} - n & n \\ 1 - 2^{n} & 2^{n} - 1 & 1 \end{pmatrix}$$

on a
$$X_0 = \begin{pmatrix} u_0 \\ v_0 \\ w_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
. Donc:

$$X_n = A^n X_0 = \begin{pmatrix} 1+n & -n & n \\ -2^n + n + 1 & 2^n - n & n \\ 1 - 2^n & 2^n - 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1+n \\ -2^n + n + 1 \\ 1 - 2^n \end{pmatrix}$$

Problème 02

Partie I : Préambule

Dans ce qui suit, on désigne par x_1 , x_2 et x_3 trois réels distincts, et par P une fonction polynomiale de degré strictement plus petit que trois, qui ne s'annule pas en x_1 , x_2 et x_3 . Soit Q la fonction polynomiale définie, pour tout réel x, par :

$$Q(x) = (x - x_1)(x - x_2)(x - x_3)$$

On pose, pour tout réel x de $\mathbb{R} \setminus \{x_1, x_2, x_3\} : g(x) = \frac{P(x)}{Q(x)}$.

On admet qu'il existe trois réels a_1 , a_2 , a_3 tels que, pour tout réel x de $\mathbb{R} \setminus \{x_1, x_2, x_3\}$:

$$g(x) = \frac{a_1}{x - x_1} + \frac{a_2}{x - x_2} + \frac{a_3}{x - x_3}.$$

Q22. Soit $x \in \mathbb{R} \setminus \{x_1, x_2, x_3\}$. D'une part $(x - x_1)g(x) = a_1 + a_2 \frac{x - x_1}{x - x_2} + a_3 \frac{x - x_1}{x - x_3}$, et comme x_1, x_2 et x_3 sont distincts,

$$\lim_{x \to x_1} (x - x_1)g(x) = a_1.$$

D'autre part :

$$(x - x_1)g(x) = \frac{(x - x_1)P(x)}{Q(x)} = \frac{P(x)}{\frac{Q(x)}{x - x_1}} = \frac{P(x)}{\frac{Q(x) - Q(x_1)}{x - x_1}}$$

et comme Q est une fonction polynomiale, donc dérivable sur \mathbb{R} , $\lim_{x \to x_1} \frac{Q(x) - Q(x_1)}{x - x_1} = Q'(x_1)$. La fonction P étant polynomiale et continue, $\lim_{x \to x_1} P(x) = P(x_1)$. Comme x_1, x_2 et x_3 sont distincts, x_1 est une racine simple de Q, donc $Q'(x_1) \neq 0$. Ainsi,

$$\lim_{x \to x_1} (x - x_1)g(x) = \frac{P(x_1)}{Q'(x_1)}.$$

Par unicité de la limite, on obtient $a_1 = \frac{P(x_1)}{Q'(x_1)}$. En remplaçant, dans le raisonnement précédent, x_1 par x_i , on obtient directement $a_2 = \frac{P(x_2)}{Q'(x_2)}$ et $a_3 = \frac{P(x_3)}{Q'(x_3)}$.

Q23. Avec les données numériques pour cette question, on a $Q(x) = x(x+1)(x+\frac{1}{2})$, donc en dérivant avec la formule de dérivation du produit : $Q'(x) = (x+1)(x+\frac{1}{2}) + x(x+\frac{1}{2}) + x(x+1)$ qui donne $Q'(0) = \frac{1}{2}$, $Q'(-1) = \frac{1}{2}$ et $Q'(-\frac{1}{2}) = -\frac{1}{4}$. Finalement :

$$a_1 = a_2 = 2$$
 et $a_3 = -4$.

Partie II

On considère la fonction F qui, à tout réel x de son domaine de définition \mathcal{D}_F , associe :

$$F(x) = \ln\left(\frac{x(x+1)}{(2x+1)^2}\right).$$

Q24. La fonction F est définie en un réel x si et seulement si

$$\varphi(x) = \frac{x(x+1)}{(2x+1)^2} > 0$$
 et $(2x+1)^2 \neq 0$

c'est-à-dire x(x+1) > 0 et $x \neq -1/2$.

