Devoir libre 02

2TSI. Mathématiques

A rendre le jeudi 09 octobre 2025

Les trois exercices sont indépendants et peuvent être traités dans n'importe quel ordre.

EXERCICE 01

On considère les matrices :

$$A = \begin{pmatrix} -1 & 0 & 0 \\ -8 & 0 & -8 \\ 9 & 0 & 8 \end{pmatrix}, P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} \text{ et } Q = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}.$$

- 1. Vérifier que les matrices P et Q sont inverses l'une de l'autre.
- 2. On définit dans la suite la matrice : $B = Q \times A \times P$. Calculer B et expliciter pour tout entier n, la matrice B^n .
- 3. On veut calculer A^n pour tout $n \in \mathbb{N}$.
 - (a) Calculer directement A^n pour n = 0, n = 1 et n = 2.
 - (b) Montrer que pour tout $n \in \mathbb{N}$, $A^n = P \times B^n \times Q$.
 - (c) En déduire A^n .
 - (d) La matrice A^n est-elle inversible?

EXERCICE 02

Le but de l'exercice est de résoudre dans $\mathbb{C}[X]$ l'équation

$$(E): P(X^2) = P(X)P(X-1).$$

On pose $j = e^{i\frac{2\pi}{3}}$.

- 1. Résoudre $x^2 + x + 1 = 0$ et que peut-on dire de j?
- 2. Calculer $1 + j + j^2$ puis comparer j^2 et \bar{j} d'une part et -1 j et \bar{j} d'autre part.
- 3. Vérifier que $X^2 + X + 1$ est solution de (E).
- 4. Déterminer les polynômes constants solutions de (E).
- 5. Soit P une solution non nulle de (E) de degré $n \ge 0$. Quel est son coefficient dominant? On justifiera sa réponse.

La suite de l'exercice est en bonus uniquement

- 6. Soit P un polynôme non constant solution de (E) et α une racine de P. Montrer alors que α^{2^n} pour tout entier $n \in \mathbb{N}$ est une racine de P.
- 7. Soit α une racine de P solution de (E) telle que $|\alpha| \neq 0$ et $|\alpha| \neq 1$. Que peut-on dire de P? En déduire que si P est une solution non nulle de (E), les racines de P sont soit nulle, soit de module 1.
- 8. On pose $\alpha = e^{i\theta}$ une racine de P solution non nulle de (E). Que peut-on dire de $(1 + \alpha)^2$? En déduire les trois valeurs possibles des racines non nulles de P. On justifiera sa réponse.
- 9. Question pour départager les exaequo. Soit P une solution non nulle de (E) de la forme

$$P = X^{n_1}(X+1)^{n_2}(X-j)^{n_3}(X-\bar{j})^{n_4},$$

où n_1 , n_2 , n_3 et n_4 sont quatre entiers naturels éventuellements nuls. En identifiant $P(X^2)$ d'une part et P(X)P(X-1) d'autre part, que peut-on dire des entiers n_1 , n_2 , n_3 et n_4 ? En déduire alors toutes les solutions de (E).

EXERCICE 03

On considère la fonction $f: \mathbb{C} \setminus \{-1\} \to \mathbb{C}$ définie par :

$$\forall z \in \mathbb{C} \setminus \{-1\}, f(z) = \frac{z-1}{z+1}.$$

On rappelle que $i\mathbb{R} = \{z \in \mathbb{C}, \operatorname{Re}(z) = 0\}$ désigne l'ensemble des nombres imaginaires purs, et on pose $\mathbb{U} = \{z \in \mathbb{C}, |z| = 1\}$ l'ensemble des nombres complexes de module 1.

Partie A - Lieux de points

- 1. Soient les nombres complexes a=1, b=-3 et $c=\frac{1}{3}(-3+2i\sqrt{3})$. Calculer f(a), f(b) et f(c) et montrer que les points A, B et C d'affixes respectives f(a), f(b) et f(c) forment un triangle équilatéral (on pourra mettre f(c) sous forme trigonométrique).
- 2. Écrire le lieu des points M d'affixe z tels que $f(z) \in \mathbb{U}$. (On posera z = x + iy et on trouvera une égalité utilisant x et (ou) y.)
- 3. Écrire le lieu des points M d'affixe z tels que $|f(z)| = \sqrt{2}$. (On posera z = x + iy et on trouvera une égalité utilisant x et (ou) y.)

Partie B - Étude d'une suite récurrente

- 1. (a) Montrer que l'équation f(z)=1 n'a pas de solution, puis que pour tout nombre complexe $\omega \neq 1$, l'équation $f(z)=\omega$ admet une unique solution, que l'on exprimera en fonction de ω .
 - (b) La fonction f est-elle injective? Surjective?
 - (c) Montrer que pour tout nombre complexe $z \in \mathbb{C} \setminus \{-1,0,1\}$, on a : $f(z) \in \mathbb{C} \setminus \{-1,0,1\}$.
- 2. Dans la suite, on considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $\begin{cases} u_0\in\mathbb{C}\setminus\{-1,0,1\}\\ \forall\,n\in\mathbb{N},\,u_{n+1}=f(u_n) \end{cases}$
 - (a) Résoudre l'équation f(z) = z.
 - (b) Que dire de la suite (u_n) si $u_0 \in \{-i, i\}$?
 - (c) Montrer que si $u_0 \notin \{-i, i\}$, alors pour tout $n \in \mathbb{N}$, $u_n \notin \{-i, i\}$.
- 3. On suppose maintenant que $u_0 \in \mathbb{C} \setminus \{-1,0,1,-i,i\}$, et on introduit la suite $(v_n)_{n \in \mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, v_n = \frac{u_n - i}{u_n + i}.$$

D'après la question précédente, la suite (v_n) est bien définie puisque $u_0 \neq -i$ et donc pour tout entier naturel n, on a : $u_n \neq -i$.

- (a) Démontrer que la suite (v_n) est géométrique de raison -i.
- (b) Montrer que la suite (v_n) est périodique de période 4 et que ses termes sont les affixes d'un carré.
- (c) Montrer que la suite (u_n) est également périodique de période 4.