CLASSE DE 2TSI PROGRAMME DE COLLE DE MATHEMATIQUES

Colle 06

Du 03 Novembre 2025 au 08 Novembre 2025

1) Algèbre linéaire

Voir colle 04 et colle 05

2) Dénombrements

Nombre de parties d'un ensemble, nombre de parties à k éléments dans un ensemble à n éléments, notation $\binom{k}{n}$, permutations, nombre d'applications d'un ensemble fini dans un autre.

3) Les probabilités discrètes sur un univers fini

Expérience aléatoire, évenement, lois de Morgan, $\bigcap_{i \in I} A_i$, système complet d'évenements, probabi-

lité, espace probabilisé fini, formule d'additivité finie, probabilité uniforme et formule $P(A) = \frac{Card(A)}{Card(\Omega)}$.

Conditionnement et notation $P_B(A)$. Formule des probabilités composées, totales, de Thomas Bayes. Indépendance de deux évenements, indépendance deux à deux, indépendance de n événements.

Le colleur vérifiera la maîtrise ou l'acquisition de certains des points suivants (en question de cours ou dans un exercice) :

Know-how:

Sur les applications linéaires :

- 1) Savoir montrer que le noyau et l'image d'une application linéaire sont des espaces vectoriels.
- 2) Savoir déterminer un noyau et savoir manipuler $\operatorname{\mathsf{Ker}} u$ et $\operatorname{\mathsf{Im}} u$.
- 3) Savoir utiliser la loi du rang.
- 4) Savoir utiliser une matrice de passage pour transformer la matrice d'un endomorphisme par changement de base.
- 5) Savoir reconnaître une projection vectorielle avec ses éléments caractéristiques et réciproquement la définir analytiquement ou matriciellement.
- 6) Savoir reconnaître une symétrie vectorielle avec ses éléments caractéristiques et réciproquement la définir analytiquement ou matriciellement.

Sur les probabilités :

- 1) Utiliser dans un problème de dénombrement le nombre de bijections ou d'applications.
- 2) Savoir calculer $P(\overline{A})$, $P(A \cap B)$, $P(A \cup B)$ avec des formules.
- 3) Savoir calculer une probabilité en faisant le rapport du nombre de cas favorables sur le nombre de cas possibles.
- 4) Savoir utiliser la formule de Bayes pour calculer $P_B(A)$ connaissant $P_A(B)$.
- 5) Savoir utiliser la formule des probabilités totales en particulier associé au système complet (A, \overline{A}) .
- 6) Savoir calculer $P(A \cap B)$ puis $P(A \cap B \cap C)$ avec la formule des probabilités composées.
- 7) Savoir différencier deux événements incompatibles et indépendants.