Compte-tenu de l'énoncé, on peut raisonner avec un tableau de signes.

Ce tableau permet de conclure que $\mathcal{D}_F =]-\infty, -1[\cup]0, +\infty[$

Q25. La fonction $\varphi: x \mapsto \frac{x(x+1)}{(2x+1)^2}$ est dérivable sur \mathcal{D}_F en tant que quotient de fonctions dérivables dont le dénominateur ne s'annule pas. De plus, cette fonction est strictement positive sur \mathcal{D}_F donc, par composition, F est dérivable sur \mathcal{D}_F .

Q26. Pour tout $x \in \mathcal{D}_F$, par formule de dérivation d'une composée et d'un quotient :

$$F'(x) = \frac{(2x+1)^2}{x(x+1)} \times \frac{(x+x+1)(2x+1)^2 - x(x+1) \times 2 \times 2(2x+1)}{(2x+1)^4} = \frac{1}{x(x+1)} \times \frac{(2x+1)^2 - 4x(x+1)}{(2x+1)}$$
$$= \frac{1}{x(x+1)} \times \frac{4x^2 + 4x + 1 - 4x^2 - 4x}{(2x+1)} = \frac{1}{x(x+1)(2x+1)}$$

d'où la formule pour tout
$$x \in \mathcal{D}_F$$
, $f(x) = \frac{1}{x(x+1)(2x+1)}$

Q27-a Soit $z \in \mathbb{C}$, $z \neq 0$. On pose $u_n = \left| f(n)z^{2n+1} \right|$ pour $n \in \mathbb{N}^*$. On a, pour tout $n \in \mathbb{N}^*$, f(n) > 0

$$\frac{u_{n+1}}{u_n} = \frac{n(n+1)(2n+1)}{(n+1)(n+2)(2n+3)} \frac{|z|^{2n+3}}{|z|^{2n+1}} \underset{n \to +\infty}{\sim} \frac{2n^3}{2n^3} |z|^2 = |z|^2$$

Par le critère de d'Alembert :

• si $|z| < 1, \sum u_n$ converge donc $R \geqslant 1$; • si $|z| > 1, \sum u_n$ diverge (grossièrement) donc $R \le 1$.

Q27-b Cette fonction a un développement en série entière dont le rayon de convergence vaut 1 et on a :

$$\forall x \in]-1,1[, \ln(1-x) = \sum_{n=1}^{+\infty} \left(-\frac{1}{n}\right) x^n.$$

Q27-c-i On sait que la fonction $u \mapsto \frac{1}{1-u}$ est développable en série entière sur]-1,1[. En effectuant un changement de variable (si $x \in]-1,1[$ alors $x^2 \in]-1,1[)$, on a :

$$\forall x \in]-1,1[, \frac{1}{1-x^2} = \sum_{n=0}^{+\infty} x^{2n}.$$

avec un rayon de convergence égal à 1.

Q27-c-ii Soit $x \in \mathbb{R} \setminus \{-1, 1\}$. On a :

$$\frac{1}{1-x^2} = \frac{1}{2} \frac{2}{1-x^2} = \frac{1}{2} \frac{1-x+1+x}{(1-x)\times(1+x)} = \frac{1}{2} \left(\frac{1}{1+x} + \frac{1}{1-x}\right) = \frac{\frac{1}{2}}{1+x} + \frac{\frac{1}{2}}{1-x}$$

Ainsi pour tout $x \in]-1,1[,\frac{1}{1-x^2}$ s'exprime comme une combinaison linéaire de $\frac{1}{1-x}$ et $\frac{1}{1+x}$ On a précisément : pour tout $x \in]-1,1[,\frac{1}{1-x^2}=\frac{1}{2}\left(\frac{1}{1+x}+\frac{1}{1-x}\right)]$

