MATHÉMATIQUES

EXERCICE 01

On considère les matrices :

$$A = \begin{pmatrix} -1 & 0 & 0 \\ -8 & 0 & -8 \\ 9 & 0 & 8 \end{pmatrix}, P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} \text{ et } Q = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}.$$

1. On a:
$$PQ = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = I_3.$$

Remarque : Il est inutile dans l'anneau des matrices carrées de vérifier que $QP = I_3$ aussi. Mais le faire quand même n'enlève pas des points.

2. On définit dans la suite la matrice : $B = Q \times A \times P$. Alors :

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ -8 & 0 & -8 \\ 9 & 0 & 8 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 8 \end{pmatrix}.$$

Comme B est diagonale, on sait que B^n est une matrice diagonale dont les coefficients sont les puissances $n^{\text{ème}}$ des coefficients correspondants de B. On a :

$$\forall n \in \mathbb{N}, B^n = \left(\begin{array}{ccc} (-1)^n & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 8^n \end{array} \right).$$

Remarque : Il est inutile de faire une récurrence pour avoir B^n . Encore une fois en faire une n'est pas non plus interdit.

3-a On a rapidement :

$$A^0 = I_3, A^1 = A, A^2 = \begin{pmatrix} 1 & 0 & 0 \\ -64 & 0 & -64 \\ 63 & 0 & 64 \end{pmatrix}.$$

3-b Montrons que pour tout $n \in \mathbb{N}$, $A^n = P \times B^n \times Q$. Notons \mathcal{P}_n cette proposition. Il est clair que \mathcal{P}_0 est vraie. En effet,

$$A^0 = I_3$$
 et $P \times B^0 \times Q = PQ = I_3$.

De même, il est clair que \mathcal{P}_1 est vraie. En effet,

$$A^1 = A$$
 et $P \times B \times Q = P(QAP)Q = I_3AI_3 = A$.

Supposons \mathcal{P}_n vraie pour un n entier naturel non nul. Alors :

$$A^{n+1} = A^n A = (P \times B^n \times Q) A = (P \times B^n \times Q) (P \times B \times Q) = P \times B^{n+1} \times Q.$$

C'est bien \mathcal{P}_{n+1} .

Remarque : Ici la récurrence est indispensable mais attention pour l'hérédité, on a besoin du cas n = 1. Donc il faut initialiser jusqu'à n = 1.

3-c On se lance courageusement dans le calcul, pour tout $n \in \mathbb{N}^{\star}$,

$$A^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} (-1)^{n} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 8^{n} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} (-1)^{n} & 0 & 0 \\ -8^{n} & 0 & -8^{n} \\ (-1)^{n+1} + 8^{n} & 0 & 8^{n} \end{pmatrix}.$$

3-d Méthode pour 5/2: La matrice A^n n'est pas inversible car son déterminant est nul. En effet, A^n a une colonne nulle et il suffit de développer le déterminant selon cette colonne.

Remarque: Il y a d'autres pistes toujours pour les 5/2. On peut remarquer par exemple que Det $B^n=0$ et comme $A^n = PB^nQ$, alors Det $A^n = 0$. On peut aussi montrer que la matrice C telle que $A^nC = I_3$ n'existe pas mais c'est bien plus long. On peut aussi vérifier que A n'est pas inversible car $\mathsf{Det}\,A=0$ et donc A^n aussi. On peut aussi chercher Ker A^n qui n'est pas réduit au vecteur nul.

Méthode pour 3/2 : on commence par montrer que A n'est pas inversible car si on tente de résoudre AX = B avec $X = (x_1, x_2, x_3)$ et $B = (b_1, b_2, b_3)$,

$$\begin{cases}
-x_1 &= b_1 \\
-8x_1 - 8x_3 &= b_2 \\
9x_1 + 8x_3 &= b_3
\end{cases}$$

Or x_2 est indeterminable. Le système n'est pas de Cramer et A n'est pas inversible. Donc A^n aussi n'est pas inversible.

On aurait pu faire ce raisonnement sur A^n aussi directement d'ailleurs, x_2 reste indeterminable.