Q27-d Avec la question précédente, on peut déterminer l'unique primitive de $x\mapsto \frac{1}{1-x^2}$ sur] -1,1[qui s'annule en 0. Celle-ci est donnée par la fonction $x\mapsto \frac{1}{2}\left(\ln(1+x)-\ln(1-x)\right)$ qui s'écrit

$$x \mapsto \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

Or, d'après le théorème d'intégration terme à terme d'une série entière, le développement de cette fonction s'obtient à l'aide du développement en série entière de la question II-Q27-c-i avec le même rayon de convergence. Ainsi, $x \mapsto \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$ admet un développement en série entière sur]-1,1[dont le rayon de convergence est R=1 (c'est bien la même valeur qu'en II-Q27-a, et on a :

$$\forall x \in]-1,1[, \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right) = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$$

Q27-e Lorsque $x \in]-1,1[,x^2 \in]-1,1[$ donc en effectuant un changement de variable dans **II-Q27-b**, on obtient l'égalité $\ln(1-x^2) = \sum_{n=1}^{+\infty} \left(-\frac{1}{n}\right) x^{2n}$ puis en multipliant par -x cette série convergente,

$$\forall x \in]-R, R[, \sum_{n=1}^{+\infty} \frac{x^{2n+1}}{n} = -x \ln(1-x^2).$$

Q27-f On a montré dans la partie **I** que pour tout $x \in \mathbb{R} \setminus \{-1, -\frac{1}{2}, 0\}$, $g(x) = \frac{2}{x} + \frac{2}{x+1} - \frac{4}{x+\frac{1}{2}}$ et comme $f = \frac{1}{2}g$, il vient alors : $\forall n \in \mathbb{N}^*, f(n) = \frac{1}{n} + \frac{1}{n+1} - \frac{4}{2n+1}$

De façon analogue à la méthode de la question II-Q27-a, on peut justifier que $\sum \frac{x^{2n+1}}{n+1}$ a pour rayon de convergence 1 et, pour tout $x \in]-1,1[, x \neq 0 :$

$$\sum_{n=1}^{+\infty} \frac{x^{2n+1}}{n+1} = \sum_{n=2}^{+\infty} \frac{x^{2n-1}}{n} = \frac{1}{x} \left(\sum_{n=1}^{+\infty} \frac{x^{2n}}{n} - x^2 \right) = -\frac{\ln(1-x^2)}{x} - x.$$

Avec la décomposition en éléments simples de f, on obtient ainsi (toutes les séries étant convergentes), pour tout $x \in]-1,1[\setminus\{0\}]$:

$$\sum_{n=1}^{+\infty} f(n)x^{2n+1} = \sum_{n=1}^{+\infty} \frac{x^{2n+1}}{n} + \sum_{n=1}^{+\infty} \frac{x^{2n+1}}{n+1} - 4\sum_{n=1}^{+\infty} \frac{x^{2n+1}}{2n+1}$$
$$= \left(-x\ln(1-x^2)\right) + \left(-\frac{\ln(1-x^2)}{x} - x\right) - 4 \times \left(\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right) - x\right)$$

puis

$$\forall x \in]-1, 1[\setminus\{0\}, \quad \sum_{n=1}^{+\infty} f(n)x^{2n+1} = 3x - \frac{x^2+1}{x}\ln(1-x^2) - 2\ln\left(\frac{1+x}{1-x}\right)]$$

et cette série entière converge.

Q27-g En reformulant l'expression précédente, pour tout $x \in]-1,1[\setminus\{0\},$ on a :

$$\sum_{n=1}^{+\infty} f(n)x^{2n+1} = 3x - \frac{x^2 + 1}{x} \left(\ln(1+x) + \ln(1-x) \right) - 2\ln(1+x) + 2\ln(1-x)$$

$$= 3x - \frac{x^2 + 2x + 1}{x} \ln(1+x) - \frac{x^2 - 2x + 1}{x} \ln(1-x)$$

$$= 3x - \frac{(x+1)^2}{x} \ln(1+x) - \frac{(x-1)^2}{x} \ln(1-x).$$

Or, $\lim_{x\to 1} (1-x)^2 \ln(1-x) = 0$ par croissances comparées donc, par somme et quotient, l'expression précédente de la série entière admet un limite en 1 et :

$$\lim_{x \to 1} \left(\sum_{n=1}^{+\infty} f(n) x^{2n+1} \right) = 3 - 4 \ln(2).$$