EXERCICE 02

- 1. On a : $\Delta = -3 < 0$ et les solutions sont $\frac{-1}{2} \pm i \frac{\sqrt{3}}{2}$. On reconnait j et \bar{j} .
- **2.** Donc $1 + j + \bar{j} = 1 + j + j^2 = 0$. De plus, $\bar{j} = j^2$ et $\bar{j} = -1 j$ et $-1 \bar{j} = j$.
- 3. Pour $P = X^2 + X + 1$. $P(X^2) = X^4 + X^2 + 1$ et

$$P(X)P(X-1) = (X^2 + X + 1)((X-1)^2 + X - 1 + 1) = (X^2 + X + 1)(X^2 - X + 1) = X^4 + X^2 + 1.$$

4. Déjà le poynôme nul vérifie (E). Puis si $P=a_0\neq 0, P(X^2)=a_0$ et $P(X)P(X-1)=a_0^2$. Alors :

$$a_0^2 = a_0 \Rightarrow a_0 = 1.$$

En conclusion, seuls les polynômes constants égaux à 0 ou 1 sont solutions de (E).

5. Si P est de degré 0, alors P = 1. C'est réglé.

Supposons $n \ge 1$ et posons $P = a_n X^n + Q_n$ avec Q_n de degré inférieur ou égal à n-1 et $a_n \ne 0$. Alors $P(X^2) = a_n X^{2n} + Q_n(X^2)$. Et $Q_n(X^2)$ est de degré au plus 2n-2. Puis

$$P(X)P(X-1) = (a_nX^n + Q_n(X))(a_n(X-1)^n + Q_n(X-1)) = a_n^2X^{2n} + Z_n(X),$$

où Z_n est de degré au plus 2n-1. En identifiant, $a_n=a_n^2$ et donc $a_n=1$.

6. Supposons α une racine de P avec $\deg P \geqslant 1$. Comme $P(\alpha) = 0$, on a $P(\alpha^2) = 0$ et donc α^2 est une racine de P.

Si l'on suppose que α^{2^n} est une racine de P, alors $(\alpha^{2^n})^2 = \alpha^{2^{n+1}}$ aussi. D'où le résultat.

7. Si α est une racine de P de module différent de 0 et de 1, comme α^{2^n} est une racine de P, pour tout n, nécessairement ce nombre de racines est fini (au plus le degré de P.) Or les modules des complexes α^{2^n} sont alors tous différents, ce qui est absurde. Dons soit $\alpha = 0$ soit α est de module 1.

Par contre si P est nul, tous les complexes sont alors racines.

8. Si l'on pose $x=1+\alpha$, $P(x^2)=P((1+\alpha)^2)=P(1+\alpha)P(\alpha)=0$ donc $(1+\alpha)^2$ est encore une racine de P. Donc, $1 + \alpha = 0$ ou $|1 + \alpha| = 1$. Alors soit $\alpha = 1$, soit :

$$|1 + \alpha|^2 = (1 + \alpha)(1 + \bar{\alpha})^2 = 1 + \alpha + \bar{\alpha} + |\alpha|^2 = 1 \Rightarrow \alpha + \bar{\alpha} = -1$$

si $|\alpha|^2 = 1$. Alors $\alpha = -\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$ et c'est j ou \bar{j} . En conclusion, les racines de P sont 0, -1, j et $j^2 = \bar{j}$.

9. On peut remarquer d'après la question précédente que si P une solution non nulle de (E) alors elle est de la forme $P = X^{n_1}(X+1)^{n_2}(X-j)^{n_3}(X-\bar{j})^{n_4}$, où n_1 , n_2 , n_3 et n_4 sont quatre entiers naturels éventuellements nuls. Il s'agit maintenant d'identifier $P(X^2)$ et P(X)P(X-1). D'une part, $P(X^2)$ vaut :

$$X^{2n_1}(X^2+1)^{n_2}(X^2-j)^{n_3}(X^2-\bar{j})^{n_4}.$$

D'autre part, P(X-1)P(X) vaut :

$$X^{n_1}(X+1)^{n_2}(X-j)^{n_3}(X-\bar{j})^{n_4}(X-1)^{n_1}X^{n_2}(X-1-j)^{n_3}(X-1-\bar{j})^{n_4}.$$