Q28-a On a, par quotient, $f(n) \sim \frac{1}{2n^3}$ au voisinage de $+\infty$, or $\sum \frac{1}{n^3}$ est une série usuelle de Riemann convergente (car 3 > 1). Ainsi $(\sum f(n)$ étant une série à termes positifs), par critère d'équivalence des séries positives, la série $\sum f(n)$ est convergente.

Q28-b Soit $n \in \mathbb{N}^*$. On sépare les termes pairs et impairs dans H(2n+1) pour obtenir :

$$H(2n+1) = \sum_{k=1}^{2n+1} \frac{1}{k} = \sum_{\substack{k=1\\k \text{pair}}}^{2n+1} \frac{1}{k} + \sum_{\substack{k=1\\k \text{impair}}}^{2n+1} \frac{1}{k};$$

- les entiers k pairs entre 1 et 2n + 1 s'écrivent k = 2p, p variant de 1 (le premier pair est 2) à n (le dernier est 2n);
- les entiers k impairs entre 1 et 2n + 1 s'écrivent k = 2q + 1, q variant de 0 (le premier impair est 1) à n (le dernier est 2n + 1).

Ainsi ·

$$H(2n+1) = \sum_{p=1}^{n} \frac{1}{2p} + \sum_{q=0}^{n} \frac{1}{2q+1} = \frac{1}{2} \sum_{p=1}^{n} \frac{1}{p} + \sum_{q=0}^{n} \frac{1}{2q+1} = \frac{1}{2} H(n) + \sum_{q=0}^{n} \frac{1}{2} H(n) + \sum_{q=0}$$

qui donne le résultat (en renommant l'indice) : pour tout $n \in \mathbb{N}^*$, $\sum_{k=0}^n \frac{1}{2k+1} = H(2n+1) - \frac{1}{2}H(n)$

Q28-c Pour tout $n \in \mathbb{N}^*$, on obtient, avec la question précédente :

$$\begin{split} \sum_{k=1}^n f(k) &= \sum_{k=1}^n \left(\frac{1}{k} + \frac{1}{k+1} - \frac{4}{2k+1}\right) \\ &= H(n) + \sum_{k=1}^n \frac{1}{k+1} - 4 \sum_{k=1}^n \frac{1}{2k+1} \\ &= H(n) + \sum_{k=2}^{n+1} \frac{1}{k} - 4 \left(\sum_{k=0}^n \frac{1}{2k+1} - 1\right) \\ &= H(n) + \left(H(n) - 1 + \frac{1}{n+1}\right) - 4 \left(H(2n+1) - \frac{1}{2}H(n) - 1\right) \end{split}$$

d'où le résultat : pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n f(k) = 3 + 4H(n) - 4H(2n+1) + \frac{1}{n+1}$

Remarque Admettons qu'il existe une constante réelle γ (appelée constante d'Euler) telle que, lorsque N tend vers $+\infty$, $\sum_{k=1}^{N} \frac{1}{k} = \ln N + \gamma + o(1)$.

Avec ce développement asymptotique admis, on obtient, lorsque l'entier n est au voisinage de $+\infty$:

$$4H(n) - 4H(2n+1) = 4(\ln(n) + \gamma - \ln(2n+1) - \gamma) + o(1) = 4\ln\left(\frac{n}{2n+1}\right) + o(1)$$

donc, par composition, la limite demandée existe et $\lim_{n\to+\infty} 4H(n) - 4H(2n+1) = -4\ln(2)$

Par somme de limites dans la question II-Q28-c, on obtient : $\sum_{n=1}^{+\infty} f(n) = 3 - 4\ln(2)$.