C'est-à-dire:

$$X^{n_1}(X+1)^{n_2}(X-j)^{n_3}(X-\bar{j})^{n_4}(X-1)^{n_1}X^{n_2}(X+\bar{j})^{n_3}(X+j)^{n_4}.$$

Ou encore:

$$X^{n_1+n_2}(X+1)^{n_2}(X-1)^{n_1}(X-j)^{n_3}(X+j)^{n_4}(X-\bar{j})^{n_4}(X+\bar{j})^{n_3}.$$

. Or, $j^2 = \bar{j}$ et $\bar{j}^2 = j$. On en déduit que :

$$(X^2 - j)^{n_3} = (X^2 - \bar{j}^2)^{n_3} = (X - \bar{j})^{n_3} (X + \bar{j})^{n_3} \text{ et } (X^2 - \bar{j})^{n_4} = (X^2 - j^2)^{n_4} = (X - j)^{n_4} (X + j)^{n_4}.$$

En identifiant, $2n_1 = n_1 + n_2$, $n_2 = n_1 = 0$ et $n_3 = n_4$.

Il reste les polynômes de la forme : $P = (X^2 + X + 1)^n$, $n \in \mathbb{N}$.

EXERCICE 03

On considère la fonction $f: \mathbb{C} \setminus \{-1\} \to \mathbb{C}$ définie par $: \forall z \in \mathbb{C} \setminus \{-1\}, f(z) = \frac{z-1}{z+1}$.

On rappelle que $i\mathbb{R} = \{z \in \mathbb{C}, \operatorname{Re}(z) = 0\}$ désigne l'ensemble des nombres imaginaires purs, et on pose $\mathbb{U} = \{z \in \mathbb{C}, |z| = 1\}$ l'ensemble des nombres complexes de module 1.

Partie A - Lieux de points

1. Soient les nombres complexes a=1, b=-3 et $c=\frac{1}{3}(-3+2i\sqrt{3})$.

Calculons f(a), f(b) et f(c) et montrons que les points A, B et C d'affixes respectives f(a), f(b) et f(c) forment un triangle équilatéral.

On a rapidement : f(a) = 0, f(b) = 2, $f(c) = i\sqrt{3} + 1 = 2e^{i\frac{\pi}{3}}$.

On a immédiatement AB = AC = BC = 2 et l'angle entre \overrightarrow{AC} et \overrightarrow{AB} est $\pi/3$. Ainsi, (ABC) forme un triangle équilatéral.

2. Écrivons le lieu des points M d'affixe z tels que $f(z) \in \mathbb{U}$.

Il s'agit des $z \neq -1$ tels que |z-1| = |z+1|. Si D(1) et E(-1) alors M parcourt la médiatrice du segment [D, E].

On peut le retrouver par le calcul : $|z-1|=|z+1| \Leftrightarrow (z-1)(\bar{z}-1)=(z+1)(\bar{z}+1) \Leftrightarrow z+\bar{z}=0$. C'est $i \mathbb{R}$.

3. Écrivons le lieu des points M d'affixe z tels que $|f(z)| = \sqrt{2}$.

On s'inspire du développement précédent :

$$|z-1| = \sqrt{2}|z+1| \Leftrightarrow (z-1)(\bar{z}-1) = 2(z+1)(\bar{z}+1) \Leftrightarrow x^2 + y^2 + 6x + 1 = 0.$$

Pour ceux qui connaissent, il s'agit du cercle : $(x+3)^2 + y^2 = 8$ soit le cercle de centre (-3, 0) et de rayon $\sqrt{8}$.

Partie B - Étude d'une suite récurrente

1-a. • Montrons que l'équation f(z) = 1 n'a pas de solution.

En effet, sinon, z - 1 = z + 1 et donc -1 = 1, ce qui est absurde.

• Montrons que pour tout nombre complexe $\omega \neq 1$, l'équation $f(z) = \omega$ admet une unique solution, que l'on exprimera en fonction de ω .

On écrit :
$$f(z) = \omega \Leftrightarrow z - 1 = \omega(z+1) \Leftrightarrow z = \frac{1+\omega}{1-\omega}$$
.

1-b. La fonction f est-elle injective? Surjective?

La valeur 1 n'est pas atteinte et f n'est pas surjective. Par contre, la restriction de f de $\mathbb{C}\setminus\{-1\}\to\mathbb{C}\setminus\{1\}$ est bijective. Par conséquent, f est bien injective.

1-c. Montrons que pour tout nombre complexe $z \in \mathbb{C} \setminus \{-1,0,1\}$, on a : $f(z) \in \mathbb{C} \setminus \{-1,0,1\}$.

On a : $f(z) = -1 \Leftrightarrow z = 0$ et $f(z) = 0 \Leftrightarrow z = 1$. Et -1 ne sera jamais atteint. Ainsi, pour tout nombre complexe $z \in \mathbb{C} \setminus \{-1, 0, 1\}$, on a : $f(z) \in \mathbb{C} \setminus \{-1, 0, 1\}$.

- **2.** Dans la suite, on considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $\begin{cases} u_0 \in \mathbb{C} \setminus \{-1,0,1\} \\ \forall n \in \mathbb{N}, u_{n+1} = f(u_n) \end{cases}$
- **2-a.** Résolvons l'équation f(z) = z.

C'est-à-dire $\frac{z-1}{z+1} = z$ ou encore $z^2 = -1$ et donc $z = \pm i$.

2-b Que dire de la suite (u_n) si $u_0 \in \{-i, i\}$?

On a f(-i) = -i et f(i) = i donc si $u_0 = i$, (u_n) est la suite constante de valeur i et si $u_0 = -i$, (u_n) est la suite constante de valeur -i.

2-c Si $u_0 \notin \{-i, i\}$, alors pour tout $n \in \mathbb{N}$, $u_n \notin \{-i, i\}$.

En effet, d'après la question précédente, l'image réciproque $f^{-1}(i)$ est $\{i\}$ et l'image réciproque $f^{-1}(-i)$ est $\{-i\}$.

On a : $u_0 \notin \{-i, i\} \Leftrightarrow u_1 = f(u_0) \notin \{-i, i\}.$

Par récurrence, $u_0 \notin \{-i, i\} \Leftrightarrow u_n = f(u_{n-1}) \notin \{-i, i\}.$

3-a Démontrons que la suite (v_n) est géométrique de raison -i.

On écrit :
$$v_{n+1} = \frac{u_n - i}{u_n + i} = \frac{\frac{u_n - 1}{u_n + 1} - i}{\frac{u_n - 1}{u_n + 1} + i} = \frac{-i(u_n - i) + u_n - i}{i(u_n + i) + u_n + i}.$$

Ou encore:
$$v_{n+1} = \frac{u_n - 1 - iu_n - i}{u_n - 1 + iu_n + i} = \frac{(u_n - i)(1 - i)}{(u_n + i)(1 + i)} = v_n \frac{1 - i}{1 + i} = -iv_n.$$

Donc la suite (v_n) est géométrique de raison -i.

3-b Montrons que la suite (v_n) est périodique de période 4 et que ses termes sont les affixes d'un carré.

En effet, $v_1 = -iv_0$, $v_2 = -v_0$, $v_3 = iv_0$, $v_4 = v_0$. Par récurrence immédiate, pour tout $p \in \mathbb{N}$, $v_{4p+1} = -iv_0$, $v_{4p+2} = -v_0$, $v_{4p+3} = iv_0$ et $v_{4p+4} = v_0$.

Enfin, si l'on prend v_0 (qui est non nul), iv_0 est déduit de v_0 par une rotation d'angle $\pi/2$, puis $-v_0$ est issue de iv_0 par la même rotation et enfin $-iv_0$ toujours par la même rotation. Les quatre points associés sont bien les sommets d'un carré.

3-c Montrons que la suite (u_n) est également périodique de période 4.

On a : $u_n = i \frac{1 + v_n}{1 - v_n}$. Et comme (v_n) prend quatre valeurs, il en est de même de (u_n) qui a la même période.