Exercice 02

Soit a > 0, on considère les fonctions f_a définies sur \mathbb{R}_+^{\star} par :

$$\forall x \in \mathbb{R}_+^*, f_a(x) = \frac{\sin(\pi x)}{x^a}.$$

On note les intégrales généralisées :

$$I_a = \int_0^1 f_a(t) dt \text{ et } J_a = \int_1^{+\infty} f_a(t) dt.$$

Q03. Si $\underline{a \leq 0}$, la fonction f_a est continue sur [0,1] donc $\underline{I_a}$ converge. Si $\underline{0 < a < 2}$, f_a est continue sur [0,1] et

$$f_a \sim \frac{\pi x}{x^a} = \frac{\pi}{x^{a-1}}.$$

De plus, a-1<1 donc l'intégrale $\int_0^1 \frac{1}{x^{a-1}} dx$ converge (intégrale de Riemann), donc par équivalent des intégrales de fonctions positives I_a converge.

Si $\underline{a\geqslant 2}$ alors $a-1\geqslant 1$, donc l'intégrale $\int_0^1\frac{1}{x^{a-1}}dx$ diverge (intégrale de Riemann), puis par équivalent des intégrales de fonctions positives I_a diverge.

Q04. Pour tout $t \geqslant 1$, $|f_a(t)| \leqslant \frac{1}{t^a}$.

Si a>1, l'intégrale $\int_{1}^{+\infty} \frac{1}{t^a} dt$ converge (intégrale de Riemann), donc par comparaison des intégrales des fonctions positives $\int_{1}^{+\infty} |f_a(t)| dt$ converge i.e. $\underline{J_a}$ converge absolument.

Q05-a Soit X > 1. On pose $u(t) = \frac{1}{t^a}$ et $v'(t) = \sin(\pi t)$. Par intégration par parties :

$$\int_{1}^{X} f_{a}(t)dt = \left[-\frac{\cos(\pi t)}{\pi t^{a}} \right]_{1}^{X} - \int_{1}^{X} \frac{-a}{t^{a+1}} \frac{-\cos(\pi t)}{\pi} dt = \frac{-1}{\pi} - \frac{\cos(\pi X)}{\pi X^{a}} - \frac{a}{\pi} \int_{1}^{X} \frac{\cos(\pi t)}{t^{a+1}} dt.$$

Q05-b Pour les mêmes raisons qu'à la question Q27, l'intégrale $\int_1^{+\infty} \frac{\cos(\pi t)}{t^{a+1}} dt$ converge absolument, en particulier, elle converge i.e. $X \mapsto \int_1^X \frac{\cos(\pi t)}{t^{a+1}} dt$ admet une limite finie quand $X \to +\infty$. Par ailleurs,

$$\left| \frac{\cos(\pi X)}{\pi X^a} \right| \le \frac{1}{\pi X^a} \xrightarrow[X \to +\infty]{} 0.$$

Finalement,

$$\int_{1}^{X} f_{a}(t)dt \xrightarrow[X \to +\infty]{} -\frac{1}{\pi} - \frac{a}{\pi} \int_{1}^{+\infty} \frac{\cos(\pi t)}{t^{a+1}} dt$$

La fonction $X\mapsto \int_1^X f_a(t)dt$ admet une limite finie quand $X\to +\infty$ et ainsi J_a converge lorsque $a\in]0,1].$

 $\overline{\mathbf{Q06.}}$ D'après ce qui précède, J_a converge pour tout a>0 (CVA pour a>1 et CV pour $a\in]0,1]$) et I_a converge ssi a<2. En conclusion, $\int_0^{+\infty} f_a(t)dt$ converge si 0< a<2 (somme de deux intégrales convergentes) et diverge si $a\geqslant 2$ (somme d'une intégrale convergente et d'une intégrale divergente). En résumé, $\int_0^{+\infty} f_a(t)dt$ converge si, et seulement si 0< a<2.